ace33a0e5a
Coverity was unhappy (CID 1508359) because we didn't check the return of init_walk_op() in transaction_commit(), despite doing so at every other call site. Strictly speaking, this is a false positive since it can never fail. It only fails for invalid user input (transaction ID or path), and both of those are hard-coded to known sane values in this invocation. But Coverity doesn't know that, and neither does the casual reader of the code. Returning an error here would be weird, since the transaction *is* committed by this point; all the walk_op is doing is firing watches on the newly-committed changed nodes. So make it a g_assert(!ret), since it really should never happen. Signed-off-by: David Woodhouse <dwmw@amazon.co.uk> Reviewed-by: Paul Durrant <paul@xen.org> Message-Id: <20076888f6bdf06a65aafc5cf954260965d45b97.camel@infradead.org> Signed-off-by: Anthony PERARD <anthony.perard@citrix.com>
1938 lines
49 KiB
C
1938 lines
49 KiB
C
/*
|
|
* QEMU Xen emulation: The actual implementation of XenStore
|
|
*
|
|
* Copyright © 2023 Amazon.com, Inc. or its affiliates. All Rights Reserved.
|
|
*
|
|
* Authors: David Woodhouse <dwmw2@infradead.org>, Paul Durrant <paul@xen.org>
|
|
*
|
|
* This work is licensed under the terms of the GNU GPL, version 2 or later.
|
|
* See the COPYING file in the top-level directory.
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "qom/object.h"
|
|
|
|
#include "hw/xen/xen.h"
|
|
|
|
#include "xen_xenstore.h"
|
|
#include "xenstore_impl.h"
|
|
|
|
#include "hw/xen/interface/io/xs_wire.h"
|
|
|
|
#define XS_MAX_WATCHES 128
|
|
#define XS_MAX_DOMAIN_NODES 1000
|
|
#define XS_MAX_NODE_SIZE 2048
|
|
#define XS_MAX_TRANSACTIONS 10
|
|
#define XS_MAX_PERMS_PER_NODE 5
|
|
|
|
#define XS_VALID_CHARS "abcdefghijklmnopqrstuvwxyz" \
|
|
"ABCDEFGHIJKLMNOPQRSTUVWXYZ" \
|
|
"0123456789-/_"
|
|
|
|
typedef struct XsNode {
|
|
uint32_t ref;
|
|
GByteArray *content;
|
|
GList *perms;
|
|
GHashTable *children;
|
|
uint64_t gencnt;
|
|
bool deleted_in_tx;
|
|
bool modified_in_tx;
|
|
unsigned int serialized_tx;
|
|
#ifdef XS_NODE_UNIT_TEST
|
|
gchar *name; /* debug only */
|
|
#endif
|
|
} XsNode;
|
|
|
|
typedef struct XsWatch {
|
|
struct XsWatch *next;
|
|
xs_impl_watch_fn *cb;
|
|
void *cb_opaque;
|
|
char *token;
|
|
unsigned int dom_id;
|
|
int rel_prefix;
|
|
} XsWatch;
|
|
|
|
typedef struct XsTransaction {
|
|
XsNode *root;
|
|
unsigned int nr_nodes;
|
|
unsigned int base_tx;
|
|
unsigned int tx_id;
|
|
unsigned int dom_id;
|
|
} XsTransaction;
|
|
|
|
struct XenstoreImplState {
|
|
XsNode *root;
|
|
unsigned int nr_nodes;
|
|
GHashTable *watches;
|
|
unsigned int nr_domu_watches;
|
|
GHashTable *transactions;
|
|
unsigned int nr_domu_transactions;
|
|
unsigned int root_tx;
|
|
unsigned int last_tx;
|
|
bool serialized;
|
|
};
|
|
|
|
|
|
static void nobble_tx(gpointer key, gpointer value, gpointer user_data)
|
|
{
|
|
unsigned int *new_tx_id = user_data;
|
|
XsTransaction *tx = value;
|
|
|
|
if (tx->base_tx == *new_tx_id) {
|
|
/* Transactions based on XBT_NULL will always fail */
|
|
tx->base_tx = XBT_NULL;
|
|
}
|
|
}
|
|
|
|
static inline unsigned int next_tx(struct XenstoreImplState *s)
|
|
{
|
|
unsigned int tx_id;
|
|
|
|
/* Find the next TX id which isn't either XBT_NULL or in use. */
|
|
do {
|
|
tx_id = ++s->last_tx;
|
|
} while (tx_id == XBT_NULL || tx_id == s->root_tx ||
|
|
g_hash_table_lookup(s->transactions, GINT_TO_POINTER(tx_id)));
|
|
|
|
/*
|
|
* It is vanishingly unlikely, but ensure that no outstanding transaction
|
|
* is based on the (previous incarnation of the) newly-allocated TX id.
