qemu/target-ppc/translate.c
ths a0ae05aa63 PPC32 Trace Exception and Trap instruction, by Jason Wessel.
git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@2291 c046a42c-6fe2-441c-8c8c-71466251a162
2007-01-05 16:54:16 +00:00

2704 lines
98 KiB
C

/*
* PowerPC emulation for qemu: main translation routines.
*
* Copyright (c) 2003-2005 Jocelyn Mayer
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <stdarg.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <inttypes.h>
#include "cpu.h"
#include "exec-all.h"
#include "disas.h"
//#define DO_SINGLE_STEP
//#define PPC_DEBUG_DISAS
#ifdef USE_DIRECT_JUMP
#define TBPARAM(x)
#else
#define TBPARAM(x) (long)(x)
#endif
enum {
#define DEF(s, n, copy_size) INDEX_op_ ## s,
#include "opc.h"
#undef DEF
NB_OPS,
};
static uint16_t *gen_opc_ptr;
static uint32_t *gen_opparam_ptr;
#include "gen-op.h"
#define GEN8(func, NAME) \
static GenOpFunc *NAME ## _table [8] = { \
NAME ## 0, NAME ## 1, NAME ## 2, NAME ## 3, \
NAME ## 4, NAME ## 5, NAME ## 6, NAME ## 7, \
}; \
static inline void func(int n) \
{ \
NAME ## _table[n](); \
}
#define GEN16(func, NAME) \
static GenOpFunc *NAME ## _table [16] = { \
NAME ## 0, NAME ## 1, NAME ## 2, NAME ## 3, \
NAME ## 4, NAME ## 5, NAME ## 6, NAME ## 7, \
NAME ## 8, NAME ## 9, NAME ## 10, NAME ## 11, \
NAME ## 12, NAME ## 13, NAME ## 14, NAME ## 15, \
}; \
static inline void func(int n) \
{ \
NAME ## _table[n](); \
}
#define GEN32(func, NAME) \
static GenOpFunc *NAME ## _table [32] = { \
NAME ## 0, NAME ## 1, NAME ## 2, NAME ## 3, \
NAME ## 4, NAME ## 5, NAME ## 6, NAME ## 7, \
NAME ## 8, NAME ## 9, NAME ## 10, NAME ## 11, \
NAME ## 12, NAME ## 13, NAME ## 14, NAME ## 15, \
NAME ## 16, NAME ## 17, NAME ## 18, NAME ## 19, \
NAME ## 20, NAME ## 21, NAME ## 22, NAME ## 23, \
NAME ## 24, NAME ## 25, NAME ## 26, NAME ## 27, \
NAME ## 28, NAME ## 29, NAME ## 30, NAME ## 31, \
}; \
static inline void func(int n) \
{ \
NAME ## _table[n](); \
}
/* Condition register moves */
GEN8(gen_op_load_crf_T0, gen_op_load_crf_T0_crf);
GEN8(gen_op_load_crf_T1, gen_op_load_crf_T1_crf);
GEN8(gen_op_store_T0_crf, gen_op_store_T0_crf_crf);
GEN8(gen_op_store_T1_crf, gen_op_store_T1_crf_crf);
/* Floating point condition and status register moves */
GEN8(gen_op_load_fpscr_T0, gen_op_load_fpscr_T0_fpscr);
GEN8(gen_op_store_T0_fpscr, gen_op_store_T0_fpscr_fpscr);
GEN8(gen_op_clear_fpscr, gen_op_clear_fpscr_fpscr);
static GenOpFunc1 *gen_op_store_T0_fpscri_fpscr_table[8] = {
&gen_op_store_T0_fpscri_fpscr0,
&gen_op_store_T0_fpscri_fpscr1,
&gen_op_store_T0_fpscri_fpscr2,
&gen_op_store_T0_fpscri_fpscr3,
&gen_op_store_T0_fpscri_fpscr4,
&gen_op_store_T0_fpscri_fpscr5,
&gen_op_store_T0_fpscri_fpscr6,
&gen_op_store_T0_fpscri_fpscr7,
};
static inline void gen_op_store_T0_fpscri(int n, uint8_t param)
{
(*gen_op_store_T0_fpscri_fpscr_table[n])(param);
}
/* Segment register moves */
GEN16(gen_op_load_sr, gen_op_load_sr);
GEN16(gen_op_store_sr, gen_op_store_sr);
/* General purpose registers moves */
GEN32(gen_op_load_gpr_T0, gen_op_load_gpr_T0_gpr);
GEN32(gen_op_load_gpr_T1, gen_op_load_gpr_T1_gpr);
GEN32(gen_op_load_gpr_T2, gen_op_load_gpr_T2_gpr);
GEN32(gen_op_store_T0_gpr, gen_op_store_T0_gpr_gpr);
GEN32(gen_op_store_T1_gpr, gen_op_store_T1_gpr_gpr);
GEN32(gen_op_store_T2_gpr, gen_op_store_T2_gpr_gpr);
/* floating point registers moves */
GEN32(gen_op_load_fpr_FT0, gen_op_load_fpr_FT0_fpr);
GEN32(gen_op_load_fpr_FT1, gen_op_load_fpr_FT1_fpr);
GEN32(gen_op_load_fpr_FT2, gen_op_load_fpr_FT2_fpr);
GEN32(gen_op_store_FT0_fpr, gen_op_store_FT0_fpr_fpr);
GEN32(gen_op_store_FT1_fpr, gen_op_store_FT1_fpr_fpr);
GEN32(gen_op_store_FT2_fpr, gen_op_store_FT2_fpr_fpr);
static uint8_t spr_access[1024 / 2];
/* internal defines */
typedef struct DisasContext {
struct TranslationBlock *tb;
target_ulong nip;
uint32_t opcode;
uint32_t exception;
/* Routine used to access memory */
int mem_idx;
/* Translation flags */
#if !defined(CONFIG_USER_ONLY)
int supervisor;
#endif
int fpu_enabled;
ppc_spr_t *spr_cb; /* Needed to check rights for mfspr/mtspr */
int singlestep_enabled;
} DisasContext;
struct opc_handler_t {
/* invalid bits */
uint32_t inval;
/* instruction type */
uint32_t type;
/* handler */
void (*handler)(DisasContext *ctx);
};
#define RET_EXCP(ctx, excp, error) \
do { \
if ((ctx)->exception == EXCP_NONE) { \
gen_op_update_nip((ctx)->nip); \
} \
gen_op_raise_exception_err((excp), (error)); \
ctx->exception = (excp); \
} while (0)
#define RET_INVAL(ctx) \
RET_EXCP((ctx), EXCP_PROGRAM, EXCP_INVAL | EXCP_INVAL_INVAL)
#define RET_PRIVOPC(ctx) \
RET_EXCP((ctx), EXCP_PROGRAM, EXCP_INVAL | EXCP_PRIV_OPC)
#define RET_PRIVREG(ctx) \
RET_EXCP((ctx), EXCP_PROGRAM, EXCP_INVAL | EXCP_PRIV_REG)
/* Stop translation */
static inline void RET_STOP (DisasContext *ctx)
{
gen_op_update_nip((ctx)->nip);
ctx->exception = EXCP_MTMSR;
}
/* No need to update nip here, as execution flow will change */
static inline void RET_CHG_FLOW (DisasContext *ctx)
{
ctx->exception = EXCP_MTMSR;
}
#define GEN_HANDLER(name, opc1, opc2, opc3, inval, type) \
static void gen_##name (DisasContext *ctx); \
GEN_OPCODE(name, opc1, opc2, opc3, inval, type); \
static void gen_##name (DisasContext *ctx)
typedef struct opcode_t {
unsigned char opc1, opc2, opc3;
#if HOST_LONG_BITS == 64 /* Explicitely align to 64 bits */
unsigned char pad[5];
#else
unsigned char pad[1];
#endif
opc_handler_t handler;
const unsigned char *oname;
} opcode_t;
/*** Instruction decoding ***/
#define EXTRACT_HELPER(name, shift, nb) \
static inline uint32_t name (uint32_t opcode) \
{ \
return (opcode >> (shift)) & ((1 << (nb)) - 1); \
}
#define EXTRACT_SHELPER(name, shift, nb) \
static inline int32_t name (uint32_t opcode) \
{ \
return (int16_t)((opcode >> (shift)) & ((1 << (nb)) - 1)); \
}
/* Opcode part 1 */
EXTRACT_HELPER(opc1, 26, 6);
/* Opcode part 2 */
EXTRACT_HELPER(opc2, 1, 5);
/* Opcode part 3 */
EXTRACT_HELPER(opc3, 6, 5);
/* Update Cr0 flags */
EXTRACT_HELPER(Rc, 0, 1);
/* Destination */
EXTRACT_HELPER(rD, 21, 5);
/* Source */
EXTRACT_HELPER(rS, 21, 5);
/* First operand */
EXTRACT_HELPER(rA, 16, 5);
/* Second operand */
EXTRACT_HELPER(rB, 11, 5);
/* Third operand */
EXTRACT_HELPER(rC, 6, 5);
/*** Get CRn ***/
EXTRACT_HELPER(crfD, 23, 3);
EXTRACT_HELPER(crfS, 18, 3);
EXTRACT_HELPER(crbD, 21, 5);
EXTRACT_HELPER(crbA, 16, 5);
EXTRACT_HELPER(crbB, 11, 5);
/* SPR / TBL */
EXTRACT_HELPER(_SPR, 11, 10);
static inline uint32_t SPR (uint32_t opcode)
{
uint32_t sprn = _SPR(opcode);
return ((sprn >> 5) & 0x1F) | ((sprn & 0x1F) << 5);
}
/*** Get constants ***/
EXTRACT_HELPER(IMM, 12, 8);
/* 16 bits signed immediate value */
EXTRACT_SHELPER(SIMM, 0, 16);
/* 16 bits unsigned immediate value */
EXTRACT_HELPER(UIMM, 0, 16);
/* Bit count */
EXTRACT_HELPER(NB, 11, 5);
/* Shift count */
EXTRACT_HELPER(SH, 11, 5);
/* Mask start */
EXTRACT_HELPER(MB, 6, 5);
/* Mask end */
EXTRACT_HELPER(ME, 1, 5);
/* Trap operand */
EXTRACT_HELPER(TO, 21, 5);
EXTRACT_HELPER(CRM, 12, 8);
EXTRACT_HELPER(FM, 17, 8);
EXTRACT_HELPER(SR, 16, 4);
EXTRACT_HELPER(FPIMM, 20, 4);
/*** Jump target decoding ***/
/* Displacement */
EXTRACT_SHELPER(d, 0, 16);
/* Immediate address */
static inline uint32_t LI (uint32_t opcode)
{
return (opcode >> 0) & 0x03FFFFFC;
}
static inline uint32_t BD (uint32_t opcode)
{
return (opcode >> 0) & 0xFFFC;
}
EXTRACT_HELPER(BO, 21, 5);
EXTRACT_HELPER(BI, 16, 5);
/* Absolute/relative address */
EXTRACT_HELPER(AA, 1, 1);
/* Link */
EXTRACT_HELPER(LK, 0, 1);
/* Create a mask between <start> and <end> bits */
static inline uint32_t MASK (uint32_t start, uint32_t end)
{
uint32_t ret;
ret = (((uint32_t)(-1)) >> (start)) ^ (((uint32_t)(-1) >> (end)) >> 1);
if (start > end)
