qemu/target/xtensa/helper.c
Max Filippov 0946097051 target/xtensa: extract test for an illegal instruction
- TB flags: add XTENSA_TBFLAG_CWOE that corresponds to the architectural
  CWOE state;
- entry: move CWOE check from the helper to the test_ill_entry;
- retw: move CWOE check from the helper to the test_ill_retw;
- separate instruction disassembly loop and translation loop; save
  disassembly results in local array;

Signed-off-by: Max Filippov <jcmvbkbc@gmail.com>
2018-10-01 11:08:35 -07:00

818 lines
25 KiB
C

/*
* Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the Open Source and Linux Lab nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "qemu/osdep.h"
#include "qemu/units.h"
#include "cpu.h"
#include "exec/exec-all.h"
#include "exec/gdbstub.h"
#include "qemu/host-utils.h"
#if !defined(CONFIG_USER_ONLY)
#include "hw/loader.h"
#endif
static struct XtensaConfigList *xtensa_cores;
static void xtensa_core_class_init(ObjectClass *oc, void *data)
{
CPUClass *cc = CPU_CLASS(oc);
XtensaCPUClass *xcc = XTENSA_CPU_CLASS(oc);
const XtensaConfig *config = data;
xcc->config = config;
/* Use num_core_regs to see only non-privileged registers in an unmodified
* gdb. Use num_regs to see all registers. gdb modification is required
* for that: reset bit 0 in the 'flags' field of the registers definitions
* in the gdb/xtensa-config.c inside gdb source tree or inside gdb overlay.
*/
cc->gdb_num_core_regs = config->gdb_regmap.num_regs;
}
static void init_libisa(XtensaConfig *config)
{
unsigned i, j;
unsigned opcodes;
unsigned formats;
config->isa = xtensa_isa_init(config->isa_internal, NULL, NULL);
assert(xtensa_isa_maxlength(config->isa) <= MAX_INSN_LENGTH);
opcodes = xtensa_isa_num_opcodes(config->isa);
formats = xtensa_isa_num_formats(config->isa);
config->opcode_ops = g_new(XtensaOpcodeOps *, opcodes);
for (i = 0; i < formats; ++i) {
assert(xtensa_format_num_slots(config->isa, i) <= MAX_INSN_SLOTS);
}
for (i = 0; i < opcodes; ++i) {
const char *opc_name = xtensa_opcode_name(config->isa, i);
XtensaOpcodeOps *ops = NULL;
assert(xtensa_opcode_num_operands(config->isa, i) <= MAX_OPCODE_ARGS);
if (!config->opcode_translators) {
ops = xtensa_find_opcode_ops(&xtensa_core_opcodes, opc_name);
} else {
for (j = 0; !ops && config->opcode_translators[j]; ++j) {
ops = xtensa_find_opcode_ops(config->opcode_translators[j],
opc_name);
}
}
#ifdef DEBUG
if (ops == NULL) {
fprintf(stderr,
"opcode translator not found for %s's opcode '%s'\n",
config->name, opc_name);
}
#endif
config->opcode_ops[i] = ops;
}
}
void xtensa_finalize_config(XtensaConfig *config)
{
if (config->isa_internal) {
init_libisa(config);
}
if (config->gdb_regmap.num_regs == 0 ||
config->gdb_regmap.num_core_regs == 0) {
unsigned n_regs = 0;
unsigned n_core_regs = 0;
xtensa_count_regs(config, &n_regs, &n_core_regs);
