qemu/target/arm/tcg/translate-a64.h
Richard Henderson a11efe30b9 target/arm: Split out gengvec64.c
Split some routines out of translate-a64.c and translate-sve.c
that are used by both.

Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20240524232121.284515-9-richard.henderson@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
2024-05-28 14:29:01 +01:00

205 lines
7.2 KiB
C

/*
* AArch64 translation, common definitions.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#ifndef TARGET_ARM_TRANSLATE_A64_H
#define TARGET_ARM_TRANSLATE_A64_H
TCGv_i64 cpu_reg(DisasContext *s, int reg);
TCGv_i64 cpu_reg_sp(DisasContext *s, int reg);
TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf);
TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf);
void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v);
bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn,
unsigned int imms, unsigned int immr);
bool sve_access_check(DisasContext *s);
bool sme_enabled_check(DisasContext *s);
bool sme_enabled_check_with_svcr(DisasContext *s, unsigned);
uint32_t make_svemte_desc(DisasContext *s, unsigned vsz, uint32_t nregs,
uint32_t msz, bool is_write, uint32_t data);
/* This function corresponds to CheckStreamingSVEEnabled. */
static inline bool sme_sm_enabled_check(DisasContext *s)
{
return sme_enabled_check_with_svcr(s, R_SVCR_SM_MASK);
}
/* This function corresponds to CheckSMEAndZAEnabled. */
static inline bool sme_za_enabled_check(DisasContext *s)
{
return sme_enabled_check_with_svcr(s, R_SVCR_ZA_MASK);
}
/* Note that this function corresponds to CheckStreamingSVEAndZAEnabled. */
static inline bool sme_smza_enabled_check(DisasContext *s)
{
return sme_enabled_check_with_svcr(s, R_SVCR_SM_MASK | R_SVCR_ZA_MASK);
}
TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr);
TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write,
bool tag_checked, MemOp memop);
TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write,
bool tag_checked, int total_size, MemOp memop);
/* We should have at some point before trying to access an FP register
* done the necessary access check, so assert that
* (a) we did the check and
* (b) we didn't then just plough ahead anyway if it failed.
* Print the instruction pattern in the abort message so we can figure
* out what we need to fix if a user encounters this problem in the wild.
*/
static inline void assert_fp_access_checked(DisasContext *s)
{
#ifdef CONFIG_DEBUG_TCG
if (unlikely(!s->fp_access_checked || s->fp_excp_el)) {
fprintf(stderr, "target-arm: FP access check missing for "
"instruction 0x%08x\n", s->insn);
abort();
}
#endif
}
/* Return the offset into CPUARMState of an element of specified
* size, 'element' places in from the least significant end of
* the FP/vector register Qn.
*/
static inline int vec_reg_offset(DisasContext *s, int regno,
int element, MemOp size)
{
int element_size = 1 << size;
int offs = element * element_size;
#if HOST_BIG_ENDIAN
/* This is complicated slightly because vfp.zregs[n].d[0] is
* still the lowest and vfp.zregs[n].d[15] the highest of the
* 256 byte vector, even on big endian systems.
*
* Calculate the offset assuming fully little-endian,
* then XOR to account for the order of the 8-byte units.
*
* For 16 byte elements, the two 8 byte halves will not form a
* host int128 if the host is bigendian, since they're in the
* wrong order. However the only 16 byte operation we have is
* a move, so we can ignore this for the moment. More complicated
* operations will have to special case loading and storing from
* the zregs array.
*/
if (element_size < 8) {
offs ^= 8 - element_size;
}
#endif
offs += offsetof(CPUARMState, vfp.zregs[regno]);
assert_fp_access_checked(s);
return offs;
}
/* Return the offset info CPUARMState of the "whole" vector register Qn. */
static inline int vec_full_reg_offset(DisasContext *s, int regno)
{
assert_fp_access_checked(s);
return offsetof(CPUARMState, vfp.zregs[regno]);
}
/* Return a newly allocated pointer to the vector register. */
static inline TCGv_ptr vec_full_reg_ptr(DisasContext *s, int regno)
{
TCGv_ptr ret = tcg_temp_new_ptr();
tcg_gen_addi_ptr(ret, tcg_env, vec_full_reg_offset(s, regno));
return ret;
}
/* Return the byte size of the "whole" vector register, VL / 8. */
static inline int vec_full_reg_size(DisasContext *s)
{
return s->vl;
}
/* Return the byte size of the vector register, SVL / 8. */
static inline int streaming_vec_reg_size(DisasContext *s)
{
return s->svl;
}
/*
* Return the offset info CPUARMState of the predicate vector register Pn.
* Note for this purpose, FFR is P16.
*/
static inline int pred_full_reg_offset(DisasContext *s, int regno)
{
return offsetof(CPUARMState, vfp.pregs[regno]);
}
/* Return the byte size of the whole predicate register, VL / 64. */
static inline int pred_full_reg_size(DisasContext *s)
{
return s->vl >> 3;
}
/* Return the byte size of the predicate register, SVL / 64. */
static inline int streaming_pred_reg_size(DisasContext *s)
{
return s->svl >> 3;
}
/*
* Round up the size of a register to a size allowed by
* the tcg vector infrastructure. Any operation which uses this
* size may assume that the bits above pred_full_reg_size are zero,
* and must leave them the same way.
*
* Note that this is not needed for the vector registers as they
* are always properly sized for tcg vectors.
*/
static inline int size_for_gvec(int size)
{
if (size <= 8) {
return 8;
} else {
return QEMU_ALIGN_UP(size, 16);
}
}
static inline int pred_gvec_reg_size(DisasContext *s)
{
return size_for_gvec(pred_full_reg_size(s));
}
/* Return a newly allocated pointer to the predicate register. */
static inline TCGv_ptr pred_full_reg_ptr(DisasContext *s, int regno)
{
TCGv_ptr ret = tcg_temp_new_ptr();
tcg_gen_addi_ptr(ret, tcg_env, pred_full_reg_offset(s, regno));
return ret;
}
bool disas_sve(DisasContext *, uint32_t);
bool disas_sme(DisasContext *, uint32_t);
void gen_gvec_rax1(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz);
void gen_gvec_xar(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
uint32_t rm_ofs, int64_t shift,
uint32_t opr_sz, uint32_t max_sz);
void gen_gvec_eor3(unsigned vece, uint32_t d, uint32_t n, uint32_t m,
uint32_t a, uint32_t oprsz, uint32_t maxsz);
void gen_gvec_bcax(unsigned vece, uint32_t d, uint32_t n, uint32_t m,
uint32_t a, uint32_t oprsz, uint32_t maxsz);
void gen_sve_ldr(DisasContext *s, TCGv_ptr, int vofs, int len, int rn, int imm);
void gen_sve_str(DisasContext *s, TCGv_ptr, int vofs, int len, int rn, int imm);
#endif /* TARGET_ARM_TRANSLATE_A64_H */