|
|
*/
|
|
g_hash_table_foreach(s->transactions, nobble_tx, &tx_id);
|
|
|
|
return tx_id;
|
|
}
|
|
|
|
static inline XsNode *xs_node_new(void)
|
|
{
|
|
XsNode *n = g_new0(XsNode, 1);
|
|
n->ref = 1;
|
|
|
|
#ifdef XS_NODE_UNIT_TEST
|
|
nr_xs_nodes++;
|
|
xs_node_list = g_list_prepend(xs_node_list, n);
|
|
#endif
|
|
return n;
|
|
}
|
|
|
|
static inline XsNode *xs_node_ref(XsNode *n)
|
|
{
|
|
/* With just 10 transactions, it can never get anywhere near this. */
|
|
g_assert(n->ref < INT_MAX);
|
|
|
|
g_assert(n->ref);
|
|
n->ref++;
|
|
return n;
|
|
}
|
|
|
|
static inline void xs_node_unref(XsNode *n)
|
|
{
|
|
if (!n) {
|
|
return;
|
|
}
|
|
g_assert(n->ref);
|
|
if (--n->ref) {
|
|
return;
|
|
}
|
|
|
|
if (n->content) {
|
|
g_byte_array_unref(n->content);
|
|
}
|
|
if (n->perms) {
|
|
g_list_free_full(n->perms, g_free);
|
|
}
|
|
if (n->children) {
|
|
g_hash_table_unref(n->children);
|
|
}
|
|
#ifdef XS_NODE_UNIT_TEST
|
|
g_free(n->name);
|
|
nr_xs_nodes--;
|
|
xs_node_list = g_list_remove(xs_node_list, n);
|
|
#endif
|
|
g_free(n);
|
|
}
|
|
|
|
char *xs_perm_as_string(unsigned int perm, unsigned int domid)
|
|
{
|
|
char letter;
|
|
|
|
switch (perm) {
|
|
case XS_PERM_READ | XS_PERM_WRITE:
|
|
letter = 'b';
|
|
break;
|
|
case XS_PERM_READ:
|
|
letter = 'r';
|
|
break;
|
|
case XS_PERM_WRITE:
|
|
letter = 'w';
|
|
break;
|
|
case XS_PERM_NONE:
|
|
default:
|
|
letter = 'n';
|
|
break;
|
|
}
|
|
|
|
return g_strdup_printf("%c%u", letter, domid);
|
|
}
|
|
|
|
static gpointer do_perm_copy(gconstpointer src, gpointer user_data)
|
|
{
|
|
return g_strdup(src);
|
|
}
|
|
|
|
static XsNode *xs_node_create(const char *name, GList *perms)
|
|
{
|
|
XsNode *n = xs_node_new();
|
|
|
|
#ifdef XS_NODE_UNIT_TEST
|
|
if (name) {
|
|
n->name = g_strdup(name);
|
|
}
|
|
#endif
|
|
|
|
n->perms = g_list_copy_deep(perms, do_perm_copy, NULL);
|
|
|
|
return n;
|
|
}
|
|
|
|
/* For copying from one hash table to another using g_hash_table_foreach() */
|
|
static void do_child_insert(gpointer key, gpointer value, gpointer user_data)
|
|
{
|
|
g_hash_table_insert(user_data, g_strdup(key), xs_node_ref(value));
|
|
}
|
|
|
|
static XsNode *xs_node_copy(XsNode *old)
|
|
{
|
|
XsNode *n = xs_node_new();
|
|
|
|
n->gencnt = old->gencnt;
|
|
|
|
#ifdef XS_NODE_UNIT_TEST
|
|
if (n->name) {
|
|
n->name = g_strdup(old->name);
|
|
}
|
|
#endif
|
|
|
|
assert(old);
|
|
if (old->children) {
|
|
n->children = g_hash_table_new_full(g_str_hash, g_str_equal, g_free,
|
|
(GDestroyNotify)xs_node_unref);
|
|
g_hash_table_foreach(old->children, do_child_insert, n->children);
|
|
}
|
|
if (old->perms) {
|
|
n->perms = g_list_copy_deep(old->perms, do_perm_copy, NULL);
|
|
}
|
|
if (old->content) {
|
|
n->content = g_byte_array_ref(old->content);
|
|
}
|
|
return n;
|
|
}
|
|
|
|
/* Returns true if it made a change to the hash table */
|
|
static bool xs_node_add_child(XsNode *n, const char *path_elem, XsNode *child)
|
|
{
|
|
assert(!strchr(path_elem, '/'));
|
|
|
|
if (!child) {
|
|
assert(n->children);
|
|
return g_hash_table_remove(n->children, path_elem);
|
|
}
|
|
|
|
#ifdef XS_NODE_UNIT_TEST
|
|
g_free(child->name);
|
|
child->name = g_strdup(path_elem);
|
|
#endif
|
|
if (!n->children) {
|
|
n->children = g_hash_table_new_full(g_str_hash, g_str_equal, g_free,
|
|
(GDestroyNotify)xs_node_unref);
|
|
}
|
|
|
|
/*
|
|
* The documentation for g_hash_table_insert() says that it "returns a
|
|
* boolean value to indicate whether the newly added value was already
|
|
* in the hash table or not."