if (config->gdb_regmap.num_regs == 0) {
config->gdb_regmap.num_regs = n_regs;
}
if (config->gdb_regmap.num_core_regs == 0) {
config->gdb_regmap.num_core_regs = n_core_regs;
}
}
}
void xtensa_register_core(XtensaConfigList *node)
{
TypeInfo type = {
.parent = TYPE_XTENSA_CPU,
.class_init = xtensa_core_class_init,
.class_data = (void *)node->config,
};
node->next = xtensa_cores;
xtensa_cores = node;
type.name = g_strdup_printf(XTENSA_CPU_TYPE_NAME("%s"), node->config->name);
type_register(&type);
g_free((gpointer)type.name);
}
static uint32_t check_hw_breakpoints(CPUXtensaState *env)
{
unsigned i;
for (i = 0; i < env->config->ndbreak; ++i) {
if (env->cpu_watchpoint[i] &&
env->cpu_watchpoint[i]->flags & BP_WATCHPOINT_HIT) {
return DEBUGCAUSE_DB | (i << DEBUGCAUSE_DBNUM_SHIFT);
}
}
return 0;
}
void xtensa_breakpoint_handler(CPUState *cs)
{
XtensaCPU *cpu = XTENSA_CPU(cs);
CPUXtensaState *env = &cpu->env;
if (cs->watchpoint_hit) {
if (cs->watchpoint_hit->flags & BP_CPU) {
uint32_t cause;
cs->watchpoint_hit = NULL;
cause = check_hw_breakpoints(env);
if (cause) {
debug_exception_env(env, cause);
}
cpu_loop_exit_noexc(cs);
}
}
}
void xtensa_cpu_list(FILE *f, fprintf_function cpu_fprintf)
{
XtensaConfigList *core = xtensa_cores;
cpu_fprintf(f, "Available CPUs:\n");
for (; core; core = core->next) {
cpu_fprintf(f, " %s\n", core->config->name);
}
}
hwaddr xtensa_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
{
#ifndef CONFIG_USER_ONLY
XtensaCPU *cpu = XTENSA_CPU(cs);
uint32_t paddr;
uint32_t page_size;
unsigned access;
if (xtensa_get_physical_addr(&cpu->env, false, addr, 0, 0,
&paddr, &page_size, &access) == 0) {
return paddr;
}
if (xtensa_get_physical_addr(&cpu->env, false, addr, 2, 0,
&paddr, &page_size, &access) == 0) {
return paddr;
}
return ~0;
#else
return addr;
#endif
}
#ifndef CONFIG_USER_ONLY
static uint32_t relocated_vector(CPUXtensaState *env, uint32_t vector)
{
if (xtensa_option_enabled(env->config,
XTENSA_OPTION_RELOCATABLE_VECTOR)) {
return vector - env->config->vecbase + env->sregs[VECBASE];
} else {
return vector;
}
}
/*!
* Handle penging IRQ.
* For the high priority interrupt jump to the corresponding interrupt vector.
* For the level-1 interrupt convert it to either user, kernel or double
* exception with the 'level-1 interrupt' exception cause.
*/
static void handle_interrupt(CPUXtensaState *env)
{
int level = env->pending_irq_level;
if (level > xtensa_get_cintlevel(env) &&
level <= env->config->nlevel &&
(env->config->level_mask[level] &
env->sregs[INTSET] &
env->sregs[INTENABLE])) {
CPUState *cs = CPU(xtensa_env_get_cpu(env));
if (level > 1) {
env->sregs[EPC1 + level - 1] = env->pc;
env->sregs[EPS2 + level - 2] = env->sregs[PS];
env->sregs[PS] =
(env->sregs[PS] & ~PS_INTLEVEL) | level | PS_EXCM;
env->pc = relocated_vector(env,
env->config->interrupt_vector[level]);
} else {
