qemu/target/i386/kvm/xen-emu.c
David Woodhouse a15b10978f hw/xen: Implement EVTCHNOP_reset
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Reviewed-by: Paul Durrant <paul@xen.org>
2023-03-01 08:22:50 +00:00

1273 lines
34 KiB
C

/*
* Xen HVM emulation support in KVM
*
* Copyright © 2019 Oracle and/or its affiliates. All rights reserved.
* Copyright © 2022 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "qemu/main-loop.h"
#include "hw/xen/xen.h"
#include "sysemu/kvm_int.h"
#include "sysemu/kvm_xen.h"
#include "kvm/kvm_i386.h"
#include "exec/address-spaces.h"
#include "xen-emu.h"
#include "trace.h"
#include "sysemu/runstate.h"
#include "hw/pci/msi.h"
#include "hw/i386/apic-msidef.h"
#include "hw/i386/kvm/xen_overlay.h"
#include "hw/i386/kvm/xen_evtchn.h"
#include "hw/xen/interface/version.h"
#include "hw/xen/interface/sched.h"
#include "hw/xen/interface/memory.h"
#include "hw/xen/interface/hvm/hvm_op.h"
#include "hw/xen/interface/hvm/params.h"
#include "hw/xen/interface/vcpu.h"
#include "hw/xen/interface/event_channel.h"
#include "xen-compat.h"
#ifdef TARGET_X86_64
#define hypercall_compat32(longmode) (!(longmode))
#else
#define hypercall_compat32(longmode) (false)
#endif
static bool kvm_gva_to_gpa(CPUState *cs, uint64_t gva, uint64_t *gpa,
size_t *len, bool is_write)
{
struct kvm_translation tr = {
.linear_address = gva,
};
if (len) {
*len = TARGET_PAGE_SIZE - (gva & ~TARGET_PAGE_MASK);
}
if (kvm_vcpu_ioctl(cs, KVM_TRANSLATE, &tr) || !tr.valid ||
(is_write && !tr.writeable)) {
return false;
}
*gpa = tr.physical_address;
return true;
}
static int kvm_gva_rw(CPUState *cs, uint64_t gva, void *_buf, size_t sz,
bool is_write)
{
uint8_t *buf = (uint8_t *)_buf;
uint64_t gpa;
size_t len;
while (sz) {
if (!kvm_gva_to_gpa(cs, gva, &gpa, &len, is_write)) {
return -EFAULT;
}
if (len > sz) {
len = sz;
}
cpu_physical_memory_rw(gpa, buf, len, is_write);
buf += len;
sz -= len;
gva += len;
}
return 0;
}
static inline int kvm_copy_from_gva(CPUState *cs, uint64_t gva, void *buf,
size_t sz)
{
return kvm_gva_rw(cs, gva, buf, sz, false);
}
static inline int kvm_copy_to_gva(CPUState *cs, uint64_t gva, void *buf,
size_t sz)
{
return kvm_gva_rw(cs, gva, buf, sz, true);
}
int kvm_xen_init(KVMState *s, uint32_t hypercall_msr)
{
const int required_caps = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL | KVM_XEN_HVM_CONFIG_SHARED_INFO;
struct kvm_xen_hvm_config cfg = {
.msr = hypercall_msr,
.flags = KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL,
};
int xen_caps, ret;
xen_caps = kvm_check_extension(s, KVM_CAP_XEN_HVM);
if (required_caps & ~xen_caps) {
error_report("kvm: Xen HVM guest support not present or insufficient");
return -ENOSYS;
}
if (xen_caps & KVM_XEN_HVM_CONFIG_EVTCHN_SEND) {
struct kvm_xen_hvm_attr ha = {
.type = KVM_XEN_ATTR_TYPE_XEN_VERSION,
.u.xen_version = s->xen_version,
};
(void)kvm_vm_ioctl(s, KVM_XEN_HVM_SET_ATTR, &ha);
cfg.flags |= KVM_XEN_HVM_CONFIG_EVTCHN_SEND;
}
ret = kvm_vm_ioctl(s, KVM_XEN_HVM_CONFIG, &cfg);
if (ret < 0) {
error_report("kvm: Failed to enable Xen HVM support: %s",
strerror(-ret));
return ret;
}
s->xen_caps = xen_caps;
return 0;
}
int kvm_xen_init_vcpu(CPUState *cs)
{
X86CPU *cpu = X86_CPU(cs);
CPUX86State *env = &cpu->env;
int err;
/*
* The kernel needs to know the Xen/ACPI vCPU ID because that's
* what the guest uses in hypercalls such as timers. It doesn't
* match the APIC ID which is generally used for talking to the
* kernel about vCPUs. And if vCPU threads race with creating
* their KVM vCPUs out of order, it doesn't necessarily match
* with the kernel's internal vCPU indices either.