return ~ret;
return ret;
}
#if HOST_LONG_BITS == 64
#define OPC_ALIGN 8
#else
#define OPC_ALIGN 4
#endif
#if defined(__APPLE__)
#define OPCODES_SECTION \
__attribute__ ((section("__TEXT,__opcodes"), unused, aligned (OPC_ALIGN) ))
#else
#define OPCODES_SECTION \
__attribute__ ((section(".opcodes"), unused, aligned (OPC_ALIGN) ))
#endif
#define GEN_OPCODE(name, op1, op2, op3, invl, _typ) \
OPCODES_SECTION opcode_t opc_##name = { \
.opc1 = op1, \
.opc2 = op2, \
.opc3 = op3, \
.pad = { 0, }, \
.handler = { \
.inval = invl, \
.type = _typ, \
.handler = &gen_##name, \
}, \
.oname = stringify(name), \
}
#define GEN_OPCODE_MARK(name) \
OPCODES_SECTION opcode_t opc_##name = { \
.opc1 = 0xFF, \
.opc2 = 0xFF, \
.opc3 = 0xFF, \
.pad = { 0, }, \
.handler = { \
.inval = 0x00000000, \
.type = 0x00, \
.handler = NULL, \
}, \
.oname = stringify(name), \
}
/* Start opcode list */
GEN_OPCODE_MARK(start);
/* Invalid instruction */
GEN_HANDLER(invalid, 0x00, 0x00, 0x00, 0xFFFFFFFF, PPC_NONE)
{
RET_INVAL(ctx);
}
static opc_handler_t invalid_handler = {
.inval = 0xFFFFFFFF,
.type = PPC_NONE,
.handler = gen_invalid,
};
/*** Integer arithmetic ***/
#define __GEN_INT_ARITH2(name, opc1, opc2, opc3, inval) \
GEN_HANDLER(name, opc1, opc2, opc3, inval, PPC_INTEGER) \
{ \
gen_op_load_gpr_T0(rA(ctx->opcode)); \
gen_op_load_gpr_T1(rB(ctx->opcode)); \
gen_op_##name(); \
if (Rc(ctx->opcode) != 0) \
gen_op_set_Rc0(); \
gen_op_store_T0_gpr(rD(ctx->opcode)); \
}
#define __GEN_INT_ARITH2_O(name, opc1, opc2, opc3, inval) \
GEN_HANDLER(name, opc1, opc2, opc3, inval, PPC_INTEGER) \
{ \
gen_op_load_gpr_T0(rA(ctx->opcode)); \
gen_op_load_gpr_T1(rB(ctx->opcode)); \
gen_op_##name(); \
if (Rc(ctx->opcode) != 0) \
gen_op_set_Rc0(); \
gen_op_store_T0_gpr(rD(ctx->opcode)); \
}
#define __GEN_INT_ARITH1(name, opc1, opc2, opc3) \
GEN_HANDLER(name, opc1, opc2, opc3, 0x0000F800, PPC_INTEGER) \
{ \
gen_op_load_gpr_T0(rA(ctx->opcode)); \
gen_op_##name(); \
if (Rc(ctx->opcode) != 0) \
gen_op_set_Rc0(); \
gen_op_store_T0_gpr(rD(ctx->opcode)); \
}
#define __GEN_INT_ARITH1_O(name, opc1, opc2, opc3) \
GEN_HANDLER(name, opc1, opc2, opc3, 0x0000F800, PPC_INTEGER) \
{ \
gen_op_load_gpr_T0(rA(ctx->opcode)); \
gen_op_##name(); \
if (Rc(ctx->opcode) != 0) \
gen_op_set_Rc0(); \
gen_op_store_T0_gpr(rD(ctx->opcode)); \
}
/* Two operands arithmetic functions */
#define GEN_INT_ARITH2(name, opc1, opc2, opc3) \
__GEN_INT_ARITH2(name, opc1, opc2, opc3, 0x00000000) \
__GEN_INT_ARITH2_O(name##o, opc1, opc2, opc3 | 0x10, 0x00000000)
/* Two operands arithmetic functions with no overflow allowed */
#define GEN_INT_ARITHN(name, opc1, opc2, opc3) \
__GEN_INT_ARITH2(name, opc1, opc2, opc3, 0x00000400)
/* One operand arithmetic functions */
#define GEN_INT_ARITH1(name, opc1, opc2, opc3) \
__GEN_INT_ARITH1(name, opc1, opc2, opc3) \
__GEN_INT_ARITH1_O(name##o, opc1, opc2, opc3 | 0x10)
/* add add. addo addo. */
GEN_INT_ARITH2 (add, 0x1F, 0x0A, 0x08);
/* addc addc. addco addco. */
GEN_INT_ARITH2 (addc, 0x1F, 0x0A, 0x00);
/* adde adde. addeo addeo. */
GEN_INT_ARITH2 (adde, 0x1F, 0x0A, 0x04);
/* addme addme. addmeo addmeo. */
GEN_INT_ARITH1 (addme, 0x1F, 0x0A, 0x07);
/* addze addze. addzeo addzeo. */
GEN_INT_ARITH1 (addze, 0x1F, 0x0A, 0x06);
/* divw divw. divwo divwo. */
GEN_INT_ARITH2 (divw, 0x1F, 0x0B, 0x0F);
/* divwu divwu. divwuo divwuo. */
GEN_INT_ARITH2 (divwu, 0x1F, 0x0B, 0x0E);
/* mulhw mulhw. */
GEN_INT_ARITHN (mulhw, 0x1F, 0x0B, 0x02);
/* mulhwu mulhwu. */
GEN_INT_ARITHN (mulhwu, 0x1F, 0x0B, 0x00);
/* mullw mullw. mullwo mullwo. */
GEN_INT_ARITH2 (mullw, 0x1F, 0x0B, 0x07);
/* neg neg. nego nego. */
GEN_INT_ARITH1 (neg, 0x1F, 0x08, 0x03);
/* subf subf. subfo subfo. */
GEN_INT_ARITH2 (subf, 0x1F, 0x08, 0x01);
/* subfc subfc. subfco subfco. */
GEN_INT_ARITH2 (subfc, 0x1F, 0x08, 0x00);
/* subfe subfe. subfeo subfeo. */
GEN_INT_ARITH2 (subfe, 0x1F, 0x08, 0x04);
/* subfme subfme. subfmeo subfmeo. */
GEN_INT_ARITH1 (subfme, 0x1F, 0x08, 0x07);
/* subfze subfze. subfzeo subfzeo. */
GEN_INT_ARITH1 (subfze, 0x1F, 0x08, 0x06);
/* addi */
GEN_HANDLER(addi, 0x0E, 0xFF, 0xFF, 0x00000000, PPC_INTEGER)
{
int32_t simm = SIMM(ctx->opcode);
if (rA(ctx->opcode) == 0) {
gen_op_set_T0(simm);
} else {
gen_op_load_gpr_T0(rA(ctx->opcode));
gen_op_addi(simm);
}
gen_op_store_T0_gpr(rD(ctx->opcode));
}
/* addic */
GEN_HANDLER(addic, 0x0C, 0xFF, 0xFF, 0x00000000, PPC_INTEGER)
{
gen_op_load_gpr_T0(rA(ctx->opcode));
gen_op_addic(SIMM(ctx->opcode));
gen_op_store_T0_gpr(rD(ctx->opcode));
}
/* addic. */
GEN_HANDLER(addic_, 0x0D, 0xFF, 0xFF, 0x00000000, PPC_INTEGER)
{
gen_op_load_gpr_T0(rA(ctx->opcode));
gen_op_addic(SIMM(ctx->opcode));
gen_op_set_Rc0();
gen_op_store_T0_gpr(rD(ctx->opcode));
}
/* addis */
GEN_HANDLER(addis, 0x0F, 0xFF, 0xFF, 0x00000000, PPC_INTEGER)
{
int32_t simm = SIMM(ctx->opcode);
if (rA(ctx->opcode) == 0) {
gen_op_set_T0(simm << 16);
} else {
gen_op_load_gpr_T0(rA(ctx->opcode));
gen_op_addi(simm << 16);
}
gen_op_store_T0_gpr(rD(ctx->opcode));
}
/* mulli */
GEN_HANDLER(mulli, 0x07, 0xFF, 0xFF, 0x00000000, PPC_INTEGER)
{
gen_op_load_gpr_T0(rA(ctx->opcode));
gen_op_mulli(SIMM(ctx->opcode));
gen_op_store_T0_gpr(rD(ctx->opcode));
}
/* subfic */
GEN_HANDLER(subfic, 0x08, 0xFF, 0xFF, 0x00000000, PPC_INTEGER)
{
gen_op_load_gpr_T0(rA(ctx->opcode));
gen_op_subfic(SIMM(ctx->opcode));
gen_op_store_T0_gpr(rD(ctx->opcode));
}
/*** Integer comparison ***/
#define GEN_CMP(name, opc) \
GEN_HANDLER(name, 0x1F, 0x00, opc, 0x00400000, PPC_INTEGER) \
{ \
gen_op_load_gpr_T0(rA(ctx->opcode)); \
gen_op_load_gpr_T1(rB(ctx->opcode)); \
gen_op_##name(); \
gen_op_store_T0_crf(crfD(ctx->opcode)); \
}
/* cmp */
GEN_CMP(cmp, 0x00);
/* cmpi */
GEN_HANDLER(cmpi, 0x0B, 0xFF, 0xFF, 0x00400000, PPC_INTEGER)
{
gen_op_load_gpr_T0(rA(ctx->opcode));
gen_op_cmpi(SIMM(ctx->opcode));
gen_op_store_T0_crf(crfD(ctx->opcode));
}
/* cmpl */
GEN_CMP(cmpl, 0x01);
/* cmpli */
GEN_HANDLER(cmpli, 0x0A, 0xFF, 0xFF, 0x00400000, PPC_INTEGER)
{
gen_op_load_gpr_T0(rA(ctx->opcode));
gen_op_cmpli(UIMM(ctx->opcode));
gen_op_store_T0_crf(crfD(ctx->opcode));
}
/*** Integer logical ***/
#define __GEN_LOGICAL2(name, opc2, opc3) \
GEN_HANDLER(name, 0x1F, opc2, opc3, 0x00000000, PPC_INTEGER) \
{ \
gen_op_load_gpr_T0(rS(ctx->opcode)); \
gen_op_load_gpr_T1(rB(ctx->opcode)); \
gen_op_##name(); \
if (Rc(ctx->opcode) != 0) \
gen_op_set_Rc0(); \
gen_op_store_T0_gpr(rA(ctx->opcode)); \
}
#define GEN_LOGICAL2(name, opc) \
__GEN_LOGICAL2(name, 0x1C, opc)
#define GEN_LOGICAL1(name, opc) \
GEN_HANDLER(name, 0x1F, 0x1A, opc, 0x00000000, PPC_INTEGER) \
{ \
gen_op_load_gpr_T0(rS(ctx->opcode)); \
gen_op_##name(); \
if (Rc(ctx->opcode) != 0) \
gen_op_set_Rc0(); \
gen_op_store_T0_gpr(rA(ctx->opcode)); \
}
/* and & and. */
GEN_LOGICAL2(and, 0x00);
/* andc & andc. */
GEN_LOGICAL2(andc, 0x01);
/* andi. */
GEN_HANDLER(andi_, 0x1C, 0xFF, 0xFF, 0x00000000, PPC_INTEGER)
{
gen_op_load_gpr_T0(rS(ctx->opcode));
gen_op_andi_(UIMM(ctx->opcode));
gen_op_set_Rc0();
gen_op_store_T0_gpr(rA(ctx->opcode));
}
/* andis. */
GEN_HANDLER(andis_, 0x1D, 0xFF, 0xFF, 0x00000000, PPC_INTEGER)
{
gen_op_load_gpr_T0(rS(ctx->opcode));
gen_op_andi_(UIMM(ctx->opcode) << 16);
gen_op_set_Rc0();
gen_op_store_T0_gpr(rA(ctx->opcode));
}
/* cntlzw */
GEN_LOGICAL1(cntlzw, 0x00);
/* eqv & eqv. */
GEN_LOGICAL2(eqv, 0x08);
/* extsb & extsb. */
GEN_LOGICAL1(extsb, 0x1D);
/* extsh & extsh. */
GEN_LOGICAL1(extsh, 0x1C);
/* nand & nand. */
GEN_LOGICAL2(nand, 0x0E);
/* nor & nor. */
GEN_LOGICAL2(nor, 0x03);
/* or & or. */
GEN_HANDLER(or, 0x1F, 0x1C, 0x0D, 0x00000000, PPC_INTEGER)
{
gen_op_load_gpr_T0(rS(ctx->opcode));
/* Optimisation for mr case */
if (rS(ctx->opcode) != rB(ctx->opcode)) {