|
|
*
|
|
* It could perhaps be clearer that returning TRUE means it wasn't,
|
|
*/
|
|
return g_hash_table_insert(n->children, g_strdup(path_elem), child);
|
|
}
|
|
|
|
struct walk_op {
|
|
struct XenstoreImplState *s;
|
|
char path[XENSTORE_ABS_PATH_MAX + 2]; /* Two NUL terminators */
|
|
int (*op_fn)(XsNode **n, struct walk_op *op);
|
|
void *op_opaque;
|
|
void *op_opaque2;
|
|
|
|
GList *watches;
|
|
unsigned int dom_id;
|
|
unsigned int tx_id;
|
|
|
|
/* The number of nodes which will exist in the tree if this op succeeds. */
|
|
unsigned int new_nr_nodes;
|
|
|
|
/*
|
|
* This is maintained on the way *down* the walk to indicate
|
|
* whether nodes can be modified in place or whether COW is
|
|
* required. It starts off being true, as we're always going to
|
|
* replace the root node. If we walk into a shared subtree it
|
|
* becomes false. If we start *creating* new nodes for a write,
|
|
* it becomes true again.
|
|
*
|
|
* Do not use it on the way back up.
|
|
*/
|
|
bool inplace;
|
|
bool mutating;
|
|
bool create_dirs;
|
|
bool in_transaction;
|
|
|
|
/* Tracking during recursion so we know which is first. */
|
|
bool deleted_in_tx;
|
|
};
|
|
|
|
static void fire_watches(struct walk_op *op, bool parents)
|
|
{
|
|
GList *l = NULL;
|
|
XsWatch *w;
|
|
|
|
if (!op->mutating || op->in_transaction) {
|
|
return;
|
|
}
|
|
|
|
if (parents) {
|
|
l = op->watches;
|
|
}
|
|
|
|
w = g_hash_table_lookup(op->s->watches, op->path);
|
|
while (w || l) {
|
|
if (!w) {
|
|
/* Fire the parent nodes from 'op' if asked to */
|
|
w = l->data;
|
|
l = l->next;
|
|
continue;
|
|
}
|
|
|
|
assert(strlen(op->path) > w->rel_prefix);
|
|
w->cb(w->cb_opaque, op->path + w->rel_prefix, w->token);
|
|
|
|
w = w->next;
|
|
}
|
|
}
|
|
|
|
static int xs_node_add_content(XsNode **n, struct walk_op *op)
|
|
{
|
|
GByteArray *data = op->op_opaque;
|
|
|
|
if (op->dom_id) {
|
|
/*
|
|
* The real XenStored includes permissions and names of child nodes
|
|
* in the calculated datasize but life's too short. For a single
|
|
* tenant internal XenStore, we don't have to be quite as pedantic.