*/
if (kvm_xen_has_cap(EVTCHN_SEND)) {
struct kvm_xen_vcpu_attr va = {
.type = KVM_XEN_VCPU_ATTR_TYPE_VCPU_ID,
.u.vcpu_id = cs->cpu_index,
};
err = kvm_vcpu_ioctl(cs, KVM_XEN_VCPU_SET_ATTR, &va);
if (err) {
error_report("kvm: Failed to set Xen vCPU ID attribute: %s",
strerror(-err));
return err;
}
}
env->xen_vcpu_info_gpa = INVALID_GPA;
env->xen_vcpu_info_default_gpa = INVALID_GPA;
env->xen_vcpu_time_info_gpa = INVALID_GPA;
env->xen_vcpu_runstate_gpa = INVALID_GPA;
return 0;
}
uint32_t kvm_xen_get_caps(void)
{
return kvm_state->xen_caps;
}
static bool kvm_xen_hcall_xen_version(struct kvm_xen_exit *exit, X86CPU *cpu,
int cmd, uint64_t arg)
{
int err = 0;
switch (cmd) {
case XENVER_get_features: {
struct xen_feature_info fi;
/* No need for 32/64 compat handling */
qemu_build_assert(sizeof(fi) == 8);
err = kvm_copy_from_gva(CPU(cpu), arg, &fi, sizeof(fi));
if (err) {
break;
}
fi.submap = 0;
if (fi.submap_idx == 0) {
fi.submap |= 1 << XENFEAT_writable_page_tables |
1 << XENFEAT_writable_descriptor_tables |
1 << XENFEAT_auto_translated_physmap |
1 << XENFEAT_supervisor_mode_kernel |
1 << XENFEAT_hvm_callback_vector;
}
err = kvm_copy_to_gva(CPU(cpu), arg, &fi, sizeof(fi));
break;
}
default:
return false;
}
exit->u.hcall.result = err;
return true;
}
static int kvm_xen_set_vcpu_attr(CPUState *cs, uint16_t type, uint64_t gpa)
{
struct kvm_xen_vcpu_attr xhsi;
xhsi.type = type;
xhsi.u.gpa = gpa;
trace_kvm_xen_set_vcpu_attr(cs->cpu_index, type, gpa);
return kvm_vcpu_ioctl(cs, KVM_XEN_VCPU_SET_ATTR, &xhsi);
}
static int kvm_xen_set_vcpu_callback_vector(CPUState *cs)
{
uint8_t vector = X86_CPU(cs)->env.xen_vcpu_callback_vector;
struct kvm_xen_vcpu_attr xva;
xva.type = KVM_XEN_VCPU_ATTR_TYPE_UPCALL_VECTOR;
xva.u.vector = vector;
trace_kvm_xen_set_vcpu_callback(cs->cpu_index, vector);
return kvm_vcpu_ioctl(cs, KVM_XEN_HVM_SET_ATTR, &xva);
}
static void do_set_vcpu_callback_vector(CPUState *cs, run_on_cpu_data data)
{
X86CPU *cpu = X86_CPU(cs);
CPUX86State *env = &cpu->env;
env->xen_vcpu_callback_vector = data.host_int;
if (kvm_xen_has_cap(EVTCHN_SEND)) {
kvm_xen_set_vcpu_callback_vector(cs);
}
}
static int set_vcpu_info(CPUState *cs, uint64_t gpa)
{
X86CPU *cpu = X86_CPU(cs);
CPUX86State *env = &cpu->env;
MemoryRegionSection mrs = { .mr = NULL };
void *vcpu_info_hva = NULL;
int ret;
ret = kvm_xen_set_vcpu_attr(cs, KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO, gpa);
if (ret || gpa == INVALID_GPA) {
goto out;
}
mrs = memory_region_find(get_system_memory(), gpa,
sizeof(struct vcpu_info));
if (mrs.mr && mrs.mr->ram_block &&
!int128_lt(mrs.size, int128_make64(sizeof(struct vcpu_info)))) {
vcpu_info_hva = qemu_map_ram_ptr(mrs.mr->ram_block,
mrs.offset_within_region);
}
if (!vcpu_info_hva) {
if (mrs.mr) {
memory_region_unref(mrs.mr);
mrs.mr = NULL;
}
ret = -EINVAL;
}
out:
if (env->xen_vcpu_info_mr) {
memory_region_unref(env->xen_vcpu_info_mr);
}
env->xen_vcpu_info_hva = vcpu_info_hva;
env->xen_vcpu_info_mr = mrs.mr;
return ret;
}
static void do_set_vcpu_info_default_gpa(CPUState *cs, run_on_cpu_data data)
{
X86CPU *cpu = X86_CPU(cs);
CPUX86State *env = &cpu->env;
env->xen_vcpu_info_default_gpa = data.host_ulong;
/* Changing the default does nothing if a vcpu_info was explicitly set. */
if (env->xen_vcpu_info_gpa == INVALID_GPA) {
set_vcpu_info(cs, env->xen_vcpu_info_default_gpa);
}
}
static void do_set_vcpu_info_gpa(CPUState *cs, run_on_cpu_data data)
{
X86CPU *cpu = X86_CPU(cs);
CPUX86State *env = &cpu->env;
env->xen_vcpu_info_gpa = data.host_ulong;
set_vcpu_info(cs, env->xen_vcpu_info_gpa);
}
void *kvm_xen_get_vcpu_info_hva(uint32_t vcpu_id)
{
CPUState *cs = qemu_get_cpu(vcpu_id);
if (!cs) {
return NULL;
}
return X86_CPU(cs)->env.xen_vcpu_info_hva;
}
void kvm_xen_inject_vcpu_callback_vector(uint32_t vcpu_id, int type)
{
CPUState *cs = qemu_get_cpu(vcpu_id);
uint8_t vector;
if (!cs) {
return;
}
vector = X86_CPU(cs)->env.xen_vcpu_callback_vector;
if (vector) {
/*
* The per-vCPU callback vector injected via lapic. Just
* deliver it as an MSI.