gen_op_load_gpr_T1(rB(ctx->opcode));
gen_op_or();
}
if (Rc(ctx->opcode) != 0)
gen_op_set_Rc0();
gen_op_store_T0_gpr(rA(ctx->opcode));
}
/* orc & orc. */
GEN_LOGICAL2(orc, 0x0C);
/* xor & xor. */
GEN_HANDLER(xor, 0x1F, 0x1C, 0x09, 0x00000000, PPC_INTEGER)
{
gen_op_load_gpr_T0(rS(ctx->opcode));
/* Optimisation for "set to zero" case */
if (rS(ctx->opcode) != rB(ctx->opcode)) {
gen_op_load_gpr_T1(rB(ctx->opcode));
gen_op_xor();
} else {
gen_op_set_T0(0);
}
if (Rc(ctx->opcode) != 0)
gen_op_set_Rc0();
gen_op_store_T0_gpr(rA(ctx->opcode));
}
/* ori */
GEN_HANDLER(ori, 0x18, 0xFF, 0xFF, 0x00000000, PPC_INTEGER)
{
uint32_t uimm = UIMM(ctx->opcode);
if (rS(ctx->opcode) == rA(ctx->opcode) && uimm == 0) {
/* NOP */
return;
}
gen_op_load_gpr_T0(rS(ctx->opcode));
if (uimm != 0)
gen_op_ori(uimm);
gen_op_store_T0_gpr(rA(ctx->opcode));
}
/* oris */
GEN_HANDLER(oris, 0x19, 0xFF, 0xFF, 0x00000000, PPC_INTEGER)
{
uint32_t uimm = UIMM(ctx->opcode);
if (rS(ctx->opcode) == rA(ctx->opcode) && uimm == 0) {
/* NOP */
return;
}
gen_op_load_gpr_T0(rS(ctx->opcode));
if (uimm != 0)
gen_op_ori(uimm << 16);
gen_op_store_T0_gpr(rA(ctx->opcode));
}
/* xori */
GEN_HANDLER(xori, 0x1A, 0xFF, 0xFF, 0x00000000, PPC_INTEGER)
{
uint32_t uimm = UIMM(ctx->opcode);
if (rS(ctx->opcode) == rA(ctx->opcode) && uimm == 0) {
/* NOP */
return;
}
gen_op_load_gpr_T0(rS(ctx->opcode));
if (uimm != 0)
gen_op_xori(uimm);
gen_op_store_T0_gpr(rA(ctx->opcode));
}
/* xoris */
GEN_HANDLER(xoris, 0x1B, 0xFF, 0xFF, 0x00000000, PPC_INTEGER)
{
uint32_t uimm = UIMM(ctx->opcode);
if (rS(ctx->opcode) == rA(ctx->opcode) && uimm == 0) {
/* NOP */
return;
}
gen_op_load_gpr_T0(rS(ctx->opcode));
if (uimm != 0)
gen_op_xori(uimm << 16);
gen_op_store_T0_gpr(rA(ctx->opcode));
}
/*** Integer rotate ***/
/* rlwimi & rlwimi. */
GEN_HANDLER(rlwimi, 0x14, 0xFF, 0xFF, 0x00000000, PPC_INTEGER)
{
uint32_t mb, me;
mb = MB(ctx->opcode);
me = ME(ctx->opcode);
gen_op_load_gpr_T0(rS(ctx->opcode));
gen_op_load_gpr_T1(rA(ctx->opcode));
gen_op_rlwimi(SH(ctx->opcode), MASK(mb, me), ~MASK(mb, me));
if (Rc(ctx->opcode) != 0)
gen_op_set_Rc0();
gen_op_store_T0_gpr(rA(ctx->opcode));
}
/* rlwinm & rlwinm. */
GEN_HANDLER(rlwinm, 0x15, 0xFF, 0xFF, 0x00000000, PPC_INTEGER)
{
uint32_t mb, me, sh;
sh = SH(ctx->opcode);
mb = MB(ctx->opcode);
me = ME(ctx->opcode);
gen_op_load_gpr_T0(rS(ctx->opcode));
#if 1 // TRY
if (sh == 0) {
gen_op_andi_(MASK(mb, me));
goto store;
}
#endif
if (mb == 0) {
if (me == 31) {
gen_op_rotlwi(sh);
goto store;
#if 0
} else if (me == (31 - sh)) {
gen_op_slwi(sh);
goto store;
#endif
}
} else if (me == 31) {
#if 0
if (sh == (32 - mb)) {
gen_op_srwi(mb);
goto store;
}
#endif
}
gen_op_rlwinm(sh, MASK(mb, me));
store:
if (Rc(ctx->opcode) != 0)
gen_op_set_Rc0();
gen_op_store_T0_gpr(rA(ctx->opcode));
}
/* rlwnm & rlwnm. */
GEN_HANDLER(rlwnm, 0x17, 0xFF, 0xFF, 0x00000000, PPC_INTEGER)
{
uint32_t mb, me;
mb = MB(ctx->opcode);
me = ME(ctx->opcode);
gen_op_load_gpr_T0(rS(ctx->opcode));
gen_op_load_gpr_T1(rB(ctx->opcode));
if (mb == 0 && me == 31) {
gen_op_rotl();
} else
{
gen_op_rlwnm(MASK(mb, me));
}
if (Rc(ctx->opcode) != 0)
gen_op_set_Rc0();
gen_op_store_T0_gpr(rA(ctx->opcode));
}
/*** Integer shift ***/
/* slw & slw. */
__GEN_LOGICAL2(slw, 0x18, 0x00);
/* sraw & sraw. */
__GEN_LOGICAL2(sraw, 0x18, 0x18);
/* srawi & srawi. */
GEN_HANDLER(srawi, 0x1F, 0x18, 0x19, 0x00000000, PPC_INTEGER)
{
gen_op_load_gpr_T0(rS(ctx->opcode));
if (SH(ctx->opcode) != 0)
gen_op_srawi(SH(ctx->opcode), MASK(32 - SH(ctx->opcode), 31));
if (Rc(ctx->opcode) != 0)
gen_op_set_Rc0();
gen_op_store_T0_gpr(rA(ctx->opcode));
}
/* srw & srw. */
__GEN_LOGICAL2(srw, 0x18, 0x10);
/*** Floating-Point arithmetic ***/
#define _GEN_FLOAT_ACB(name, op, op1, op2, isfloat) \
GEN_HANDLER(f##name, op1, op2, 0xFF, 0x00000000, PPC_FLOAT) \
{ \
if (!ctx->fpu_enabled) { \
RET_EXCP(ctx, EXCP_NO_FP, 0); \
return; \
} \
gen_op_reset_scrfx(); \
gen_op_load_fpr_FT0(rA(ctx->opcode)); \
gen_op_load_fpr_FT1(rC(ctx->opcode)); \
gen_op_load_fpr_FT2(rB(ctx->opcode)); \
gen_op_f##op(); \
if (isfloat) { \
gen_op_frsp(); \
} \
gen_op_store_FT0_fpr(rD(ctx->opcode)); \
if (Rc(ctx->opcode)) \
gen_op_set_Rc1(); \
}
#define GEN_FLOAT_ACB(name, op2) \
_GEN_FLOAT_ACB(name, name, 0x3F, op2, 0); \
_GEN_FLOAT_ACB(name##s, name, 0x3B, op2, 1);
#define _GEN_FLOAT_AB(name, op, op1, op2, inval, isfloat) \
GEN_HANDLER(f##name, op1, op2, 0xFF, inval, PPC_FLOAT) \
{ \
if (!ctx->fpu_enabled) { \
RET_EXCP(ctx, EXCP_NO_FP, 0); \
return; \
} \
gen_op_reset_scrfx(); \
gen_op_load_fpr_FT0(rA(ctx->opcode)); \
gen_op_load_fpr_FT1(rB(ctx->opcode)); \
gen_op_f##op(); \
if (isfloat) { \
gen_op_frsp(); \
} \
gen_op_store_FT0_fpr(rD(ctx->opcode)); \
if (Rc(ctx->opcode)) \
gen_op_set_Rc1(); \
}
#define GEN_FLOAT_AB(name, op2, inval) \
_GEN_FLOAT_AB(name, name, 0x3F, op2, inval, 0); \
_GEN_FLOAT_AB(name##s, name, 0x3B, op2, inval, 1);
#define _GEN_FLOAT_AC(name, op, op1, op2, inval, isfloat) \
GEN_HANDLER(f##name, op1, op2, 0xFF, inval, PPC_FLOAT) \
{ \
if (!ctx->fpu_enabled) { \
RET_EXCP(ctx, EXCP_NO_FP, 0); \
return; \
} \
gen_op_reset_scrfx(); \
gen_op_load_fpr_FT0(rA(ctx->opcode)); \
gen_op_load_fpr_FT1(rC(ctx->opcode)); \
gen_op_f##op(); \
if (isfloat) { \
gen_op_frsp(); \
} \
gen_op_store_FT0_fpr(rD(ctx->opcode)); \
if (Rc(ctx->opcode)) \
gen_op_set_Rc1(); \
}
#define GEN_FLOAT_AC(name, op2, inval) \
_GEN_FLOAT_AC(name, name, 0x3F, op2, inval, 0); \
_GEN_FLOAT_AC(name##s, name, 0x3B, op2, inval, 1);
#define GEN_FLOAT_B(name, op2, op3) \
GEN_HANDLER(f##name, 0x3F, op2, op3, 0x001F0000, PPC_FLOAT) \
{ \
if (!ctx->fpu_enabled) { \
RET_EXCP(ctx, EXCP_NO_FP, 0); \
return; \
} \
gen_op_reset_scrfx(); \
gen_op_load_fpr_FT0(rB(ctx->opcode)); \
gen_op_f##name(); \
gen_op_store_FT0_fpr(rD(ctx->opcode)); \
if (Rc(ctx->opcode)) \
gen_op_set_Rc1(); \
}
#define GEN_FLOAT_BS(name, op1, op2) \
GEN_HANDLER(f##name, op1, op2, 0xFF, 0x001F07C0, PPC_FLOAT) \
{ \
if (!ctx->fpu_enabled) { \
RET_EXCP(ctx, EXCP_NO_FP, 0); \
return; \
} \
gen_op_reset_scrfx(); \
gen_op_load_fpr_FT0(rB(ctx->opcode)); \
gen_op_f##name(); \
gen_op_store_FT0_fpr(rD(ctx->opcode)); \
if (Rc(ctx->opcode)) \
gen_op_set_Rc1(); \
}
/* fadd - fadds */
GEN_FLOAT_AB(add, 0x15, 0x000007C0);
/* fdiv - fdivs */
GEN_FLOAT_AB(div, 0x12, 0x000007C0);
/* fmul - fmuls */
GEN_FLOAT_AC(mul, 0x19, 0x0000F800);
/* fres */
GEN_FLOAT_BS(res, 0x3B, 0x18);
/* frsqrte */
GEN_FLOAT_BS(rsqrte, 0x3F, 0x1A);
/* fsel */
_GEN_FLOAT_ACB(sel, sel, 0x3F, 0x17, 0);
/* fsub - fsubs */
GEN_FLOAT_AB(sub, 0x14, 0x000007C0);
/* Optional: */
/* fsqrt */
GEN_HANDLER(fsqrt, 0x3F, 0x16, 0xFF, 0x001F07C0, PPC_FLOAT_OPT)
{
if (!ctx->fpu_enabled) {
RET_EXCP(ctx, EXCP_NO_FP, 0);
return;
}
gen_op_reset_scrfx();
gen_op_load_fpr_FT0(rB(ctx->opcode));
gen_op_fsqrt();
gen_op_store_FT0_fpr(rD(ctx->opcode));
if (Rc(ctx->opcode))
gen_op_set_Rc1();
}
GEN_HANDLER(fsqrts, 0x3B, 0x16, 0xFF, 0x001F07C0, PPC_FLOAT_OPT)
{
if (!ctx->fpu_enabled) {
RET_EXCP(ctx, EXCP_NO_FP, 0);
return;
}
gen_op_reset_scrfx();
gen_op_load_fpr_FT0(rB(ctx->opcode));
gen_op_fsqrt();
gen_op_frsp();
gen_op_store_FT0_fpr(rD(ctx->opcode));
if (Rc(ctx->opcode))
gen_op_set_Rc1();
}
/*** Floating-Point multiply-and-add ***/
/* fmadd - fmadds */
GEN_FLOAT_ACB(madd, 0x1D);
/* fmsub - fmsubs */
GEN_FLOAT_ACB(msub, 0x1C);
/* fnmadd - fnmadds */
GEN_FLOAT_ACB(nmadd, 0x1F);
/* fnmsub - fnmsubs */
GEN_FLOAT_ACB(nmsub, 0x1E);
/*** Floating-Point round & convert ***/
/* fctiw */
GEN_FLOAT_B(ctiw, 0x0E, 0x00);
/* fctiwz */
GEN_FLOAT_B(ctiwz, 0x0F, 0x00);
/* frsp */
GEN_FLOAT_B(rsp, 0x0C, 0x00);
/*** Floating-Point compare ***/
/* fcmpo */
GEN_HANDLER(fcmpo, 0x3F, 0x00, 0x00, 0x00600001, PPC_FLOAT)
{
if (!ctx->fpu_enabled) {