|
|
*/
|
|
if (data->len > XS_MAX_NODE_SIZE) {
|
|
return E2BIG;
|
|
}
|
|
}
|
|
/* We *are* the node to be written. Either this or a copy. */
|
|
if (!op->inplace) {
|
|
XsNode *old = *n;
|
|
*n = xs_node_copy(old);
|
|
xs_node_unref(old);
|
|
}
|
|
|
|
if ((*n)->content) {
|
|
g_byte_array_unref((*n)->content);
|
|
}
|
|
(*n)->content = g_byte_array_ref(data);
|
|
if (op->tx_id != XBT_NULL) {
|
|
(*n)->modified_in_tx = true;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int xs_node_get_content(XsNode **n, struct walk_op *op)
|
|
{
|
|
GByteArray *data = op->op_opaque;
|
|
GByteArray *node_data;
|
|
|
|
assert(op->inplace);
|
|
assert(*n);
|
|
|
|
node_data = (*n)->content;
|
|
if (node_data) {
|
|
g_byte_array_append(data, node_data->data, node_data->len);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int node_rm_recurse(gpointer key, gpointer value, gpointer user_data)
|
|
{
|
|
struct walk_op *op = user_data;
|
|
int path_len = strlen(op->path);
|
|
int key_len = strlen(key);
|
|
XsNode *n = value;
|
|
bool this_inplace = op->inplace;
|
|
|
|
if (n->ref != 1) {
|
|
op->inplace = 0;
|
|
}
|
|
|
|
assert(key_len + path_len + 2 <= sizeof(op->path));
|
|
op->path[path_len] = '/';
|
|
memcpy(op->path + path_len + 1, key, key_len + 1);
|
|
|
|
if (n->children) {
|
|
g_hash_table_foreach_remove(n->children, node_rm_recurse, op);
|
|
}
|
|
op->new_nr_nodes--;
|
|
|
|
/*
|
|
* Fire watches on *this* node but not the parents because they are
|
|
* going to be deleted too, so the watch will fire for them anyway.
|
|
*/
|
|
fire_watches(op, false);
|
|
op->path[path_len] = '\0';
|
|
|
|
/*
|
|
* Actually deleting the child here is just an optimisation; if we
|
|
* don't then the final unref on the topmost victim will just have
|
|
* to cascade down again repeating all the g_hash_table_foreach()
|
|
* calls.
|
|
*/
|
|
return this_inplace;
|
|
}
|
|
|
|
static XsNode *xs_node_copy_deleted(XsNode *old, struct walk_op *op);
|
|
static void copy_deleted_recurse(gpointer key, gpointer value,
|
|
gpointer user_data)
|
|
{
|
|
struct walk_op *op = user_data;
|
|
GHashTable *siblings = op->op_opaque2;
|
|
XsNode *n = xs_node_copy_deleted(value, op);
|
|
|
|
/*
|
|
* Reinsert the deleted_in_tx copy of the node into the parent's
|
|
* 'children' hash table. Having stashed it from op->op_opaque2
|
|
* before the recursive call to xs_node_copy_deleted() scribbled
|
|
* over it.
|
|
*/
|
|
g_hash_table_insert(siblings, g_strdup(key), n);
|
|
}
|
|
|
|
static XsNode *xs_node_copy_deleted(XsNode *old, struct walk_op *op)
|
|
{
|
|
XsNode *n = xs_node_new();
|
|
|
|
n->gencnt = old->gencnt;
|
|
|
|
#ifdef XS_NODE_UNIT_TEST
|
|
if (old->name) {
|
|
n->name = g_strdup(old->name);
|
|
}
|
|
#endif
|
|
|
|
if (old->children) {
|
|
n->children = g_hash_table_new_full(g_str_hash, g_str_equal, g_free,
|
|
(GDestroyNotify)xs_node_unref);
|
|
op->op_opaque2 = n->children;
|
|
g_hash_table_foreach(old->children, copy_deleted_recurse, op);
|
|
}
|
|
if (old->perms) {
|
|
n->perms = g_list_copy_deep(old->perms, do_perm_copy, NULL);
|
|
}
|
|
n->deleted_in_tx = true;
|
|
/* If it gets resurrected we only fire a watch if it lost its content */
|
|
if (old->content) {
|
|
n->modified_in_tx = true;
|
|
}
|
|
op->new_nr_nodes--;
|
|
return n;
|
|
}
|
|
|
|
static int xs_node_rm(XsNode **n, struct walk_op *op)
|
|
{
|
|
bool this_inplace = op->inplace;
|
|
|
|
if (op->tx_id != XBT_NULL) {
|
|