*/
MSIMessage msg = {
.address = APIC_DEFAULT_ADDRESS | X86_CPU(cs)->apic_id,
.data = vector | (1UL << MSI_DATA_LEVEL_SHIFT),
};
kvm_irqchip_send_msi(kvm_state, msg);
return;
}
switch (type) {
case HVM_PARAM_CALLBACK_TYPE_VECTOR:
/*
* If the evtchn_upcall_pending field in the vcpu_info is set, then
* KVM will automatically deliver the vector on entering the vCPU
* so all we have to do is kick it out.
*/
qemu_cpu_kick(cs);
break;
}
}
static int kvm_xen_set_vcpu_timer(CPUState *cs)
{
X86CPU *cpu = X86_CPU(cs);
CPUX86State *env = &cpu->env;
struct kvm_xen_vcpu_attr va = {
.type = KVM_XEN_VCPU_ATTR_TYPE_TIMER,
.u.timer.port = env->xen_virq[VIRQ_TIMER],
.u.timer.priority = KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL,
.u.timer.expires_ns = env->xen_singleshot_timer_ns,
};
return kvm_vcpu_ioctl(cs, KVM_XEN_VCPU_SET_ATTR, &va);
}
static void do_set_vcpu_timer_virq(CPUState *cs, run_on_cpu_data data)
{
kvm_xen_set_vcpu_timer(cs);
}
int kvm_xen_set_vcpu_virq(uint32_t vcpu_id, uint16_t virq, uint16_t port)
{
CPUState *cs = qemu_get_cpu(vcpu_id);
if (!cs) {
return -ENOENT;
}
/* cpu.h doesn't include the actual Xen header. */
qemu_build_assert(NR_VIRQS == XEN_NR_VIRQS);
if (virq >= NR_VIRQS) {
return -EINVAL;
}
if (port && X86_CPU(cs)->env.xen_virq[virq]) {
return -EEXIST;
}
X86_CPU(cs)->env.xen_virq[virq] = port;
if (virq == VIRQ_TIMER && kvm_xen_has_cap(EVTCHN_SEND)) {
async_run_on_cpu(cs, do_set_vcpu_timer_virq,
RUN_ON_CPU_HOST_INT(port));
}
return 0;
}
static void do_set_vcpu_time_info_gpa(CPUState *cs, run_on_cpu_data data)
{
X86CPU *cpu = X86_CPU(cs);
CPUX86State *env = &cpu->env;
env->xen_vcpu_time_info_gpa = data.host_ulong;
kvm_xen_set_vcpu_attr(cs, KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO,
env->xen_vcpu_time_info_gpa);
}
static void do_set_vcpu_runstate_gpa(CPUState *cs, run_on_cpu_data data)
{
X86CPU *cpu = X86_CPU(cs);
CPUX86State *env = &cpu->env;
env->xen_vcpu_runstate_gpa = data.host_ulong;
kvm_xen_set_vcpu_attr(cs, KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR,
env->xen_vcpu_runstate_gpa);
}
static void do_vcpu_soft_reset(CPUState *cs, run_on_cpu_data data)
{
X86CPU *cpu = X86_CPU(cs);
CPUX86State *env = &cpu->env;
env->xen_vcpu_info_gpa = INVALID_GPA;
env->xen_vcpu_info_default_gpa = INVALID_GPA;
env->xen_vcpu_time_info_gpa = INVALID_GPA;
env->xen_vcpu_runstate_gpa = INVALID_GPA;
env->xen_vcpu_callback_vector = 0;
env->xen_singleshot_timer_ns = 0;
memset(env->xen_virq, 0, sizeof(env->xen_virq));
set_vcpu_info(cs, INVALID_GPA);
kvm_xen_set_vcpu_attr(cs, KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO,
INVALID_GPA);
kvm_xen_set_vcpu_attr(cs, KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR,
INVALID_GPA);
if (kvm_xen_has_cap(EVTCHN_SEND)) {
kvm_xen_set_vcpu_callback_vector(cs);
kvm_xen_set_vcpu_timer(cs);
}
}
static int xen_set_shared_info(uint64_t gfn)
{
uint64_t gpa = gfn << TARGET_PAGE_BITS;
int i, err;
QEMU_IOTHREAD_LOCK_GUARD();
/*
* The xen_overlay device tells KVM about it too, since it had to
* do that on migration load anyway (unless we're going to jump
* through lots of hoops to maintain the fiction that this isn't
* KVM-specific.