RET_EXCP(ctx, EXCP_NO_FP, 0);
return;
}
gen_op_reset_scrfx();
gen_op_load_fpr_FT0(rA(ctx->opcode));
gen_op_load_fpr_FT1(rB(ctx->opcode));
gen_op_fcmpo();
gen_op_store_T0_crf(crfD(ctx->opcode));
}
/* fcmpu */
GEN_HANDLER(fcmpu, 0x3F, 0x00, 0x01, 0x00600001, PPC_FLOAT)
{
if (!ctx->fpu_enabled) {
RET_EXCP(ctx, EXCP_NO_FP, 0);
return;
}
gen_op_reset_scrfx();
gen_op_load_fpr_FT0(rA(ctx->opcode));
gen_op_load_fpr_FT1(rB(ctx->opcode));
gen_op_fcmpu();
gen_op_store_T0_crf(crfD(ctx->opcode));
}
/*** Floating-point move ***/
/* fabs */
GEN_FLOAT_B(abs, 0x08, 0x08);
/* fmr - fmr. */
GEN_HANDLER(fmr, 0x3F, 0x08, 0x02, 0x001F0000, PPC_FLOAT)
{
if (!ctx->fpu_enabled) {
RET_EXCP(ctx, EXCP_NO_FP, 0);
return;
}
gen_op_reset_scrfx();
gen_op_load_fpr_FT0(rB(ctx->opcode));
gen_op_store_FT0_fpr(rD(ctx->opcode));
if (Rc(ctx->opcode))
gen_op_set_Rc1();
}
/* fnabs */
GEN_FLOAT_B(nabs, 0x08, 0x04);
/* fneg */
GEN_FLOAT_B(neg, 0x08, 0x01);
/*** Floating-Point status & ctrl register ***/
/* mcrfs */
GEN_HANDLER(mcrfs, 0x3F, 0x00, 0x02, 0x0063F801, PPC_FLOAT)
{
if (!ctx->fpu_enabled) {
RET_EXCP(ctx, EXCP_NO_FP, 0);
return;
}
gen_op_load_fpscr_T0(crfS(ctx->opcode));
gen_op_store_T0_crf(crfD(ctx->opcode));
gen_op_clear_fpscr(crfS(ctx->opcode));
}
/* mffs */
GEN_HANDLER(mffs, 0x3F, 0x07, 0x12, 0x001FF800, PPC_FLOAT)
{
if (!ctx->fpu_enabled) {
RET_EXCP(ctx, EXCP_NO_FP, 0);
return;
}
gen_op_load_fpscr();
gen_op_store_FT0_fpr(rD(ctx->opcode));
if (Rc(ctx->opcode))
gen_op_set_Rc1();
}
/* mtfsb0 */
GEN_HANDLER(mtfsb0, 0x3F, 0x06, 0x02, 0x001FF800, PPC_FLOAT)
{
uint8_t crb;
if (!ctx->fpu_enabled) {
RET_EXCP(ctx, EXCP_NO_FP, 0);
return;
}
crb = crbD(ctx->opcode) >> 2;
gen_op_load_fpscr_T0(crb);
gen_op_andi_(~(1 << (crbD(ctx->opcode) & 0x03)));
gen_op_store_T0_fpscr(crb);
if (Rc(ctx->opcode))
gen_op_set_Rc1();
}
/* mtfsb1 */
GEN_HANDLER(mtfsb1, 0x3F, 0x06, 0x01, 0x001FF800, PPC_FLOAT)
{
uint8_t crb;
if (!ctx->fpu_enabled) {
RET_EXCP(ctx, EXCP_NO_FP, 0);
return;
}
crb = crbD(ctx->opcode) >> 2;
gen_op_load_fpscr_T0(crb);
gen_op_ori(1 << (crbD(ctx->opcode) & 0x03));
gen_op_store_T0_fpscr(crb);
if (Rc(ctx->opcode))
gen_op_set_Rc1();
}
/* mtfsf */
GEN_HANDLER(mtfsf, 0x3F, 0x07, 0x16, 0x02010000, PPC_FLOAT)
{
if (!ctx->fpu_enabled) {
RET_EXCP(ctx, EXCP_NO_FP, 0);
return;
}
gen_op_load_fpr_FT0(rB(ctx->opcode));
gen_op_store_fpscr(FM(ctx->opcode));
if (Rc(ctx->opcode))
gen_op_set_Rc1();
}
/* mtfsfi */
GEN_HANDLER(mtfsfi, 0x3F, 0x06, 0x04, 0x006f0800, PPC_FLOAT)
{
if (!ctx->fpu_enabled) {
RET_EXCP(ctx, EXCP_NO_FP, 0);
return;
}
gen_op_store_T0_fpscri(crbD(ctx->opcode) >> 2, FPIMM(ctx->opcode));
if (Rc(ctx->opcode))
gen_op_set_Rc1();
}
/*** Integer load ***/
#define op_ldst(name) (*gen_op_##name[ctx->mem_idx])()
#if defined(CONFIG_USER_ONLY)
#define OP_LD_TABLE(width) \
static GenOpFunc *gen_op_l##width[] = { \
&gen_op_l##width##_raw, \
&gen_op_l##width##_le_raw, \
};
#define OP_ST_TABLE(width) \
static GenOpFunc *gen_op_st##width[] = { \
&gen_op_st##width##_raw, \
&gen_op_st##width##_le_raw, \
};
/* Byte access routine are endian safe */
#define gen_op_stb_le_raw gen_op_stb_raw
#define gen_op_lbz_le_raw gen_op_lbz_raw
#else
#define OP_LD_TABLE(width) \
static GenOpFunc *gen_op_l##width[] = { \
&gen_op_l##width##_user, \
&gen_op_l##width##_le_user, \
&gen_op_l##width##_kernel, \
&gen_op_l##width##_le_kernel, \
};
#define OP_ST_TABLE(width) \
static GenOpFunc *gen_op_st##width[] = { \
&gen_op_st##width##_user, \
&gen_op_st##width##_le_user, \
&gen_op_st##width##_kernel, \
&gen_op_st##width##_le_kernel, \
};
/* Byte access routine are endian safe */
#define gen_op_stb_le_user gen_op_stb_user
#define gen_op_lbz_le_user gen_op_lbz_user
#define gen_op_stb_le_kernel gen_op_stb_kernel
#define gen_op_lbz_le_kernel gen_op_lbz_kernel
#endif
#define GEN_LD(width, opc) \
GEN_HANDLER(l##width, opc, 0xFF, 0xFF, 0x00000000, PPC_INTEGER) \
{ \
uint32_t simm = SIMM(ctx->opcode); \
if (rA(ctx->opcode) == 0) { \
gen_op_set_T0(simm); \
} else { \
gen_op_load_gpr_T0(rA(ctx->opcode)); \
if (simm != 0) \
gen_op_addi(simm); \
} \
op_ldst(l##width); \
gen_op_store_T1_gpr(rD(ctx->opcode)); \
}
#define GEN_LDU(width, opc) \
GEN_HANDLER(l##width##u, opc, 0xFF, 0xFF, 0x00000000, PPC_INTEGER) \
{ \
uint32_t simm = SIMM(ctx->opcode); \
if (rA(ctx->opcode) == 0 || \
rA(ctx->opcode) == rD(ctx->opcode)) { \
RET_INVAL(ctx); \
return; \
} \
gen_op_load_gpr_T0(rA(ctx->opcode)); \
if (simm != 0) \
gen_op_addi(simm); \
op_ldst(l##width); \
gen_op_store_T1_gpr(rD(ctx->opcode)); \
gen_op_store_T0_gpr(rA(ctx->opcode)); \
}
#define GEN_LDUX(width, opc) \
GEN_HANDLER(l##width##ux, 0x1F, 0x17, opc, 0x00000001, PPC_INTEGER) \
{ \
if (rA(ctx->opcode) == 0 || \
rA(ctx->opcode) == rD(ctx->opcode)) { \
RET_INVAL(ctx); \
return; \
} \
gen_op_load_gpr_T0(rA(ctx->opcode)); \
gen_op_load_gpr_T1(rB(ctx->opcode)); \
gen_op_add(); \
op_ldst(l##width); \
gen_op_store_T1_gpr(rD(ctx->opcode)); \
gen_op_store_T0_gpr(rA(ctx->opcode)); \
}
#define GEN_LDX(width, opc2, opc3) \
GEN_HANDLER(l##width##x, 0x1F, opc2, opc3, 0x00000001, PPC_INTEGER) \
{ \
if (rA(ctx->opcode) == 0) { \
gen_op_load_gpr_T0(rB(ctx->opcode)); \
} else { \
gen_op_load_gpr_T0(rA(ctx->opcode)); \
gen_op_load_gpr_T1(rB(ctx->opcode)); \
gen_op_add(); \
} \
op_ldst(l##width); \
gen_op_store_T1_gpr(rD(ctx->opcode)); \
}
#define GEN_LDS(width, op) \
OP_LD_TABLE(width); \
GEN_LD(width, op | 0x20); \
GEN_LDU(width, op | 0x21); \
GEN_LDUX(width, op | 0x01); \
GEN_LDX(width, 0x17, op | 0x00)
/* lbz lbzu lbzux lbzx */
GEN_LDS(bz, 0x02);
/* lha lhau lhaux lhax */
GEN_LDS(ha, 0x0A);
/* lhz lhzu lhzux lhzx */
GEN_LDS(hz, 0x08);
/* lwz lwzu lwzux lwzx */
GEN_LDS(wz, 0x00);
/*** Integer store ***/
#define GEN_ST(width, opc) \
GEN_HANDLER(st##width, opc, 0xFF, 0xFF, 0x00000000, PPC_INTEGER) \
{ \
uint32_t simm = SIMM(ctx->opcode); \
if (rA(ctx->opcode) == 0) { \
gen_op_set_T0(simm); \
} else { \
gen_op_load_gpr_T0(rA(ctx->opcode)); \
if (simm != 0) \
gen_op_addi(simm); \
} \
gen_op_load_gpr_T1(rS(ctx->opcode)); \
op_ldst(st##width); \
}
#define GEN_STU(width, opc) \
GEN_HANDLER(st##width##u, opc, 0xFF, 0xFF, 0x00000000, PPC_INTEGER) \
{ \
uint32_t simm = SIMM(ctx->opcode); \
if (rA(ctx->opcode) == 0) { \
RET_INVAL(ctx); \
return; \
} \
gen_op_load_gpr_T0(rA(ctx->opcode)); \
if (simm != 0) \
gen_op_addi(simm); \
gen_op_load_gpr_T1(rS(ctx->opcode)); \
op_ldst(st##width); \
gen_op_store_T0_gpr(rA(ctx->opcode)); \
}
#define GEN_STUX(width, opc) \
GEN_HANDLER(st##width##ux, 0x1F, 0x17, opc, 0x00000001, PPC_INTEGER) \
{ \
if (rA(ctx->opcode) == 0) { \
RET_INVAL(ctx); \
return; \
} \
gen_op_load_gpr_T0(rA(ctx->opcode)); \
gen_op_load_gpr_T1(rB(ctx->opcode)); \
gen_op_add(); \
gen_op_load_gpr_T1(rS(ctx->opcode)); \
op_ldst(st##width); \
gen_op_store_T0_gpr(rA(ctx->opcode)); \
}
#define GEN_STX(width, opc2, opc3) \
GEN_HANDLER(st##width##x, 0x1F, opc2, opc3, 0x00000001, PPC_INTEGER) \
{ \
if (rA(ctx->opcode) == 0) { \
gen_op_load_gpr_T0(rB(ctx->opcode)); \
} else { \
gen_op_load_gpr_T0(rA(ctx->opcode)); \
gen_op_load_gpr_T1(rB(ctx->opcode)); \
gen_op_add(); \
} \
gen_op_load_gpr_T1(rS(ctx->opcode)); \
op_ldst(st##width); \
}
#define GEN_STS(width, op) \
OP_ST_TABLE(width); \
GEN_ST(width, op | 0x20); \
GEN_STU(width, op | 0x21); \
GEN_STUX(width, op | 0x01); \
GEN_STX(width, 0x17, op | 0x00)
/* stb stbu stbux stbx */
GEN_STS(b, 0x06);
/* sth sthu sthux sthx */
GEN_STS(h, 0x0C);
/* stw stwu stwux stwx */
GEN_STS(w, 0x04);
/*** Integer load and store with byte reverse ***/
/* lhbrx */
OP_LD_TABLE(hbr);
GEN_LDX(hbr, 0x16, 0x18);
/* lwbrx */
OP_LD_TABLE(wbr);
GEN_LDX(wbr, 0x16, 0x10);
/* sthbrx */
OP_ST_TABLE(hbr);
GEN_STX(hbr, 0x16, 0x1C);
/* stwbrx */