/* It's not trivial to do inplace handling for this one */
|
|
XsNode *old = *n;
|
|
*n = xs_node_copy_deleted(old, op);
|
|
xs_node_unref(old);
|
|
return 0;
|
|
}
|
|
|
|
/* Fire watches for, and count, nodes in the subtree which get deleted */
|
|
if ((*n)->children) {
|
|
g_hash_table_foreach_remove((*n)->children, node_rm_recurse, op);
|
|
}
|
|
op->new_nr_nodes--;
|
|
|
|
if (this_inplace) {
|
|
xs_node_unref(*n);
|
|
}
|
|
*n = NULL;
|
|
return 0;
|
|
}
|
|
|
|
static int xs_node_get_perms(XsNode **n, struct walk_op *op)
|
|
{
|
|
GList **perms = op->op_opaque;
|
|
|
|
assert(op->inplace);
|
|
assert(*n);
|
|
|
|
*perms = g_list_copy_deep((*n)->perms, do_perm_copy, NULL);
|
|
return 0;
|
|
}
|
|
|
|
static void parse_perm(const char *perm, char *letter, unsigned int *dom_id)
|
|
{
|
|
unsigned int n = sscanf(perm, "%c%u", letter, dom_id);
|
|
|
|
assert(n == 2);
|
|
}
|
|
|
|
static bool can_access(unsigned int dom_id, GList *perms, const char *letters)
|
|
{
|
|
unsigned int i, n;
|
|
char perm_letter;
|
|
unsigned int perm_dom_id;
|
|
bool access;
|
|
|
|
if (dom_id == 0) {
|
|
return true;
|
|
}
|
|
|
|
n = g_list_length(perms);
|
|
assert(n >= 1);
|
|
|
|
/*
|
|
* The dom_id of the first perm is the owner, and the owner always has
|
|
* read-write access.
|
|
*/
|
|
parse_perm(g_list_nth_data(perms, 0), &perm_letter, &perm_dom_id);
|
|
if (dom_id == perm_dom_id) {
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* The letter of the first perm specified the default access for all other
|
|
* domains.
|
|
*/
|
|
access = !!strchr(letters, perm_letter);
|
|
for (i = 1; i < n; i++) {
|
|
parse_perm(g_list_nth_data(perms, i), &perm_letter, &perm_dom_id);
|
|
if (dom_id != perm_dom_id) {
|
|
continue;
|
|
}
|
|
access = !!strchr(letters, perm_letter);
|
|
}
|
|
|
|
return access;
|
|
}
|
|
|
|
static int xs_node_set_perms(XsNode **n, struct walk_op *op)
|
|
{
|
|
GList *perms = op->op_opaque;
|
|
|
|
if (op->dom_id) {
|
|
unsigned int perm_dom_id;
|
|
char perm_letter;
|
|
|
|
/* A guest may not change permissions on nodes it does not own */
|
|
if (!can_access(op->dom_id, (*n)->perms, "")) {
|
|
return EPERM;
|
|
}
|
|
|
|
/* A guest may not change the owner of a node it owns. */
|
|
parse_perm(perms->data, &perm_letter, &perm_dom_id);
|
|
if (perm_dom_id != op->dom_id) {
|
|
return EPERM;
|
|
}
|
|
|
|
if (g_list_length(perms) > XS_MAX_PERMS_PER_NODE) {
|
|
return ENOSPC;
|
|
}
|
|
}
|
|
|
|
/* We *are* the node to be written. Either this or a copy. */
|
|
if (!op->inplace) {
|
|
XsNode *old = *n;
|
|
*n = xs_node_copy(old);
|
|
xs_node_unref(old);
|
|
}
|
|
|
|
if ((*n)->perms) {
|
|
g_list_free_full((*n)->perms, g_free);
|
|
}
|
|
(*n)->perms = g_list_copy_deep(perms, do_perm_copy, NULL);
|
|
if (op->tx_id != XBT_NULL) {
|
|
(*n)->modified_in_tx = true;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Passed a full reference in *n which it may free if it needs to COW.
|
|
*
|
|
* When changing the tree, the op->inplace flag indicates whether this
|
|
* node may be modified in place (i.e. it and all its parents had a
|
|
* refcount of one). If walking down the tree we find a node whose
|
|
* refcount is higher, we must clear op->inplace and COW from there
|
|
* down. Unless we are creating new nodes as scaffolding for a write
|
|
* (which works like 'mkdir -p' does). In which case those newly
|
|
* created nodes can (and must) be modified in place again.