*/
err = xen_overlay_map_shinfo_page(gpa);
if (err) {
return err;
}
trace_kvm_xen_set_shared_info(gfn);
for (i = 0; i < XEN_LEGACY_MAX_VCPUS; i++) {
CPUState *cpu = qemu_get_cpu(i);
if (cpu) {
async_run_on_cpu(cpu, do_set_vcpu_info_default_gpa,
RUN_ON_CPU_HOST_ULONG(gpa));
}
gpa += sizeof(vcpu_info_t);
}
return err;
}
static int add_to_physmap_one(uint32_t space, uint64_t idx, uint64_t gfn)
{
switch (space) {
case XENMAPSPACE_shared_info:
if (idx > 0) {
return -EINVAL;
}
return xen_set_shared_info(gfn);
case XENMAPSPACE_grant_table:
case XENMAPSPACE_gmfn:
case XENMAPSPACE_gmfn_range:
return -ENOTSUP;
case XENMAPSPACE_gmfn_foreign:
case XENMAPSPACE_dev_mmio:
return -EPERM;
default:
return -EINVAL;
}
}
static int do_add_to_physmap(struct kvm_xen_exit *exit, X86CPU *cpu,
uint64_t arg)
{
struct xen_add_to_physmap xatp;
CPUState *cs = CPU(cpu);
if (hypercall_compat32(exit->u.hcall.longmode)) {
struct compat_xen_add_to_physmap xatp32;
qemu_build_assert(sizeof(struct compat_xen_add_to_physmap) == 16);
if (kvm_copy_from_gva(cs, arg, &xatp32, sizeof(xatp32))) {
return -EFAULT;
}
xatp.domid = xatp32.domid;
xatp.size = xatp32.size;
xatp.space = xatp32.space;
xatp.idx = xatp32.idx;
xatp.gpfn = xatp32.gpfn;
} else {
if (kvm_copy_from_gva(cs, arg, &xatp, sizeof(xatp))) {
return -EFAULT;
}
}
if (xatp.domid != DOMID_SELF && xatp.domid != xen_domid) {
return -ESRCH;
}
return add_to_physmap_one(xatp.space, xatp.idx, xatp.gpfn);
}
static int do_add_to_physmap_batch(struct kvm_xen_exit *exit, X86CPU *cpu,
uint64_t arg)
{
struct xen_add_to_physmap_batch xatpb;
unsigned long idxs_gva, gpfns_gva, errs_gva;
CPUState *cs = CPU(cpu);
size_t op_sz;
if (hypercall_compat32(exit->u.hcall.longmode)) {
struct compat_xen_add_to_physmap_batch xatpb32;
qemu_build_assert(sizeof(struct compat_xen_add_to_physmap_batch) == 20);
if (kvm_copy_from_gva(cs, arg, &xatpb32, sizeof(xatpb32))) {
return -EFAULT;
}
xatpb.domid = xatpb32.domid;
xatpb.space = xatpb32.space;
xatpb.size = xatpb32.size;
idxs_gva = xatpb32.idxs.c;
gpfns_gva = xatpb32.gpfns.c;
errs_gva = xatpb32.errs.c;
op_sz = sizeof(uint32_t);
} else {
if (kvm_copy_from_gva(cs, arg, &xatpb, sizeof(xatpb))) {
return -EFAULT;
}
op_sz = sizeof(unsigned long);
idxs_gva = (unsigned long)xatpb.idxs.p;
gpfns_gva = (unsigned long)xatpb.gpfns.p;
errs_gva = (unsigned long)xatpb.errs.p;
}
if (xatpb.domid != DOMID_SELF && xatpb.domid != xen_domid) {
return -ESRCH;
}
/* Explicitly invalid for the batch op. Not that we implement it anyway. */
if (xatpb.space == XENMAPSPACE_gmfn_range) {
return -EINVAL;
}
while (xatpb.size--) {
unsigned long idx = 0;
unsigned long gpfn = 0;
int err;
/* For 32-bit compat this only copies the low 32 bits of each */
if (kvm_copy_from_gva(cs, idxs_gva, &idx, op_sz) ||
kvm_copy_from_gva(cs, gpfns_gva, &gpfn, op_sz)) {
return -EFAULT;
}
idxs_gva += op_sz;
gpfns_gva += op_sz;
err = add_to_physmap_one(xatpb.space, idx, gpfn);
if (kvm_copy_to_gva(cs, errs_gva, &err, sizeof(err))) {
return -EFAULT;
}
errs_gva += sizeof(err);
}
return 0;
}
static bool kvm_xen_hcall_memory_op(struct kvm_xen_exit *exit, X86CPU *cpu,
int cmd, uint64_t arg)
{
int err;
switch (cmd) {