env->sregs[EXCCAUSE] = LEVEL1_INTERRUPT_CAUSE;
if (env->sregs[PS] & PS_EXCM) {
if (env->config->ndepc) {
env->sregs[DEPC] = env->pc;
} else {
env->sregs[EPC1] = env->pc;
}
cs->exception_index = EXC_DOUBLE;
} else {
env->sregs[EPC1] = env->pc;
cs->exception_index =
(env->sregs[PS] & PS_UM) ? EXC_USER : EXC_KERNEL;
}
env->sregs[PS] |= PS_EXCM;
}
env->exception_taken = 1;
}
}
/* Called from cpu_handle_interrupt with BQL held */
void xtensa_cpu_do_interrupt(CPUState *cs)
{
XtensaCPU *cpu = XTENSA_CPU(cs);
CPUXtensaState *env = &cpu->env;
if (cs->exception_index == EXC_IRQ) {
qemu_log_mask(CPU_LOG_INT,
"%s(EXC_IRQ) level = %d, cintlevel = %d, "
"pc = %08x, a0 = %08x, ps = %08x, "
"intset = %08x, intenable = %08x, "
"ccount = %08x\n",
__func__, env->pending_irq_level, xtensa_get_cintlevel(env),
env->pc, env->regs[0], env->sregs[PS],
env->sregs[INTSET], env->sregs[INTENABLE],
env->sregs[CCOUNT]);
handle_interrupt(env);
}
switch (cs->exception_index) {
case EXC_WINDOW_OVERFLOW4:
case EXC_WINDOW_UNDERFLOW4:
case EXC_WINDOW_OVERFLOW8:
case EXC_WINDOW_UNDERFLOW8:
case EXC_WINDOW_OVERFLOW12:
case EXC_WINDOW_UNDERFLOW12:
case EXC_KERNEL:
case EXC_USER:
case EXC_DOUBLE:
case EXC_DEBUG:
qemu_log_mask(CPU_LOG_INT, "%s(%d) "
"pc = %08x, a0 = %08x, ps = %08x, ccount = %08x\n",
__func__, cs->exception_index,
env->pc, env->regs[0], env->sregs[PS], env->sregs[CCOUNT]);
if (env->config->exception_vector[cs->exception_index]) {
env->pc = relocated_vector(env,
env->config->exception_vector[cs->exception_index]);
env->exception_taken = 1;
} else {
qemu_log_mask(CPU_LOG_INT, "%s(pc = %08x) bad exception_index: %d\n",
__func__, env->pc, cs->exception_index);
}
break;
case EXC_IRQ:
break;
default:
qemu_log("%s(pc = %08x) unknown exception_index: %d\n",
__func__, env->pc, cs->exception_index);
break;
}
check_interrupts(env);
}
#else
void xtensa_cpu_do_interrupt(CPUState *cs)
{
}
#endif
bool xtensa_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
{
if (interrupt_request & CPU_INTERRUPT_HARD) {
cs->exception_index = EXC_IRQ;
xtensa_cpu_do_interrupt(cs);
return true;
}
return false;
}
#ifdef CONFIG_USER_ONLY
int xtensa_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int size, int rw,
int mmu_idx)
{
XtensaCPU *cpu = XTENSA_CPU(cs);
CPUXtensaState *env = &cpu->env;
qemu_log_mask(CPU_LOG_INT,
"%s: rw = %d, address = 0x%08" VADDR_PRIx ", size = %d\n",
__func__, rw, address, size);
env->sregs[EXCVADDR] = address;
env->sregs[EXCCAUSE] = rw ? STORE_PROHIBITED_CAUSE : LOAD_PROHIBITED_CAUSE;
cs->exception_index = EXC_USER;
return 1;
}
#else
static void reset_tlb_mmu_all_ways(CPUXtensaState *env,
const xtensa_tlb *tlb, xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
{
unsigned wi, ei;
for (wi = 0; wi < tlb->nways; ++wi) {
for (ei = 0; ei < tlb->way_size[wi]; ++ei) {
entry[wi][ei].asid = 0;
entry[wi][ei].variable = true;