OP_ST_TABLE(wbr);
GEN_STX(wbr, 0x16, 0x14);
/*** Integer load and store multiple ***/
#define op_ldstm(name, reg) (*gen_op_##name[ctx->mem_idx])(reg)
#if defined(CONFIG_USER_ONLY)
static GenOpFunc1 *gen_op_lmw[] = {
&gen_op_lmw_raw,
&gen_op_lmw_le_raw,
};
static GenOpFunc1 *gen_op_stmw[] = {
&gen_op_stmw_raw,
&gen_op_stmw_le_raw,
};
#else
static GenOpFunc1 *gen_op_lmw[] = {
&gen_op_lmw_user,
&gen_op_lmw_le_user,
&gen_op_lmw_kernel,
&gen_op_lmw_le_kernel,
};
static GenOpFunc1 *gen_op_stmw[] = {
&gen_op_stmw_user,
&gen_op_stmw_le_user,
&gen_op_stmw_kernel,
&gen_op_stmw_le_kernel,
};
#endif
/* lmw */
GEN_HANDLER(lmw, 0x2E, 0xFF, 0xFF, 0x00000000, PPC_INTEGER)
{
int simm = SIMM(ctx->opcode);
if (rA(ctx->opcode) == 0) {
gen_op_set_T0(simm);
} else {
gen_op_load_gpr_T0(rA(ctx->opcode));
if (simm != 0)
gen_op_addi(simm);
}
op_ldstm(lmw, rD(ctx->opcode));
}
/* stmw */
GEN_HANDLER(stmw, 0x2F, 0xFF, 0xFF, 0x00000000, PPC_INTEGER)
{
int simm = SIMM(ctx->opcode);
if (rA(ctx->opcode) == 0) {
gen_op_set_T0(simm);
} else {
gen_op_load_gpr_T0(rA(ctx->opcode));
if (simm != 0)
gen_op_addi(simm);
}
op_ldstm(stmw, rS(ctx->opcode));
}
/*** Integer load and store strings ***/
#define op_ldsts(name, start) (*gen_op_##name[ctx->mem_idx])(start)
#define op_ldstsx(name, rd, ra, rb) (*gen_op_##name[ctx->mem_idx])(rd, ra, rb)
#if defined(CONFIG_USER_ONLY)
static GenOpFunc1 *gen_op_lswi[] = {
&gen_op_lswi_raw,
&gen_op_lswi_le_raw,
};
static GenOpFunc3 *gen_op_lswx[] = {
&gen_op_lswx_raw,
&gen_op_lswx_le_raw,
};
static GenOpFunc1 *gen_op_stsw[] = {
&gen_op_stsw_raw,
&gen_op_stsw_le_raw,
};
#else
static GenOpFunc1 *gen_op_lswi[] = {
&gen_op_lswi_user,
&gen_op_lswi_le_user,
&gen_op_lswi_kernel,
&gen_op_lswi_le_kernel,
};
static GenOpFunc3 *gen_op_lswx[] = {
&gen_op_lswx_user,
&gen_op_lswx_le_user,
&gen_op_lswx_kernel,
&gen_op_lswx_le_kernel,
};
static GenOpFunc1 *gen_op_stsw[] = {
&gen_op_stsw_user,
&gen_op_stsw_le_user,
&gen_op_stsw_kernel,
&gen_op_stsw_le_kernel,
};
#endif
/* lswi */
/* PowerPC32 specification says we must generate an exception if
* rA is in the range of registers to be loaded.
* In an other hand, IBM says this is valid, but rA won't be loaded.
* For now, I'll follow the spec...
*/
GEN_HANDLER(lswi, 0x1F, 0x15, 0x12, 0x00000001, PPC_INTEGER)
{
int nb = NB(ctx->opcode);
int start = rD(ctx->opcode);
int ra = rA(ctx->opcode);
int nr;
if (nb == 0)
nb = 32;
nr = nb / 4;
if (((start + nr) > 32 && start <= ra && (start + nr - 32) > ra) ||
((start + nr) <= 32 && start <= ra && (start + nr) > ra)) {
RET_EXCP(ctx, EXCP_PROGRAM, EXCP_INVAL | EXCP_INVAL_LSWX);
return;
}
if (ra == 0) {
gen_op_set_T0(0);
} else {
gen_op_load_gpr_T0(ra);
}
gen_op_set_T1(nb);
/* NIP cannot be restored if the memory exception comes from an helper */
gen_op_update_nip((ctx)->nip - 4);
op_ldsts(lswi, start);
}
/* lswx */
GEN_HANDLER(lswx, 0x1F, 0x15, 0x10, 0x00000001, PPC_INTEGER)
{
int ra = rA(ctx->opcode);
int rb = rB(ctx->opcode);
if (ra == 0) {
gen_op_load_gpr_T0(rb);
ra = rb;
} else {
gen_op_load_gpr_T0(ra);
gen_op_load_gpr_T1(rb);
gen_op_add();
}
gen_op_load_xer_bc();
/* NIP cannot be restored if the memory exception comes from an helper */
gen_op_update_nip((ctx)->nip - 4);
op_ldstsx(lswx, rD(ctx->opcode), ra, rb);
}
/* stswi */
GEN_HANDLER(stswi, 0x1F, 0x15, 0x16, 0x00000001, PPC_INTEGER)
{
int nb = NB(ctx->opcode);
if (rA(ctx->opcode) == 0) {
gen_op_set_T0(0);
} else {
gen_op_load_gpr_T0(rA(ctx->opcode));
}
if (nb == 0)
nb = 32;
gen_op_set_T1(nb);
/* NIP cannot be restored if the memory exception comes from an helper */
gen_op_update_nip((ctx)->nip - 4);
op_ldsts(stsw, rS(ctx->opcode));
}
/* stswx */
GEN_HANDLER(stswx, 0x1F, 0x15, 0x14, 0x00000001, PPC_INTEGER)
{
int ra = rA(ctx->opcode);
if (ra == 0) {
gen_op_load_gpr_T0(rB(ctx->opcode));
ra = rB(ctx->opcode);
} else {
gen_op_load_gpr_T0(ra);
gen_op_load_gpr_T1(rB(ctx->opcode));
gen_op_add();
}
gen_op_load_xer_bc();
/* NIP cannot be restored if the memory exception comes from an helper */
gen_op_update_nip((ctx)->nip - 4);
op_ldsts(stsw, rS(ctx->opcode));
}
/*** Memory synchronisation ***/
/* eieio */
GEN_HANDLER(eieio, 0x1F, 0x16, 0x1A, 0x03FF0801, PPC_MEM)
{
}
/* isync */
GEN_HANDLER(isync, 0x13, 0x16, 0xFF, 0x03FF0801, PPC_MEM)
{
}
#define op_lwarx() (*gen_op_lwarx[ctx->mem_idx])()
#define op_stwcx() (*gen_op_stwcx[ctx->mem_idx])()
#if defined(CONFIG_USER_ONLY)
static GenOpFunc *gen_op_lwarx[] = {
&gen_op_lwarx_raw,
&gen_op_lwarx_le_raw,
};
static GenOpFunc *gen_op_stwcx[] = {
&gen_op_stwcx_raw,
&gen_op_stwcx_le_raw,
};
#else
static GenOpFunc *gen_op_lwarx[] = {
&gen_op_lwarx_user,
&gen_op_lwarx_le_user,
&gen_op_lwarx_kernel,
&gen_op_lwarx_le_kernel,
};
static GenOpFunc *gen_op_stwcx[] = {
&gen_op_stwcx_user,
&gen_op_stwcx_le_user,
&gen_op_stwcx_kernel,
&gen_op_stwcx_le_kernel,
};
#endif
/* lwarx */
GEN_HANDLER(lwarx, 0x1F, 0x14, 0xFF, 0x00000001, PPC_RES)
{
if (rA(ctx->opcode) == 0) {
gen_op_load_gpr_T0(rB(ctx->opcode));
} else {
gen_op_load_gpr_T0(rA(ctx->opcode));
gen_op_load_gpr_T1(rB(ctx->opcode));
gen_op_add();
}
op_lwarx();
gen_op_store_T1_gpr(rD(ctx->opcode));
}
/* stwcx. */
GEN_HANDLER(stwcx_, 0x1F, 0x16, 0x04, 0x00000000, PPC_RES)
{
if (rA(ctx->opcode) == 0) {
gen_op_load_gpr_T0(rB(ctx->opcode));
} else {
gen_op_load_gpr_T0(rA(ctx->opcode));
gen_op_load_gpr_T1(rB(ctx->opcode));
gen_op_add();
}
gen_op_load_gpr_T1(rS(ctx->opcode));
op_stwcx();
}
/* sync */
GEN_HANDLER(sync, 0x1F, 0x16, 0x12, 0x03FF0801, PPC_MEM)
{
}
/*** Floating-point load ***/
#define GEN_LDF(width, opc) \
GEN_HANDLER(l##width, opc, 0xFF, 0xFF, 0x00000000, PPC_FLOAT) \
{ \
uint32_t simm = SIMM(ctx->opcode); \
if (!ctx->fpu_enabled) { \
RET_EXCP(ctx, EXCP_NO_FP, 0); \
return; \
} \
if (rA(ctx->opcode) == 0) { \
gen_op_set_T0(simm); \
} else { \
gen_op_load_gpr_T0(rA(ctx->opcode)); \
if (simm != 0) \
gen_op_addi(simm); \
} \
op_ldst(l##width); \
gen_op_store_FT1_fpr(rD(ctx->opcode)); \
}
#define GEN_LDUF(width, opc) \
GEN_HANDLER(l##width##u, opc, 0xFF, 0xFF, 0x00000000, PPC_FLOAT) \
{ \
uint32_t simm = SIMM(ctx->opcode); \
if (!ctx->fpu_enabled) { \
RET_EXCP(ctx, EXCP_NO_FP, 0); \
return; \
} \
if (rA(ctx->opcode) == 0 || \
rA(ctx->opcode) == rD(ctx->opcode)) { \
RET_INVAL(ctx); \
return; \
} \
gen_op_load_gpr_T0(rA(ctx->opcode)); \
if (simm != 0) \
gen_op_addi(simm); \
op_ldst(l##width); \
gen_op_store_FT1_fpr(rD(ctx->opcode)); \
gen_op_store_T0_gpr(rA(ctx->opcode)); \
}
#define GEN_LDUXF(width, opc) \
GEN_HANDLER(l##width##ux, 0x1F, 0x17, opc, 0x00000001, PPC_FLOAT) \
{ \
if (!ctx->fpu_enabled) { \
RET_EXCP(ctx, EXCP_NO_FP, 0); \
return; \
} \
if (rA(ctx->opcode) == 0 || \
rA(ctx->opcode) == rD(ctx->opcode)) { \
RET_INVAL(ctx); \
return; \
} \
gen_op_load_gpr_T0(rA(ctx->opcode)); \
gen_op_load_gpr_T1(rB(ctx->opcode)); \
gen_op_add(); \
op_ldst(l##width); \
gen_op_store_FT1_fpr(rD(ctx->opcode)); \
gen_op_store_T0_gpr(rA(ctx->opcode)); \
}
#define GEN_LDXF(width, opc2, opc3) \
GEN_HANDLER(l##width##x, 0x1F, opc2, opc3, 0x00000001, PPC_FLOAT) \
{ \
if (!ctx->fpu_enabled) { \
RET_EXCP(ctx, EXCP_NO_FP, 0); \
return; \
} \
if (rA(ctx->opcode) == 0) { \
gen_op_load_gpr_T0(rB(ctx->opcode)); \
} else { \
gen_op_load_gpr_T0(rA(ctx->opcode)); \
gen_op_load_gpr_T1(rB(ctx->opcode)); \
gen_op_add(); \
} \
op_ldst(l##width); \
gen_op_store_FT1_fpr(rD(ctx->opcode)); \
}
#define GEN_LDFS(width, op) \
OP_LD_TABLE(width); \
GEN_LDF(width, op | 0x20); \
GEN_LDUF(width, op | 0x21); \
GEN_LDUXF(width, op | 0x01); \
GEN_LDXF(width, 0x17, op | 0x00)
/* lfd lfdu lfdux lfdx */
GEN_LDFS(fd, 0x12);
/* lfs lfsu lfsux lfsx */
GEN_LDFS(fs, 0x10);
/*** Floating-point store ***/
#define GEN_STF(width, opc) \