case XENMEM_add_to_physmap:
err = do_add_to_physmap(exit, cpu, arg);
break;
case XENMEM_add_to_physmap_batch:
err = do_add_to_physmap_batch(exit, cpu, arg);
break;
default:
return false;
}
exit->u.hcall.result = err;
return true;
}
static bool handle_set_param(struct kvm_xen_exit *exit, X86CPU *cpu,
uint64_t arg)
{
CPUState *cs = CPU(cpu);
struct xen_hvm_param hp;
int err = 0;
/* No need for 32/64 compat handling */
qemu_build_assert(sizeof(hp) == 16);
if (kvm_copy_from_gva(cs, arg, &hp, sizeof(hp))) {
err = -EFAULT;
goto out;
}
if (hp.domid != DOMID_SELF && hp.domid != xen_domid) {
err = -ESRCH;
goto out;
}
switch (hp.index) {
case HVM_PARAM_CALLBACK_IRQ:
err = xen_evtchn_set_callback_param(hp.value);
xen_set_long_mode(exit->u.hcall.longmode);
break;
default:
return false;
}
out:
exit->u.hcall.result = err;
return true;
}
static int kvm_xen_hcall_evtchn_upcall_vector(struct kvm_xen_exit *exit,
X86CPU *cpu, uint64_t arg)
{
struct xen_hvm_evtchn_upcall_vector up;
CPUState *target_cs;
/* No need for 32/64 compat handling */
qemu_build_assert(sizeof(up) == 8);
if (kvm_copy_from_gva(CPU(cpu), arg, &up, sizeof(up))) {
return -EFAULT;
}
if (up.vector < 0x10) {
return -EINVAL;
}
target_cs = qemu_get_cpu(up.vcpu);
if (!target_cs) {
return -EINVAL;
}
async_run_on_cpu(target_cs, do_set_vcpu_callback_vector,
RUN_ON_CPU_HOST_INT(up.vector));
return 0;
}
static bool kvm_xen_hcall_hvm_op(struct kvm_xen_exit *exit, X86CPU *cpu,
int cmd, uint64_t arg)
{
int ret = -ENOSYS;
switch (cmd) {
case HVMOP_set_evtchn_upcall_vector:
ret = kvm_xen_hcall_evtchn_upcall_vector(exit, cpu,
exit->u.hcall.params[0]);
break;
case HVMOP_pagetable_dying:
ret = -ENOSYS;
break;
case HVMOP_set_param:
return handle_set_param(exit, cpu, arg);
default:
return false;
}
exit->u.hcall.result = ret;
return true;
}
static int vcpuop_register_vcpu_info(CPUState *cs, CPUState *target,
uint64_t arg)
{
struct vcpu_register_vcpu_info rvi;
uint64_t gpa;
/* No need for 32/64 compat handling */
qemu_build_assert(sizeof(rvi) == 16);
qemu_build_assert(sizeof(struct vcpu_info) == 64);
if (!target) {
return -ENOENT;
}
if (kvm_copy_from_gva(cs, arg, &rvi, sizeof(rvi))) {
return -EFAULT;
}
if (rvi.offset > TARGET_PAGE_SIZE - sizeof(struct vcpu_info)) {
return -EINVAL;
}
gpa = ((rvi.mfn << TARGET_PAGE_BITS) + rvi.offset);
async_run_on_cpu(target, do_set_vcpu_info_gpa, RUN_ON_CPU_HOST_ULONG(gpa));
return 0;
}
static int vcpuop_register_vcpu_time_info(CPUState *cs, CPUState *target,
uint64_t arg)
{
struct vcpu_register_time_memory_area tma;
uint64_t gpa;
size_t len;
/* No need for 32/64 compat handling */
qemu_build_assert(sizeof(tma) == 8);
qemu_build_assert(sizeof(struct vcpu_time_info) == 32);
if (!target) {
return -ENOENT;
}
if (kvm_copy_from_gva(cs, arg, &tma, sizeof(tma))) {
return -EFAULT;
}
/*
* Xen actually uses the GVA and does the translation through the guest
* page tables each time. But Linux/KVM uses the GPA, on the assumption
* that guests only ever use *global* addresses (kernel virtual addresses)
* for it. If Linux is changed to redo the GVA→GPA translation each time,
* it will offer a new vCPU attribute for that, and we'll use it instead.