}
}
}
static void reset_tlb_mmu_ways56(CPUXtensaState *env,
const xtensa_tlb *tlb, xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
{
if (!tlb->varway56) {
static const xtensa_tlb_entry way5[] = {
{
.vaddr = 0xd0000000,
.paddr = 0,
.asid = 1,
.attr = 7,
.variable = false,
}, {
.vaddr = 0xd8000000,
.paddr = 0,
.asid = 1,
.attr = 3,
.variable = false,
}
};
static const xtensa_tlb_entry way6[] = {
{
.vaddr = 0xe0000000,
.paddr = 0xf0000000,
.asid = 1,
.attr = 7,
.variable = false,
}, {
.vaddr = 0xf0000000,
.paddr = 0xf0000000,
.asid = 1,
.attr = 3,
.variable = false,
}
};
memcpy(entry[5], way5, sizeof(way5));
memcpy(entry[6], way6, sizeof(way6));
} else {
uint32_t ei;
for (ei = 0; ei < 8; ++ei) {
entry[6][ei].vaddr = ei << 29;
entry[6][ei].paddr = ei << 29;
entry[6][ei].asid = 1;
entry[6][ei].attr = 3;
}
}
}
static void reset_tlb_region_way0(CPUXtensaState *env,
xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
{
unsigned ei;
for (ei = 0; ei < 8; ++ei) {
entry[0][ei].vaddr = ei << 29;
entry[0][ei].paddr = ei << 29;
entry[0][ei].asid = 1;
entry[0][ei].attr = 2;
entry[0][ei].variable = true;
}
}
void reset_mmu(CPUXtensaState *env)
{
if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
env->sregs[RASID] = 0x04030201;
env->sregs[ITLBCFG] = 0;
env->sregs[DTLBCFG] = 0;
env->autorefill_idx = 0;
reset_tlb_mmu_all_ways(env, &env->config->itlb, env->itlb);
reset_tlb_mmu_all_ways(env, &env->config->dtlb, env->dtlb);
reset_tlb_mmu_ways56(env, &env->config->itlb, env->itlb);
reset_tlb_mmu_ways56(env, &env->config->dtlb, env->dtlb);
} else {
reset_tlb_region_way0(env, env->itlb);
reset_tlb_region_way0(env, env->dtlb);
}
}
static unsigned get_ring(const CPUXtensaState *env, uint8_t asid)
{
unsigned i;
for (i = 0; i < 4; ++i) {
if (((env->sregs[RASID] >> i * 8) & 0xff) == asid) {
return i;
}
}
return 0xff;
}
/*!
* Lookup xtensa TLB for the given virtual address.
* See ISA, 4.6.2.2
*
* \param pwi: [out] way index
* \param pei: [out] entry index
* \param pring: [out] access ring
* \return 0 if ok, exception cause code otherwise
*/
int xtensa_tlb_lookup(const CPUXtensaState *env, uint32_t addr, bool dtlb,
uint32_t *pwi, uint32_t *pei, uint8_t *pring)
{
const xtensa_tlb *tlb = dtlb ?
&env->config->dtlb : &env->config->itlb;
const xtensa_tlb_entry (*entry)[MAX_TLB_WAY_SIZE] = dtlb ?
env->dtlb : env->itlb;
int nhits = 0;
unsigned wi;
for (wi = 0; wi < tlb->nways; ++wi) {
uint32_t vpn;
uint32_t ei;
split_tlb_entry_spec_way(env, addr, dtlb, &vpn, wi, &ei);
if (entry[wi][ei].vaddr == vpn && entry[wi][ei].asid) {
unsigned ring = get_ring(env, entry[wi][ei].asid);
if (ring < 4) {
if (++nhits > 1) {
return dtlb ?
LOAD_STORE_TLB_MULTI_HIT_CAUSE :
INST_TLB_MULTI_HIT_CAUSE;
}
*pwi = wi;
*pei = ei;
*pring = ring;
}
}
}
return nhits ? 0 :
(dtlb ? LOAD_STORE_TLB_MISS_CAUSE : INST_TLB_MISS_CAUSE);
}
/*!