GEN_HANDLER(st##width, opc, 0xFF, 0xFF, 0x00000000, PPC_FLOAT) \
{ \
uint32_t simm = SIMM(ctx->opcode); \
if (!ctx->fpu_enabled) { \
RET_EXCP(ctx, EXCP_NO_FP, 0); \
return; \
} \
if (rA(ctx->opcode) == 0) { \
gen_op_set_T0(simm); \
} else { \
gen_op_load_gpr_T0(rA(ctx->opcode)); \
if (simm != 0) \
gen_op_addi(simm); \
} \
gen_op_load_fpr_FT1(rS(ctx->opcode)); \
op_ldst(st##width); \
}
#define GEN_STUF(width, opc) \
GEN_HANDLER(st##width##u, opc, 0xFF, 0xFF, 0x00000000, PPC_FLOAT) \
{ \
uint32_t simm = SIMM(ctx->opcode); \
if (!ctx->fpu_enabled) { \
RET_EXCP(ctx, EXCP_NO_FP, 0); \
return; \
} \
if (rA(ctx->opcode) == 0) { \
RET_INVAL(ctx); \
return; \
} \
gen_op_load_gpr_T0(rA(ctx->opcode)); \
if (simm != 0) \
gen_op_addi(simm); \
gen_op_load_fpr_FT1(rS(ctx->opcode)); \
op_ldst(st##width); \
gen_op_store_T0_gpr(rA(ctx->opcode)); \
}
#define GEN_STUXF(width, opc) \
GEN_HANDLER(st##width##ux, 0x1F, 0x17, opc, 0x00000001, PPC_FLOAT) \
{ \
if (!ctx->fpu_enabled) { \
RET_EXCP(ctx, EXCP_NO_FP, 0); \
return; \
} \
if (rA(ctx->opcode) == 0) { \
RET_INVAL(ctx); \
return; \
} \
gen_op_load_gpr_T0(rA(ctx->opcode)); \
gen_op_load_gpr_T1(rB(ctx->opcode)); \
gen_op_add(); \
gen_op_load_fpr_FT1(rS(ctx->opcode)); \
op_ldst(st##width); \
gen_op_store_T0_gpr(rA(ctx->opcode)); \
}
#define GEN_STXF(width, opc2, opc3) \
GEN_HANDLER(st##width##x, 0x1F, opc2, opc3, 0x00000001, PPC_FLOAT) \
{ \
if (!ctx->fpu_enabled) { \
RET_EXCP(ctx, EXCP_NO_FP, 0); \
return; \
} \
if (rA(ctx->opcode) == 0) { \
gen_op_load_gpr_T0(rB(ctx->opcode)); \
} else { \
gen_op_load_gpr_T0(rA(ctx->opcode)); \
gen_op_load_gpr_T1(rB(ctx->opcode)); \
gen_op_add(); \
} \
gen_op_load_fpr_FT1(rS(ctx->opcode)); \
op_ldst(st##width); \
}
#define GEN_STFS(width, op) \
OP_ST_TABLE(width); \
GEN_STF(width, op | 0x20); \
GEN_STUF(width, op | 0x21); \
GEN_STUXF(width, op | 0x01); \
GEN_STXF(width, 0x17, op | 0x00)
/* stfd stfdu stfdux stfdx */
GEN_STFS(fd, 0x16);
/* stfs stfsu stfsux stfsx */
GEN_STFS(fs, 0x14);
/* Optional: */
/* stfiwx */
GEN_HANDLER(stfiwx, 0x1F, 0x17, 0x1E, 0x00000001, PPC_FLOAT)
{
if (!ctx->fpu_enabled) {
RET_EXCP(ctx, EXCP_NO_FP, 0);
return;
}
RET_INVAL(ctx);
}
/*** Branch ***/
static inline void gen_goto_tb(DisasContext *ctx, int n, target_ulong dest)
{
TranslationBlock *tb;
tb = ctx->tb;
if ((tb->pc & TARGET_PAGE_MASK) == (dest & TARGET_PAGE_MASK)) {
if (n == 0)
gen_op_goto_tb0(TBPARAM(tb));
else
gen_op_goto_tb1(TBPARAM(tb));
gen_op_set_T1(dest);
gen_op_b_T1();
gen_op_set_T0((long)tb + n);
if (ctx->singlestep_enabled)
gen_op_debug();
gen_op_exit_tb();
} else {
gen_op_set_T1(dest);
gen_op_b_T1();
if (ctx->singlestep_enabled)
gen_op_debug();
gen_op_set_T0(0);
gen_op_exit_tb();
}
}
/* b ba bl bla */
GEN_HANDLER(b, 0x12, 0xFF, 0xFF, 0x00000000, PPC_FLOW)
{
uint32_t li, target;
/* sign extend LI */
li = ((int32_t)LI(ctx->opcode) << 6) >> 6;
if (AA(ctx->opcode) == 0)
target = ctx->nip + li - 4;
else
target = li;
if (LK(ctx->opcode)) {
gen_op_setlr(ctx->nip);
}
gen_goto_tb(ctx, 0, target);
ctx->exception = EXCP_BRANCH;
}
#define BCOND_IM 0
#define BCOND_LR 1
#define BCOND_CTR 2
static inline void gen_bcond(DisasContext *ctx, int type)
{
uint32_t target = 0;
uint32_t bo = BO(ctx->opcode);
uint32_t bi = BI(ctx->opcode);
uint32_t mask;
uint32_t li;
if ((bo & 0x4) == 0)
gen_op_dec_ctr();
switch(type) {
case BCOND_IM:
li = (int32_t)((int16_t)(BD(ctx->opcode)));
if (AA(ctx->opcode) == 0) {
target = ctx->nip + li - 4;
} else {
target = li;
}
break;
case BCOND_CTR:
gen_op_movl_T1_ctr();
break;
default:
case BCOND_LR:
gen_op_movl_T1_lr();
break;
}
if (LK(ctx->opcode)) {
gen_op_setlr(ctx->nip);
}
if (bo & 0x10) {
/* No CR condition */
switch (bo & 0x6) {
case 0:
gen_op_test_ctr();
break;
case 2:
gen_op_test_ctrz();
break;
default:
case 4:
case 6:
if (type == BCOND_IM) {
gen_goto_tb(ctx, 0, target);
} else {
gen_op_b_T1();
}
goto no_test;
}
} else {
mask = 1 << (3 - (bi & 0x03));
gen_op_load_crf_T0(bi >> 2);
if (bo & 0x8) {
switch (bo & 0x6) {
case 0:
gen_op_test_ctr_true(mask);
break;
case 2:
gen_op_test_ctrz_true(mask);
break;
default:
case 4:
case 6:
gen_op_test_true(mask);
break;
}
} else {
switch (bo & 0x6) {
case 0:
gen_op_test_ctr_false(mask);
break;
case 2:
gen_op_test_ctrz_false(mask);
break;
default:
case 4:
case 6:
gen_op_test_false(mask);
break;
}
}
}
if (type == BCOND_IM) {
int l1 = gen_new_label();
gen_op_jz_T0(l1);
gen_goto_tb(ctx, 0, target);
gen_set_label(l1);
gen_goto_tb(ctx, 1, ctx->nip);
} else {
gen_op_btest_T1(ctx->nip);
}
no_test:
ctx->exception = EXCP_BRANCH;
}
GEN_HANDLER(bc, 0x10, 0xFF, 0xFF, 0x00000000, PPC_FLOW)
{
gen_bcond(ctx, BCOND_IM);
}
GEN_HANDLER(bcctr, 0x13, 0x10, 0x10, 0x00000000, PPC_FLOW)
{
gen_bcond(ctx, BCOND_CTR);
}
GEN_HANDLER(bclr, 0x13, 0x10, 0x00, 0x00000000, PPC_FLOW)
{
gen_bcond(ctx, BCOND_LR);
}
/*** Condition register logical ***/
#define GEN_CRLOGIC(op, opc) \
GEN_HANDLER(cr##op, 0x13, 0x01, opc, 0x00000001, PPC_INTEGER) \
{ \
gen_op_load_crf_T0(crbA(ctx->opcode) >> 2); \
gen_op_getbit_T0(3 - (crbA(ctx->opcode) & 0x03)); \
gen_op_load_crf_T1(crbB(ctx->opcode) >> 2); \
gen_op_getbit_T1(3 - (crbB(ctx->opcode) & 0x03)); \
gen_op_##op(); \
gen_op_load_crf_T1(crbD(ctx->opcode) >> 2); \
gen_op_setcrfbit(~(1 << (3 - (crbD(ctx->opcode) & 0x03))), \
3 - (crbD(ctx->opcode) & 0x03)); \
gen_op_store_T1_crf(crbD(ctx->opcode) >> 2); \
}
/* crand */
GEN_CRLOGIC(and, 0x08)
/* crandc */
GEN_CRLOGIC(andc, 0x04)
/* creqv */
GEN_CRLOGIC(eqv, 0x09)
/* crnand */
GEN_CRLOGIC(nand, 0x07)
/* crnor */
GEN_CRLOGIC(nor, 0x01)
/* cror */
GEN_CRLOGIC(or, 0x0E)
/* crorc */
GEN_CRLOGIC(orc, 0x0D)
/* crxor */
GEN_CRLOGIC(xor, 0x06)
/* mcrf */
GEN_HANDLER(mcrf, 0x13, 0x00, 0xFF, 0x00000001, PPC_INTEGER)
{
gen_op_load_crf_T0(crfS(ctx->opcode));
gen_op_store_T0_crf(crfD(ctx->opcode));
}
/*** System linkage ***/
/* rfi (supervisor only) */
GEN_HANDLER(rfi, 0x13, 0x12, 0xFF, 0x03FF8001, PPC_FLOW)
{
#if defined(CONFIG_USER_ONLY)
RET_PRIVOPC(ctx);
#else
/* Restore CPU state */
if (!ctx->supervisor) {
RET_PRIVOPC(ctx);
return;
}
gen_op_rfi();
RET_CHG_FLOW(ctx);
#endif
}
/* sc */
GEN_HANDLER(sc, 0x11, 0xFF, 0xFF, 0x03FFFFFD, PPC_FLOW)
{
#if defined(CONFIG_USER_ONLY)
RET_EXCP(ctx, EXCP_SYSCALL_USER, 0);
#else
RET_EXCP(ctx, EXCP_SYSCALL, 0);
#endif
}
/*** Trap ***/
/* tw */
GEN_HANDLER(tw, 0x1F, 0x04, 0xFF, 0x00000001, PPC_FLOW)
{
gen_op_load_gpr_T0(rA(ctx->opcode));
gen_op_load_gpr_T1(rB(ctx->opcode));
/* Update the nip since this might generate a trap exception */
gen_op_update_nip(ctx->nip);
gen_op_tw(TO(ctx->opcode));
}
/* twi */
GEN_HANDLER(twi, 0x03, 0xFF, 0xFF, 0x00000000, PPC_FLOW)
{
gen_op_load_gpr_T0(rA(ctx->opcode));
#if 0
printf("%s: param=0x%04x T0=0x%04x\n", __func__,
SIMM(ctx->opcode), TO(ctx->opcode));
#endif
gen_op_twi(SIMM(ctx->opcode), TO(ctx->opcode));
}
/*** Processor control ***/
static inline int check_spr_access (int spr, int rw, int supervisor)
{
uint32_t rights = spr_access[spr >> 1] >> (4 * (spr & 1));
#if 0
if (spr != LR && spr != CTR) {
if (loglevel > 0) {
fprintf(logfile, "%s reg=%d s=%d rw=%d r=0x%02x 0x%02x\n", __func__,
SPR_ENCODE(spr), supervisor, rw, rights,
(rights >> ((2 * supervisor) + rw)) & 1);
} else {
printf("%s reg=%d s=%d rw=%d r=0x%02x 0x%02x\n", __func__,
SPR_ENCODE(spr), supervisor, rw, rights,
(rights >> ((2 * supervisor) + rw)) & 1);
}
}
#endif
if (rights == 0)
return -1;
rights = rights >> (2 * supervisor);
rights = rights >> rw;
return rights & 1;
}
/* mcrxr */
GEN_HANDLER(mcrxr, 0x1F, 0x00, 0x10, 0x007FF801, PPC_MISC)
{
gen_op_load_xer_cr();
gen_op_store_T0_crf(crfD(ctx->opcode));
gen_op_clear_xer_cr();
}
/* mfcr */
GEN_HANDLER(mfcr, 0x1F, 0x13, 0x00, 0x001FF801, PPC_MISC)
{
gen_op_load_cr();
gen_op_store_T0_gpr(rD(ctx->opcode));