*/
if (!kvm_gva_to_gpa(cs, tma.addr.p, &gpa, &len, false) ||
len < sizeof(struct vcpu_time_info)) {
return -EFAULT;
}
async_run_on_cpu(target, do_set_vcpu_time_info_gpa,
RUN_ON_CPU_HOST_ULONG(gpa));
return 0;
}
static int vcpuop_register_runstate_info(CPUState *cs, CPUState *target,
uint64_t arg)
{
struct vcpu_register_runstate_memory_area rma;
uint64_t gpa;
size_t len;
/* No need for 32/64 compat handling */
qemu_build_assert(sizeof(rma) == 8);
/* The runstate area actually does change size, but Linux copes. */
if (!target) {
return -ENOENT;
}
if (kvm_copy_from_gva(cs, arg, &rma, sizeof(rma))) {
return -EFAULT;
}
/* As with vcpu_time_info, Xen actually uses the GVA but KVM doesn't. */
if (!kvm_gva_to_gpa(cs, rma.addr.p, &gpa, &len, false)) {
return -EFAULT;
}
async_run_on_cpu(target, do_set_vcpu_runstate_gpa,
RUN_ON_CPU_HOST_ULONG(gpa));
return 0;
}
static bool kvm_xen_hcall_vcpu_op(struct kvm_xen_exit *exit, X86CPU *cpu,
int cmd, int vcpu_id, uint64_t arg)
{
CPUState *dest = qemu_get_cpu(vcpu_id);
CPUState *cs = CPU(cpu);
int err;
switch (cmd) {
case VCPUOP_register_runstate_memory_area:
err = vcpuop_register_runstate_info(cs, dest, arg);
break;
case VCPUOP_register_vcpu_time_memory_area:
err = vcpuop_register_vcpu_time_info(cs, dest, arg);
break;
case VCPUOP_register_vcpu_info:
err = vcpuop_register_vcpu_info(cs, dest, arg);
break;
default:
return false;
}
exit->u.hcall.result = err;
return true;
}
static bool kvm_xen_hcall_evtchn_op(struct kvm_xen_exit *exit, X86CPU *cpu,
int cmd, uint64_t arg)
{
CPUState *cs = CPU(cpu);
int err = -ENOSYS;
switch (cmd) {
case EVTCHNOP_init_control:
case EVTCHNOP_expand_array:
case EVTCHNOP_set_priority:
/* We do not support FIFO channels at this point */
err = -ENOSYS;
break;
case EVTCHNOP_status: {
struct evtchn_status status;
qemu_build_assert(sizeof(status) == 24);
if (kvm_copy_from_gva(cs, arg, &status, sizeof(status))) {
err = -EFAULT;
break;
}
err = xen_evtchn_status_op(&status);
if (!err && kvm_copy_to_gva(cs, arg, &status, sizeof(status))) {
err = -EFAULT;
}
break;
}
case EVTCHNOP_close: {
struct evtchn_close close;
qemu_build_assert(sizeof(close) == 4);
if (kvm_copy_from_gva(cs, arg, &close, sizeof(close))) {
err = -EFAULT;
break;
}
err = xen_evtchn_close_op(&close);
break;
}
case EVTCHNOP_unmask: {
struct evtchn_unmask unmask;
qemu_build_assert(sizeof(unmask) == 4);
if (kvm_copy_from_gva(cs, arg, &unmask, sizeof(unmask))) {
err = -EFAULT;
break;
}
err = xen_evtchn_unmask_op(&unmask);
break;
}
case EVTCHNOP_bind_virq: {
struct evtchn_bind_virq virq;
qemu_build_assert(sizeof(virq) == 12);
if (kvm_copy_from_gva(cs, arg, &virq, sizeof(virq))) {
err = -EFAULT;
break;
}
err = xen_evtchn_bind_virq_op(&virq);
if (!err && kvm_copy_to_gva(cs, arg, &virq, sizeof(virq))) {
err = -EFAULT;
}
break;
}
case EVTCHNOP_bind_ipi: {
struct evtchn_bind_ipi ipi;
qemu_build_assert(sizeof(ipi) == 8);
if (kvm_copy_from_gva(cs, arg, &ipi, sizeof(ipi))) {
err = -EFAULT;
break;
}
err = xen_evtchn_bind_ipi_op(&ipi);
if (!err && kvm_copy_to_gva(cs, arg, &ipi, sizeof(ipi))) {
err = -EFAULT;
}
break;
}
case EVTCHNOP_send: {
struct evtchn_send send;
qemu_build_assert(sizeof(send) == 4);
if (kvm_copy_from_gva(cs, arg, &send, sizeof(send))) {
err = -EFAULT;
break;
}
err = xen_evtchn_send_op(&send);
break;
}
case EVTCHNOP_alloc_unbound: {
struct evtchn_alloc_unbound alloc;
qemu_build_assert(sizeof(alloc) == 8);
if (kvm_copy_from_gva(cs, arg, &alloc, sizeof(alloc))) {
err = -EFAULT;
break;
}
err = xen_evtchn_alloc_unbound_op(&alloc);
if (!err && kvm_copy_to_gva(cs, arg, &alloc, sizeof(alloc))) {
err = -EFAULT;
}
break;
}
case EVTCHNOP_bind_interdomain: {
struct evtchn_bind_interdomain interdomain;
qemu_build_assert(sizeof(interdomain) == 12);
if (kvm_copy_from_gva(cs, arg, &interdomain, sizeof(interdomain))) {
err = -EFAULT;
break;
}
err = xen_evtchn_bind_interdomain_op(&interdomain);
if (!err &&
kvm_copy_to_gva(cs, arg, &interdomain, sizeof(interdomain))) {