* Convert MMU ATTR to PAGE_{READ,WRITE,EXEC} mask.
* See ISA, 4.6.5.10
*/
static unsigned mmu_attr_to_access(uint32_t attr)
{
unsigned access = 0;
if (attr < 12) {
access |= PAGE_READ;
if (attr & 0x1) {
access |= PAGE_EXEC;
}
if (attr & 0x2) {
access |= PAGE_WRITE;
}
switch (attr & 0xc) {
case 0:
access |= PAGE_CACHE_BYPASS;
break;
case 4:
access |= PAGE_CACHE_WB;
break;
case 8:
access |= PAGE_CACHE_WT;
break;
}
} else if (attr == 13) {
access |= PAGE_READ | PAGE_WRITE | PAGE_CACHE_ISOLATE;
}
return access;
}
/*!
* Convert region protection ATTR to PAGE_{READ,WRITE,EXEC} mask.
* See ISA, 4.6.3.3
*/
static unsigned region_attr_to_access(uint32_t attr)
{
static const unsigned access[16] = {
[0] = PAGE_READ | PAGE_WRITE | PAGE_CACHE_WT,
[1] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WT,
[2] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_BYPASS,
[3] = PAGE_EXEC | PAGE_CACHE_WB,
[4] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
[5] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
[14] = PAGE_READ | PAGE_WRITE | PAGE_CACHE_ISOLATE,
};
return access[attr & 0xf];
}
/*!
* Convert cacheattr to PAGE_{READ,WRITE,EXEC} mask.
* See ISA, A.2.14 The Cache Attribute Register
*/
static unsigned cacheattr_attr_to_access(uint32_t attr)
{
static const unsigned access[16] = {
[0] = PAGE_READ | PAGE_WRITE | PAGE_CACHE_WT,
[1] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WT,
[2] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_BYPASS,
[3] = PAGE_EXEC | PAGE_CACHE_WB,
[4] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
[14] = PAGE_READ | PAGE_WRITE | PAGE_CACHE_ISOLATE,
};
return access[attr & 0xf];
}
static bool is_access_granted(unsigned access, int is_write)
{
switch (is_write) {
case 0:
return access & PAGE_READ;
case 1:
return access & PAGE_WRITE;
case 2:
return access & PAGE_EXEC;
default:
return 0;
}
}
static bool get_pte(CPUXtensaState *env, uint32_t vaddr, uint32_t *pte);
static int get_physical_addr_mmu(CPUXtensaState *env, bool update_tlb,
uint32_t vaddr, int is_write, int mmu_idx,
uint32_t *paddr, uint32_t *page_size, unsigned *access,
bool may_lookup_pt)
{
bool dtlb = is_write != 2;
uint32_t wi;
uint32_t ei;
uint8_t ring;
uint32_t vpn;
uint32_t pte;
const xtensa_tlb_entry *entry = NULL;
xtensa_tlb_entry tmp_entry;
int ret = xtensa_tlb_lookup(env, vaddr, dtlb, &wi, &ei, &ring);
if ((ret == INST_TLB_MISS_CAUSE || ret == LOAD_STORE_TLB_MISS_CAUSE) &&
may_lookup_pt && get_pte(env, vaddr, &pte)) {
ring = (pte >> 4) & 0x3;
wi = 0;
split_tlb_entry_spec_way(env, vaddr, dtlb, &vpn, wi, &ei);
if (update_tlb) {
wi = ++env->autorefill_idx & 0x3;
xtensa_tlb_set_entry(env, dtlb, wi, ei, vpn, pte);
env->sregs[EXCVADDR] = vaddr;
qemu_log_mask(CPU_LOG_MMU, "%s: autorefill(%08x): %08x -> %08x\n",
__func__, vaddr, vpn, pte);
} else {
xtensa_tlb_set_entry_mmu(env, &tmp_entry, dtlb, wi, ei, vpn, pte);
entry = &tmp_entry;
}
ret = 0;
}
if (ret != 0) {
return ret;
}
if (entry == NULL) {
entry = xtensa_tlb_get_entry(env, dtlb, wi, ei);
}
if (ring < mmu_idx) {
return dtlb ?