}
/* mfmsr */
GEN_HANDLER(mfmsr, 0x1F, 0x13, 0x02, 0x001FF801, PPC_MISC)
{
#if defined(CONFIG_USER_ONLY)
RET_PRIVREG(ctx);
#else
if (!ctx->supervisor) {
RET_PRIVREG(ctx);
return;
}
gen_op_load_msr();
gen_op_store_T0_gpr(rD(ctx->opcode));
#endif
}
#if 0
#define SPR_NOACCESS ((void *)(-1))
#else
static void spr_noaccess (void *opaque, int sprn)
{
sprn = ((sprn >> 5) & 0x1F) | ((sprn & 0x1F) << 5);
printf("ERROR: try to access SPR %d !\n", sprn);
}
#define SPR_NOACCESS (&spr_noaccess)
#endif
/* mfspr */
static inline void gen_op_mfspr (DisasContext *ctx)
{
void (*read_cb)(void *opaque, int sprn);
uint32_t sprn = SPR(ctx->opcode);
#if !defined(CONFIG_USER_ONLY)
if (ctx->supervisor)
read_cb = ctx->spr_cb[sprn].oea_read;
else
#endif
read_cb = ctx->spr_cb[sprn].uea_read;
if (read_cb != NULL) {
if (read_cb != SPR_NOACCESS) {
(*read_cb)(ctx, sprn);
gen_op_store_T0_gpr(rD(ctx->opcode));
} else {
/* Privilege exception */
if (loglevel) {
fprintf(logfile, "Trying to read priviledged spr %d %03x\n",
sprn, sprn);
}
printf("Trying to read priviledged spr %d %03x\n", sprn, sprn);
RET_PRIVREG(ctx);
}
} else {
/* Not defined */
if (loglevel) {
fprintf(logfile, "Trying to read invalid spr %d %03x\n",
sprn, sprn);
}
printf("Trying to read invalid spr %d %03x\n", sprn, sprn);
RET_EXCP(ctx, EXCP_PROGRAM, EXCP_INVAL | EXCP_INVAL_SPR);
}
}
GEN_HANDLER(mfspr, 0x1F, 0x13, 0x0A, 0x00000001, PPC_MISC)
{
gen_op_mfspr(ctx);
}
/* mftb */
GEN_HANDLER(mftb, 0x1F, 0x13, 0x0B, 0x00000001, PPC_TB)
{
gen_op_mfspr(ctx);
}
/* mtcrf */
/* The mask should be 0x00100801, but Mac OS X 10.4 use an alternate form */
GEN_HANDLER(mtcrf, 0x1F, 0x10, 0x04, 0x00000801, PPC_MISC)
{
gen_op_load_gpr_T0(rS(ctx->opcode));
gen_op_store_cr(CRM(ctx->opcode));
}
/* mtmsr */
GEN_HANDLER(mtmsr, 0x1F, 0x12, 0x04, 0x001FF801, PPC_MISC)
{
#if defined(CONFIG_USER_ONLY)
RET_PRIVREG(ctx);
#else
if (!ctx->supervisor) {
RET_PRIVREG(ctx);
return;
}
gen_op_update_nip((ctx)->nip);
gen_op_load_gpr_T0(rS(ctx->opcode));
gen_op_store_msr();
/* Must stop the translation as machine state (may have) changed */
RET_CHG_FLOW(ctx);
#endif
}
/* mtspr */
GEN_HANDLER(mtspr, 0x1F, 0x13, 0x0E, 0x00000001, PPC_MISC)
{
void (*write_cb)(void *opaque, int sprn);
uint32_t sprn = SPR(ctx->opcode);
#if !defined(CONFIG_USER_ONLY)
if (ctx->supervisor)
write_cb = ctx->spr_cb[sprn].oea_write;
else
#endif
write_cb = ctx->spr_cb[sprn].uea_write;
if (write_cb != NULL) {
if (write_cb != SPR_NOACCESS) {
gen_op_load_gpr_T0(rS(ctx->opcode));
(*write_cb)(ctx, sprn);
} else {
/* Privilege exception */
if (loglevel) {
fprintf(logfile, "Trying to write priviledged spr %d %03x\n",
sprn, sprn);
}
printf("Trying to write priviledged spr %d %03x\n", sprn, sprn);
RET_PRIVREG(ctx);
}
} else {
/* Not defined */
if (loglevel) {
fprintf(logfile, "Trying to write invalid spr %d %03x\n",
sprn, sprn);
}
printf("Trying to write invalid spr %d %03x\n", sprn, sprn);
RET_EXCP(ctx, EXCP_PROGRAM, EXCP_INVAL | EXCP_INVAL_SPR);
}
}
/*** Cache management ***/
/* For now, all those will be implemented as nop:
* this is valid, regarding the PowerPC specs...
* We just have to flush tb while invalidating instruction cache lines...
*/
/* dcbf */
GEN_HANDLER(dcbf, 0x1F, 0x16, 0x02, 0x03E00001, PPC_CACHE)
{
if (rA(ctx->opcode) == 0) {
gen_op_load_gpr_T0(rB(ctx->opcode));
} else {
gen_op_load_gpr_T0(rA(ctx->opcode));
gen_op_load_gpr_T1(rB(ctx->opcode));
gen_op_add();
}
op_ldst(lbz);
}
/* dcbi (Supervisor only) */
GEN_HANDLER(dcbi, 0x1F, 0x16, 0x0E, 0x03E00001, PPC_CACHE)
{
#if defined(CONFIG_USER_ONLY)
RET_PRIVOPC(ctx);
#else
if (!ctx->supervisor) {
RET_PRIVOPC(ctx);
return;
}
if (rA(ctx->opcode) == 0) {
gen_op_load_gpr_T0(rB(ctx->opcode));
} else {
gen_op_load_gpr_T0(rA(ctx->opcode));
gen_op_load_gpr_T1(rB(ctx->opcode));
gen_op_add();
}
op_ldst(lbz);
op_ldst(stb);
#endif
}
/* dcdst */
GEN_HANDLER(dcbst, 0x1F, 0x16, 0x01, 0x03E00001, PPC_CACHE)
{
if (rA(ctx->opcode) == 0) {
gen_op_load_gpr_T0(rB(ctx->opcode));
} else {
gen_op_load_gpr_T0(rA(ctx->opcode));
gen_op_load_gpr_T1(rB(ctx->opcode));
gen_op_add();
}
op_ldst(lbz);
}
/* dcbt */
GEN_HANDLER(dcbt, 0x1F, 0x16, 0x08, 0x03E00001, PPC_CACHE)
{
}
/* dcbtst */
GEN_HANDLER(dcbtst, 0x1F, 0x16, 0x07, 0x03E00001, PPC_CACHE)
{
}
/* dcbz */
#if defined(CONFIG_USER_ONLY)
#define op_dcbz() gen_op_dcbz_raw()
#else
#define op_dcbz() (*gen_op_dcbz[ctx->mem_idx])()
static GenOpFunc *gen_op_dcbz[] = {
&gen_op_dcbz_user,
&gen_op_dcbz_user,
&gen_op_dcbz_kernel,
&gen_op_dcbz_kernel,
};
#endif
GEN_HANDLER(dcbz, 0x1F, 0x16, 0x1F, 0x03E00001, PPC_CACHE)
{
if (rA(ctx->opcode) == 0) {
gen_op_load_gpr_T0(rB(ctx->opcode));
} else {
gen_op_load_gpr_T0(rA(ctx->opcode));
gen_op_load_gpr_T1(rB(ctx->opcode));
gen_op_add();
}
op_dcbz();
gen_op_check_reservation();
}
/* icbi */
GEN_HANDLER(icbi, 0x1F, 0x16, 0x1E, 0x03E00001, PPC_CACHE)
{
if (rA(ctx->opcode) == 0) {
gen_op_load_gpr_T0(rB(ctx->opcode));
} else {
gen_op_load_gpr_T0(rA(ctx->opcode));
gen_op_load_gpr_T1(rB(ctx->opcode));
gen_op_add();
}
gen_op_icbi();
}
/* Optional: */
/* dcba */
GEN_HANDLER(dcba, 0x1F, 0x16, 0x17, 0x03E00001, PPC_CACHE_OPT)
{
}
/*** Segment register manipulation ***/
/* Supervisor only: */
/* mfsr */
GEN_HANDLER(mfsr, 0x1F, 0x13, 0x12, 0x0010F801, PPC_SEGMENT)
{
#if defined(CONFIG_USER_ONLY)
RET_PRIVREG(ctx);
#else
if (!ctx->supervisor) {
RET_PRIVREG(ctx);
return;
}
gen_op_load_sr(SR(ctx->opcode));
gen_op_store_T0_gpr(rD(ctx->opcode));
#endif
}
/* mfsrin */
GEN_HANDLER(mfsrin, 0x1F, 0x13, 0x14, 0x001F0001, PPC_SEGMENT)
{
#if defined(CONFIG_USER_ONLY)
RET_PRIVREG(ctx);
#else
if (!ctx->supervisor) {
RET_PRIVREG(ctx);
return;
}
gen_op_load_gpr_T1(rB(ctx->opcode));
gen_op_load_srin();
gen_op_store_T0_gpr(rD(ctx->opcode));
#endif
}
/* mtsr */
GEN_HANDLER(mtsr, 0x1F, 0x12, 0x06, 0x0010F801, PPC_SEGMENT)
{
#if defined(CONFIG_USER_ONLY)
RET_PRIVREG(ctx);
#else
if (!ctx->supervisor) {
RET_PRIVREG(ctx);
return;
}
gen_op_load_gpr_T0(rS(ctx->opcode));
gen_op_store_sr(SR(ctx->opcode));
RET_STOP(ctx);
#endif
}
/* mtsrin */
GEN_HANDLER(mtsrin, 0x1F, 0x12, 0x07, 0x001F0001, PPC_SEGMENT)
{
#if defined(CONFIG_USER_ONLY)
RET_PRIVREG(ctx);
#else
if (!ctx->supervisor) {
RET_PRIVREG(ctx);
return;
}
gen_op_load_gpr_T0(rS(ctx->opcode));
gen_op_load_gpr_T1(rB(ctx->opcode));
gen_op_store_srin();
RET_STOP(ctx);
#endif
}
/*** Lookaside buffer management ***/
/* Optional & supervisor only: */
/* tlbia */
GEN_HANDLER(tlbia, 0x1F, 0x12, 0x0B, 0x03FFFC01, PPC_MEM_TLBIA)
{
#if defined(CONFIG_USER_ONLY)
RET_PRIVOPC(ctx);
#else
if (!ctx->supervisor) {
if (loglevel)
fprintf(logfile, "%s: ! supervisor\n", __func__);
RET_PRIVOPC(ctx);
return;
}
gen_op_tlbia();
RET_STOP(ctx);
#endif
}
/* tlbie */
GEN_HANDLER(tlbie, 0x1F, 0x12, 0x09, 0x03FF0001, PPC_MEM)
{
#if defined(CONFIG_USER_ONLY)
RET_PRIVOPC(ctx);
#else
if (!ctx->supervisor) {
RET_PRIVOPC(ctx);
return;
}
gen_op_load_gpr_T0(rB(ctx->opcode));
gen_op_tlbie();
RET_STOP(ctx);
#endif
}
/* tlbsync */
GEN_HANDLER(tlbsync, 0x1F, 0x16, 0x11, 0x03FFF801, PPC_MEM)
{
#if defined(CONFIG_USER_ONLY)
RET_PRIVOPC(ctx);
#else
if (!ctx->supervisor) {
RET_PRIVOPC(ctx);
return;
}
/* This has no effect: it should ensure that all previous
* tlbie have completed
*/
RET_STOP(ctx);
#endif
}
/*** External control ***/
/* Optional: */
#define op_eciwx() (*gen_op_eciwx[ctx->mem_idx])()
#define op_ecowx() (*gen_op_ecowx[ctx->mem_idx])()
#if defined(CONFIG_USER_ONLY)
static GenOpFunc *gen_op_eciwx[] = {
&gen_op_eciwx_raw,
&gen_op_eciwx_le_raw,
};
static GenOpFunc *gen_op_ecowx[] = {
&gen_op_ecowx_raw,
&gen_op_ecowx_le_raw,
};
#else
static GenOpFunc *gen_op_eciwx[] = {
&gen_op_eciwx_user,
&gen_op_eciwx_le_user,
&gen_op_eciwx_kernel,