err = -EFAULT;
}
break;
}
case EVTCHNOP_bind_vcpu: {
struct evtchn_bind_vcpu vcpu;
qemu_build_assert(sizeof(vcpu) == 8);
if (kvm_copy_from_gva(cs, arg, &vcpu, sizeof(vcpu))) {
err = -EFAULT;
break;
}
err = xen_evtchn_bind_vcpu_op(&vcpu);
break;
}
case EVTCHNOP_reset: {
struct evtchn_reset reset;
qemu_build_assert(sizeof(reset) == 2);
if (kvm_copy_from_gva(cs, arg, &reset, sizeof(reset))) {
err = -EFAULT;
break;
}
err = xen_evtchn_reset_op(&reset);
break;
}
default:
return false;
}
exit->u.hcall.result = err;
return true;
}
int kvm_xen_soft_reset(void)
{
CPUState *cpu;
int err;
assert(qemu_mutex_iothread_locked());
trace_kvm_xen_soft_reset();
err = xen_evtchn_soft_reset();
if (err) {
return err;
}
/*
* Zero is the reset/startup state for HVM_PARAM_CALLBACK_IRQ. Strictly,
* it maps to HVM_PARAM_CALLBACK_TYPE_GSI with GSI#0, but Xen refuses to
* to deliver to the timer interrupt and treats that as 'disabled'.
*/
err = xen_evtchn_set_callback_param(0);
if (err) {
return err;
}
CPU_FOREACH(cpu) {
async_run_on_cpu(cpu, do_vcpu_soft_reset, RUN_ON_CPU_NULL);
}
err = xen_overlay_map_shinfo_page(INVALID_GFN);
if (err) {
return err;
}
return 0;
}
static int schedop_shutdown(CPUState *cs, uint64_t arg)
{
struct sched_shutdown shutdown;
int ret = 0;
/* No need for 32/64 compat handling */
qemu_build_assert(sizeof(shutdown) == 4);
if (kvm_copy_from_gva(cs, arg, &shutdown, sizeof(shutdown))) {
return -EFAULT;
}
switch (shutdown.reason) {
case SHUTDOWN_crash:
cpu_dump_state(cs, stderr, CPU_DUMP_CODE);
qemu_system_guest_panicked(NULL);
break;
case SHUTDOWN_reboot:
qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
break;
case SHUTDOWN_poweroff:
qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
break;
case SHUTDOWN_soft_reset:
qemu_mutex_lock_iothread();
ret = kvm_xen_soft_reset();
qemu_mutex_unlock_iothread();
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
static bool kvm_xen_hcall_sched_op(struct kvm_xen_exit *exit, X86CPU *cpu,
int cmd, uint64_t arg)
{
CPUState *cs = CPU(cpu);
int err = -ENOSYS;
switch (cmd) {
case SCHEDOP_shutdown:
err = schedop_shutdown(cs, arg);
break;
case SCHEDOP_poll:
/*
* Linux will panic if this doesn't work. Just yield; it's not
* worth overthinking it because with event channel handling
* in KVM, the kernel will intercept this and it will never
* reach QEMU anyway. The semantics of the hypercall explicltly
* permit spurious wakeups.
*/
case SCHEDOP_yield:
sched_yield();
err = 0;
break;
default:
return false;
}
exit->u.hcall.result = err;
return true;
}
static bool do_kvm_xen_handle_exit(X86CPU *cpu, struct kvm_xen_exit *exit)
{
uint16_t code = exit->u.hcall.input;
if (exit->u.hcall.cpl > 0) {
exit->u.hcall.result = -EPERM;
return true;
}
switch (code) {
case __HYPERVISOR_sched_op:
return kvm_xen_hcall_sched_op(exit, cpu, exit->u.hcall.params[0],
exit->u.hcall.params[1]);
case __HYPERVISOR_event_channel_op:
return kvm_xen_hcall_evtchn_op(exit, cpu, exit->u.hcall.params[0],
exit->u.hcall.params[1]);
case __HYPERVISOR_vcpu_op:
return kvm_xen_hcall_vcpu_op(exit, cpu,
exit->u.hcall.params[0],
exit->u.hcall.params[1],
exit->u.hcall.params[2]);
case __HYPERVISOR_hvm_op:
return kvm_xen_hcall_hvm_op(exit, cpu, exit->u.hcall.params[0],
exit->u.hcall.params[1]);
case __HYPERVISOR_memory_op:
return kvm_xen_hcall_memory_op(exit, cpu, exit->u.hcall.params[0],
exit->u.hcall.params[1]);
case __HYPERVISOR_xen_version:
return kvm_xen_hcall_xen_version(exit, cpu, exit->u.hcall.params[0],
exit->u.hcall.params[1]);
default:
return false;
}
}
int kvm_xen_handle_exit(X86CPU *cpu, struct kvm_xen_exit *exit)
{
if (exit->type != KVM_EXIT_XEN_HCALL) {
return -1;
}
/*
* The kernel latches the guest 32/64 mode when the MSR is used to fill
* the hypercall page. So if we see a hypercall in a mode that doesn't
* match our own idea of the guest mode, fetch the kernel's idea of the
* "long mode" to remain in sync.