LOAD_STORE_PRIVILEGE_CAUSE :
INST_FETCH_PRIVILEGE_CAUSE;
}
*access = mmu_attr_to_access(entry->attr) &
~(dtlb ? PAGE_EXEC : PAGE_READ | PAGE_WRITE);
if (!is_access_granted(*access, is_write)) {
return dtlb ?
(is_write ?
STORE_PROHIBITED_CAUSE :
LOAD_PROHIBITED_CAUSE) :
INST_FETCH_PROHIBITED_CAUSE;
}
*paddr = entry->paddr | (vaddr & ~xtensa_tlb_get_addr_mask(env, dtlb, wi));
*page_size = ~xtensa_tlb_get_addr_mask(env, dtlb, wi) + 1;
return 0;
}
static bool get_pte(CPUXtensaState *env, uint32_t vaddr, uint32_t *pte)
{
CPUState *cs = CPU(xtensa_env_get_cpu(env));
uint32_t paddr;
uint32_t page_size;
unsigned access;
uint32_t pt_vaddr =
(env->sregs[PTEVADDR] | (vaddr >> 10)) & 0xfffffffc;
int ret = get_physical_addr_mmu(env, false, pt_vaddr, 0, 0,
&paddr, &page_size, &access, false);
if (ret == 0) {
qemu_log_mask(CPU_LOG_MMU,
"%s: autorefill(%08x): PTE va = %08x, pa = %08x\n",
__func__, vaddr, pt_vaddr, paddr);
} else {
qemu_log_mask(CPU_LOG_MMU,
"%s: autorefill(%08x): PTE va = %08x, failed (%d)\n",
__func__, vaddr, pt_vaddr, ret);
}
if (ret == 0) {
MemTxResult result;
*pte = address_space_ldl(cs->as, paddr, MEMTXATTRS_UNSPECIFIED,
&result);
if (result != MEMTX_OK) {
qemu_log_mask(CPU_LOG_MMU,
"%s: couldn't load PTE: transaction failed (%u)\n",
__func__, (unsigned)result);
ret = 1;
}
}
return ret == 0;
}
static int get_physical_addr_region(CPUXtensaState *env,
uint32_t vaddr, int is_write, int mmu_idx,
uint32_t *paddr, uint32_t *page_size, unsigned *access)
{
bool dtlb = is_write != 2;
uint32_t wi = 0;
uint32_t ei = (vaddr >> 29) & 0x7;
const xtensa_tlb_entry *entry =
xtensa_tlb_get_entry(env, dtlb, wi, ei);
*access = region_attr_to_access(entry->attr);
if (!is_access_granted(*access, is_write)) {
return dtlb ?
(is_write ?
STORE_PROHIBITED_CAUSE :
LOAD_PROHIBITED_CAUSE) :
INST_FETCH_PROHIBITED_CAUSE;
}
*paddr = entry->paddr | (vaddr & ~REGION_PAGE_MASK);
*page_size = ~REGION_PAGE_MASK + 1;
return 0;
}
/*!
* Convert virtual address to physical addr.
* MMU may issue pagewalk and change xtensa autorefill TLB way entry.