&gen_op_eciwx_le_kernel,
};
static GenOpFunc *gen_op_ecowx[] = {
&gen_op_ecowx_user,
&gen_op_ecowx_le_user,
&gen_op_ecowx_kernel,
&gen_op_ecowx_le_kernel,
};
#endif
/* eciwx */
GEN_HANDLER(eciwx, 0x1F, 0x16, 0x0D, 0x00000001, PPC_EXTERN)
{
/* Should check EAR[E] & alignment ! */
if (rA(ctx->opcode) == 0) {
gen_op_load_gpr_T0(rB(ctx->opcode));
} else {
gen_op_load_gpr_T0(rA(ctx->opcode));
gen_op_load_gpr_T1(rB(ctx->opcode));
gen_op_add();
}
op_eciwx();
gen_op_store_T0_gpr(rD(ctx->opcode));
}
/* ecowx */
GEN_HANDLER(ecowx, 0x1F, 0x16, 0x09, 0x00000001, PPC_EXTERN)
{
/* Should check EAR[E] & alignment ! */
if (rA(ctx->opcode) == 0) {
gen_op_load_gpr_T0(rB(ctx->opcode));
} else {
gen_op_load_gpr_T0(rA(ctx->opcode));
gen_op_load_gpr_T1(rB(ctx->opcode));
gen_op_add();
}
gen_op_load_gpr_T2(rS(ctx->opcode));
op_ecowx();
}
/* End opcode list */
GEN_OPCODE_MARK(end);
#include "translate_init.c"
/*****************************************************************************/
/* Misc PowerPC helpers */
void cpu_dump_state(CPUState *env, FILE *f,
int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
int flags)
{
#if defined(TARGET_PPC64) || 1
#define FILL ""
#define REGX "%016" PRIx64
#define RGPL 4
#define RFPL 4
#else
#define FILL " "
#define REGX "%08" PRIx64
#define RGPL 8
#define RFPL 4
#endif
int i;
cpu_fprintf(f, "NIP " REGX " LR " REGX " CTR " REGX "\n",
env->nip, env->lr, env->ctr);
cpu_fprintf(f, "MSR " REGX FILL " XER %08x TB %08x %08x DECR %08x\n",
do_load_msr(env), do_load_xer(env), cpu_ppc_load_tbu(env),
cpu_ppc_load_tbl(env), cpu_ppc_load_decr(env));
for (i = 0; i < 32; i++) {
if ((i & (RGPL - 1)) == 0)
cpu_fprintf(f, "GPR%02d", i);
cpu_fprintf(f, " " REGX, env->gpr[i]);
if ((i & (RGPL - 1)) == (RGPL - 1))
cpu_fprintf(f, "\n");
}
cpu_fprintf(f, "CR ");
for (i = 0; i < 8; i++)
cpu_fprintf(f, "%01x", env->crf[i]);
cpu_fprintf(f, " [");
for (i = 0; i < 8; i++) {
char a = '-';
if (env->crf[i] & 0x08)
a = 'L';
else if (env->crf[i] & 0x04)
a = 'G';
else if (env->crf[i] & 0x02)
a = 'E';
cpu_fprintf(f, " %c%c", a, env->crf[i] & 0x01 ? 'O' : ' ');
}
cpu_fprintf(f, " ] " FILL "RES " REGX "\n", env->reserve);
for (i = 0; i < 32; i++) {
if ((i & (RFPL - 1)) == 0)
cpu_fprintf(f, "FPR%02d", i);
cpu_fprintf(f, " %016" PRIx64, *((uint64_t *)&env->fpr[i]));
if ((i & (RFPL - 1)) == (RFPL - 1))
cpu_fprintf(f, "\n");
}
cpu_fprintf(f, "SRR0 " REGX " SRR1 " REGX " " FILL FILL FILL
"SDR1 " REGX "\n",
env->spr[SPR_SRR0], env->spr[SPR_SRR1], env->sdr1);
#undef REGX
#undef RGPL
#undef RFPL
#undef FILL
}
/*****************************************************************************/
int gen_intermediate_code_internal (CPUState *env, TranslationBlock *tb,
int search_pc)
{
DisasContext ctx, *ctxp = &ctx;
opc_handler_t **table, *handler;
target_ulong pc_start;
uint16_t *gen_opc_end;
int j, lj = -1;
pc_start = tb->pc;
gen_opc_ptr = gen_opc_buf;
gen_opc_end = gen_opc_buf + OPC_MAX_SIZE;
gen_opparam_ptr = gen_opparam_buf;
nb_gen_labels = 0;
ctx.nip = pc_start;
ctx.tb = tb;
ctx.exception = EXCP_NONE;
ctx.spr_cb = env->spr_cb;
#if defined(CONFIG_USER_ONLY)
ctx.mem_idx = msr_le;
#else
ctx.supervisor = 1 - msr_pr;
ctx.mem_idx = ((1 - msr_pr) << 1) | msr_le;
#endif
ctx.fpu_enabled = msr_fp;
ctx.singlestep_enabled = env->singlestep_enabled;
#if defined (DO_SINGLE_STEP) && 0
/* Single step trace mode */
msr_se = 1;
#endif
/* Set env in case of segfault during code fetch */
while (ctx.exception == EXCP_NONE && gen_opc_ptr < gen_opc_end) {
if (env->nb_breakpoints > 0) {
for(j = 0; j < env->nb_breakpoints; j++) {
if (env->breakpoints[j] == ctx.nip) {
gen_op_update_nip(ctx.nip);
gen_op_debug();
break;
}
}
}
if (search_pc) {
j = gen_opc_ptr - gen_opc_buf;
if (lj < j) {
lj++;
while (lj < j)
gen_opc_instr_start[lj++] = 0;
gen_opc_pc[lj] = ctx.nip;
gen_opc_instr_start[lj] = 1;
}
}
#if defined PPC_DEBUG_DISAS
if (loglevel & CPU_LOG_TB_IN_ASM) {
fprintf(logfile, "----------------\n");
fprintf(logfile, "nip=%08x super=%d ir=%d\n",
ctx.nip, 1 - msr_pr, msr_ir);
}
#endif
ctx.opcode = ldl_code(ctx.nip);
if (msr_le) {
ctx.opcode = ((ctx.opcode & 0xFF000000) >> 24) |
((ctx.opcode & 0x00FF0000) >> 8) |
((ctx.opcode & 0x0000FF00) << 8) |
((ctx.opcode & 0x000000FF) << 24);
}
#if defined PPC_DEBUG_DISAS
if (loglevel & CPU_LOG_TB_IN_ASM) {
fprintf(logfile, "translate opcode %08x (%02x %02x %02x) (%s)\n",
ctx.opcode, opc1(ctx.opcode), opc2(ctx.opcode),
opc3(ctx.opcode), msr_le ? "little" : "big");
}
#endif
ctx.nip += 4;
table = env->opcodes;
handler = table[opc1(ctx.opcode)];
if (is_indirect_opcode(handler)) {
table = ind_table(handler);
handler = table[opc2(ctx.opcode)];
if (is_indirect_opcode(handler)) {
table = ind_table(handler);
handler = table[opc3(ctx.opcode)];
}
}
/* Is opcode *REALLY* valid ? */
if (handler->handler == &gen_invalid) {
if (loglevel > 0) {
fprintf(logfile, "invalid/unsupported opcode: "
"%02x - %02x - %02x (%08x) 0x%08x %d\n",
opc1(ctx.opcode), opc2(ctx.opcode),
opc3(ctx.opcode), ctx.opcode, ctx.nip - 4, msr_ir);
} else {
printf("invalid/unsupported opcode: "
"%02x - %02x - %02x (%08x) 0x%08x %d\n",
opc1(ctx.opcode), opc2(ctx.opcode),
opc3(ctx.opcode), ctx.opcode, ctx.nip - 4, msr_ir);
}
} else {
if ((ctx.opcode & handler->inval) != 0) {
if (loglevel > 0) {
fprintf(logfile, "invalid bits: %08x for opcode: "
"%02x -%02x - %02x (0x%08x) (0x%08x)\n",
ctx.opcode & handler->inval, opc1(ctx.opcode),
opc2(ctx.opcode), opc3(ctx.opcode),
ctx.opcode, ctx.nip - 4);
} else {
printf("invalid bits: %08x for opcode: "
"%02x -%02x - %02x (0x%08x) (0x%08x)\n",
ctx.opcode & handler->inval, opc1(ctx.opcode),
opc2(ctx.opcode), opc3(ctx.opcode),
ctx.opcode, ctx.nip - 4);
}
RET_INVAL(ctxp);
break;
}
}
(*(handler->handler))(&ctx);
/* Check trace mode exceptions */
if ((msr_be && ctx.exception == EXCP_BRANCH) ||
/* Check in single step trace mode
* we need to stop except if:
* - rfi, trap or syscall
* - first instruction of an exception handler
*/
(msr_se && (ctx.nip < 0x100 ||
ctx.nip > 0xF00 ||
(ctx.nip & 0xFC) != 0x04) &&
ctx.exception != EXCP_SYSCALL &&
ctx.exception != EXCP_SYSCALL_USER &&
ctx.exception != EXCP_TRAP)) {
RET_EXCP(ctxp, EXCP_TRACE, 0);
}
/* if we reach a page boundary or are single stepping, stop
* generation
*/
if (((ctx.nip & (TARGET_PAGE_SIZE - 1)) == 0) ||
(env->singlestep_enabled)) {
break;
}
#if defined (DO_SINGLE_STEP)
break;
#endif
}
if (ctx.exception == EXCP_NONE) {
gen_goto_tb(&ctx, 0, ctx.nip);
} else if (ctx.exception != EXCP_BRANCH) {
gen_op_set_T0(0);
}
#if 1
/* TO BE FIXED: T0 hasn't got a proper value, which makes tb_add_jump
* do bad business and then qemu crashes !
*/
gen_op_set_T0(0);
#endif
/* Generate the return instruction */
gen_op_exit_tb();
*gen_opc_ptr = INDEX_op_end;
if (search_pc) {
j = gen_opc_ptr - gen_opc_buf;
lj++;
while (lj <= j)
gen_opc_instr_start[lj++] = 0;
tb->size = 0;
#if 0
if (loglevel > 0) {
page_dump(logfile);
}
#endif
} else {
tb->size = ctx.nip - pc_start;
}
#ifdef DEBUG_DISAS
if (loglevel & CPU_LOG_TB_CPU) {
fprintf(logfile, "---------------- excp: %04x\n", ctx.exception);
cpu_dump_state(env, logfile, fprintf, 0);
}
if (loglevel & CPU_LOG_TB_IN_ASM) {
fprintf(logfile, "IN: %s\n", lookup_symbol(pc_start));
target_disas(logfile, pc_start, ctx.nip - pc_start, msr_le);
fprintf(logfile, "\n");
}
if (loglevel & CPU_LOG_TB_OP) {
fprintf(logfile, "OP:\n");
dump_ops(gen_opc_buf, gen_opparam_buf);
fprintf(logfile, "\n");
}
#endif
return 0;
}
int gen_intermediate_code (CPUState *env, struct TranslationBlock *tb)
{
return gen_intermediate_code_internal(env, tb, 0);
}
int gen_intermediate_code_pc (CPUState *env, struct TranslationBlock *tb)
{
return gen_intermediate_code_internal(env, tb, 1);
}