*/
if (exit->u.hcall.longmode != xen_is_long_mode()) {
xen_sync_long_mode();
}
if (!do_kvm_xen_handle_exit(cpu, exit)) {
/*
* Some hypercalls will be deliberately "implemented" by returning
* -ENOSYS. This case is for hypercalls which are unexpected.
*/
exit->u.hcall.result = -ENOSYS;
qemu_log_mask(LOG_UNIMP, "Unimplemented Xen hypercall %"
PRId64 " (0x%" PRIx64 " 0x%" PRIx64 " 0x%" PRIx64 ")\n",
(uint64_t)exit->u.hcall.input,
(uint64_t)exit->u.hcall.params[0],
(uint64_t)exit->u.hcall.params[1],
(uint64_t)exit->u.hcall.params[2]);
}
trace_kvm_xen_hypercall(CPU(cpu)->cpu_index, exit->u.hcall.cpl,
exit->u.hcall.input, exit->u.hcall.params[0],
exit->u.hcall.params[1], exit->u.hcall.params[2],
exit->u.hcall.result);
return 0;
}
int kvm_put_xen_state(CPUState *cs)
{
X86CPU *cpu = X86_CPU(cs);
CPUX86State *env = &cpu->env;
uint64_t gpa;
int ret;
gpa = env->xen_vcpu_info_gpa;
if (gpa == INVALID_GPA) {
gpa = env->xen_vcpu_info_default_gpa;
}
if (gpa != INVALID_GPA) {
ret = set_vcpu_info(cs, gpa);
if (ret < 0) {
return ret;
}
}
gpa = env->xen_vcpu_time_info_gpa;
if (gpa != INVALID_GPA) {
ret = kvm_xen_set_vcpu_attr(cs, KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO,
gpa);
if (ret < 0) {
return ret;
}
}
gpa = env->xen_vcpu_runstate_gpa;
if (gpa != INVALID_GPA) {
ret = kvm_xen_set_vcpu_attr(cs, KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR,
gpa);
if (ret < 0) {
return ret;
}
}
if (!kvm_xen_has_cap(EVTCHN_SEND)) {
return 0;
}
if (env->xen_vcpu_callback_vector) {
ret = kvm_xen_set_vcpu_callback_vector(cs);
if (ret < 0) {
return ret;
}
}
if (env->xen_virq[VIRQ_TIMER]) {
ret = kvm_xen_set_vcpu_timer(cs);
if (ret < 0) {
return ret;
}
}
return 0;
}
int kvm_get_xen_state(CPUState *cs)
{
X86CPU *cpu = X86_CPU(cs);
CPUX86State *env = &cpu->env;
uint64_t gpa;
int ret;
/*
* The kernel does not mark vcpu_info as dirty when it delivers interrupts
* to it. It's up to userspace to *assume* that any page shared thus is
* always considered dirty. The shared_info page is different since it's
* an overlay and migrated separately anyway.
*/
gpa = env->xen_vcpu_info_gpa;
if (gpa == INVALID_GPA) {
gpa = env->xen_vcpu_info_default_gpa;
}
if (gpa != INVALID_GPA) {
MemoryRegionSection mrs = memory_region_find(get_system_memory(),
gpa,
sizeof(struct vcpu_info));
if (mrs.mr &&
!int128_lt(mrs.size, int128_make64(sizeof(struct vcpu_info)))) {
memory_region_set_dirty(mrs.mr, mrs.offset_within_region,
sizeof(struct vcpu_info));
}
}
if (!kvm_xen_has_cap(EVTCHN_SEND)) {
return 0;
}
/*
* If the kernel is accelerating timers, read out the current value of the
* singleshot timer deadline.
*/
if (env->xen_virq[VIRQ_TIMER]) {
struct kvm_xen_vcpu_attr va = {
.type = KVM_XEN_VCPU_ATTR_TYPE_TIMER,
};
ret = kvm_vcpu_ioctl(cs, KVM_XEN_VCPU_GET_ATTR, &va);
if (ret < 0) {
return ret;
}
env->xen_singleshot_timer_ns = va.u.timer.expires_ns;
}
return 0;
}