|
|
*/
|
|
static int xs_node_walk(XsNode **n, struct walk_op *op)
|
|
{
|
|
char *child_name = NULL;
|
|
size_t namelen;
|
|
XsNode *old = *n, *child = NULL;
|
|
bool stole_child = false;
|
|
bool this_inplace;
|
|
XsWatch *watch;
|
|
int err;
|
|
|
|
namelen = strlen(op->path);
|
|
watch = g_hash_table_lookup(op->s->watches, op->path);
|
|
|
|
/* Is there a child, or do we hit the double-NUL termination? */
|
|
if (op->path[namelen + 1]) {
|
|
char *slash;
|
|
child_name = op->path + namelen + 1;
|
|
slash = strchr(child_name, '/');
|
|
if (slash) {
|
|
*slash = '\0';
|
|
}
|
|
op->path[namelen] = '/';
|
|
}
|
|
|
|
/* If we walk into a subtree which is shared, we must COW */
|
|
if (op->mutating && old->ref != 1) {
|
|
op->inplace = false;
|
|
}
|
|
|
|
if (!child_name) {
|
|
const char *letters = op->mutating ? "wb" : "rb";
|
|
|
|
if (!can_access(op->dom_id, old->perms, letters)) {
|
|
err = EACCES;
|
|
goto out;
|
|
}
|
|
|
|
/* This is the actual node on which the operation shall be performed */
|
|
err = op->op_fn(n, op);
|
|
if (!err) {
|
|
fire_watches(op, true);
|
|
}
|
|
goto out;
|
|
}
|
|
|
|
/* op->inplace will be further modified during the recursion */
|
|
this_inplace = op->inplace;
|
|
|
|
if (old && old->children) {
|
|
child = g_hash_table_lookup(old->children, child_name);
|
|
/* This is a *weak* reference to 'child', owned by the hash table */
|
|
}
|
|
|
|
if (child) {
|
|
if (child->deleted_in_tx) {
|
|
assert(child->ref == 1);
|
|
/* Cannot actually set child->deleted_in_tx = false until later */
|
|
}
|
|
xs_node_ref(child);
|
|
/*
|
|
* Now we own it too. But if we can modify inplace, that's going to
|
|
* foil the check and force it to COW. We want to be the *only* owner
|
|
* so that it can be modified in place, so remove it from the hash
|
|
* table in that case. We'll add it (or its replacement) back later.
|
|
*/
|
|
if (op->mutating && this_inplace) {
|
|
g_hash_table_remove(old->children, child_name);
|
|
stole_child = true;
|
|
}
|
|
} else if (op->create_dirs) {
|
|
assert(op->mutating);
|
|
|
|
if (!can_access(op->dom_id, old->perms, "wb")) {
|
|
err = EACCES;
|
|
goto out;
|
|
}
|
|
|
|
if (op->dom_id && op->new_nr_nodes >= XS_MAX_DOMAIN_NODES) {
|
|
err = ENOSPC;
|
|
goto out;
|
|
}
|
|
|
|
child = xs_node_create(child_name, old->perms);
|
|
op->new_nr_nodes++;
|
|
|
|
/*
|
|
* If we're creating a new child, we can clearly modify it (and its
|
|
* children) in place from here on down.
|
|
*/
|
|
op->inplace = true;
|
|
} else {
|
|
err = ENOENT;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* If there's a watch on this node, add it to the list to be fired
|
|
* (with the correct full pathname for the modified node) at the end.
|
|
*/
|
|
if (watch) {
|
|
op->watches = g_list_append(op->watches, watch);
|
|
}
|
|
|
|
/*
|
|
* Except for the temporary child-stealing as noted, our node has not
|
|
* changed yet. We don't yet know the overall operation will complete.
|
|
*/
|
|
err = xs_node_walk(&child, op);
|
|
|
|
if (watch) {
|
|
op->watches = g_list_remove(op->watches, watch);
|
|
}
|
|
|
|
if (err || !op->mutating) {
|
|
if (stole_child) {
|
|
/* Put it back as it was. */
|
|
g_hash_table_replace(old->children, g_strdup(child_name), child);
|
|
} else {
|
|
xs_node_unref(child);
|
|
}
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Now we know the operation has completed successfully and we're on
|
|
* the way back up. Make the change, substituting 'child' in the
|
|
* node at our level.