*
* \return 0 if ok, exception cause code otherwise
*/
int xtensa_get_physical_addr(CPUXtensaState *env, bool update_tlb,
uint32_t vaddr, int is_write, int mmu_idx,
uint32_t *paddr, uint32_t *page_size, unsigned *access)
{
if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
return get_physical_addr_mmu(env, update_tlb,
vaddr, is_write, mmu_idx, paddr, page_size, access, true);
} else if (xtensa_option_bits_enabled(env->config,
XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_PROTECTION) |
XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_TRANSLATION))) {
return get_physical_addr_region(env, vaddr, is_write, mmu_idx,
paddr, page_size, access);
} else {
*paddr = vaddr;
*page_size = TARGET_PAGE_SIZE;
*access = cacheattr_attr_to_access(
env->sregs[CACHEATTR] >> ((vaddr & 0xe0000000) >> 27));
return 0;
}
}
static void dump_tlb(FILE *f, fprintf_function cpu_fprintf,
CPUXtensaState *env, bool dtlb)
{
unsigned wi, ei;
const xtensa_tlb *conf =
dtlb ? &env->config->dtlb : &env->config->itlb;
unsigned (*attr_to_access)(uint32_t) =
xtensa_option_enabled(env->config, XTENSA_OPTION_MMU) ?
mmu_attr_to_access : region_attr_to_access;
for (wi = 0; wi < conf->nways; ++wi) {
uint32_t sz = ~xtensa_tlb_get_addr_mask(env, dtlb, wi) + 1;
const char *sz_text;
bool print_header = true;
if (sz >= 0x100000) {
sz /= MiB;
sz_text = "MB";
} else {
sz /= KiB;
sz_text = "KB";
}
for (ei = 0; ei < conf->way_size[wi]; ++ei) {
const xtensa_tlb_entry *entry =
xtensa_tlb_get_entry(env, dtlb, wi, ei);
if (entry->asid) {
static const char * const cache_text[8] = {
[PAGE_CACHE_BYPASS >> PAGE_CACHE_SHIFT] = "Bypass",
[PAGE_CACHE_WT >> PAGE_CACHE_SHIFT] = "WT",
[PAGE_CACHE_WB >> PAGE_CACHE_SHIFT] = "WB",
[PAGE_CACHE_ISOLATE >> PAGE_CACHE_SHIFT] = "Isolate",
};
unsigned access = attr_to_access(entry->attr);
unsigned cache_idx = (access & PAGE_CACHE_MASK) >>
PAGE_CACHE_SHIFT;
if (print_header) {
print_header = false;
cpu_fprintf(f, "Way %u (%d %s)\n", wi, sz, sz_text);
cpu_fprintf(f,
"\tVaddr Paddr ASID Attr RWX Cache\n"
"\t---------- ---------- ---- ---- --- -------\n");
}
cpu_fprintf(f,
"\t0x%08x 0x%08x 0x%02x 0x%02x %c%c%c %-7s\n",
entry->vaddr,
entry->paddr,
entry->asid,
entry->attr,
(access & PAGE_READ) ? 'R' : '-',
(access & PAGE_WRITE) ? 'W' : '-',
(access & PAGE_EXEC) ? 'X' : '-',
cache_text[cache_idx] ? cache_text[cache_idx] :
"Invalid");
}
}
}
}
void dump_mmu(FILE *f, fprintf_function cpu_fprintf, CPUXtensaState *env)
{
if (xtensa_option_bits_enabled(env->config,
XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_PROTECTION) |
XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_TRANSLATION) |
XTENSA_OPTION_BIT(XTENSA_OPTION_MMU))) {
cpu_fprintf(f, "ITLB:\n");
dump_tlb(f, cpu_fprintf, env, false);
cpu_fprintf(f, "\nDTLB:\n");
dump_tlb(f, cpu_fprintf, env, true);
} else {
cpu_fprintf(f, "No TLB for this CPU core\n");
}
}
void xtensa_runstall(CPUXtensaState *env, bool runstall)
{
CPUState *cpu = CPU(xtensa_env_get_cpu(env));
env->runstall = runstall;
cpu->halted = runstall;
if (runstall) {
cpu_interrupt(cpu, CPU_INTERRUPT_HALT);
} else {
cpu_reset_interrupt(cpu, CPU_INTERRUPT_HALT);
}
}
#endif