|
|
*/
|
|
if (!this_inplace) {
|
|
*n = xs_node_copy(old);
|
|
xs_node_unref(old);
|
|
}
|
|
|
|
/*
|
|
* If we resurrected a deleted_in_tx node, we can mark it as no longer
|
|
* deleted now that we know the overall operation has succeeded.
|
|
*/
|
|
if (op->create_dirs && child && child->deleted_in_tx) {
|
|
op->new_nr_nodes++;
|
|
child->deleted_in_tx = false;
|
|
}
|
|
|
|
/*
|
|
* The child may be NULL here, for a remove operation. Either way,
|
|
* xs_node_add_child() will do the right thing and return a value
|
|
* indicating whether it changed the parent's hash table or not.
|
|
*
|
|
* We bump the parent gencnt if it adds a child that we *didn't*
|
|
* steal from it in the first place, or if child==NULL and was
|
|
* thus removed (whether we stole it earlier and didn't put it
|
|
* back, or xs_node_add_child() actually removed it now).
|
|
*/
|
|
if ((xs_node_add_child(*n, child_name, child) && !stole_child) || !child) {
|
|
(*n)->gencnt++;
|
|
}
|
|
|
|
out:
|
|
op->path[namelen] = '\0';
|
|
if (!namelen) {
|
|
assert(!op->watches);
|
|
/*
|
|
* On completing the recursion back up the path walk and reaching the
|
|
* top, assign the new node count if the operation was successful. If
|
|
* the main tree was changed, bump its tx ID so that outstanding
|
|
* transactions correctly fail. But don't bump it every time; only
|
|
* if it makes a difference.
|
|
*/
|
|
if (!err && op->mutating) {
|
|
if (!op->in_transaction) {
|
|
if (op->s->root_tx != op->s->last_tx) {
|
|
op->s->root_tx = next_tx(op->s);
|
|
}
|
|
op->s->nr_nodes = op->new_nr_nodes;
|
|
} else {
|
|
XsTransaction *tx = g_hash_table_lookup(op->s->transactions,
|
|
GINT_TO_POINTER(op->tx_id));
|
|
assert(tx);
|
|
tx->nr_nodes = op->new_nr_nodes;
|
|
}
|
|
}
|
|
}
|
|
return err;
|
|
}
|
|
|
|
static void append_directory_item(gpointer key, gpointer value,
|
|
gpointer user_data)
|
|
{
|
|
GList **items = user_data;
|
|
|
|
*items = g_list_insert_sorted(*items, g_strdup(key), (GCompareFunc)strcmp);
|
|
}
|
|
|
|
/* Populates items with char * names which caller must free. */
|
|
static int xs_node_directory(XsNode **n, struct walk_op *op)
|
|
{
|
|
GList **items = op->op_opaque;
|
|
|
|
assert(op->inplace);
|
|
assert(*n);
|
|
|
|
if ((*n)->children) {
|
|
g_hash_table_foreach((*n)->children, append_directory_item, items);
|
|
}
|
|
|
|
if (op->op_opaque2) {
|
|
*(uint64_t *)op->op_opaque2 = (*n)->gencnt;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int validate_path(char *outpath, const char *userpath,
|
|
unsigned int dom_id)
|
|
{
|
|
size_t i, pathlen = strlen(userpath);
|
|
|
|
if (!pathlen || userpath[pathlen] == '/' || strstr(userpath, "//")) {
|
|
return EINVAL;
|
|
}
|
|
for (i = 0; i < pathlen; i++) {
|
|
if (!strchr(XS_VALID_CHARS, userpath[i])) {
|
|
return EINVAL;
|
|
}
|
|
}
|
|
if (userpath[0] == '/') {
|
|
if (pathlen > XENSTORE_ABS_PATH_MAX) {
|
|
return E2BIG;
|
|
}
|
|
memcpy(outpath, userpath, pathlen + 1);
|
|
} else {
|
|
if (pathlen > XENSTORE_REL_PATH_MAX) {
|
|
return E2BIG;
|
|
}
|
|
snprintf(outpath, XENSTORE_ABS_PATH_MAX, "/local/domain/%u/%s", dom_id,
|
|
userpath);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int init_walk_op(XenstoreImplState *s, struct walk_op *op,
|
|
xs_transaction_t tx_id, unsigned int dom_id,
|
|
const char *path, XsNode ***rootp)
|
|
{
|
|
int ret = validate_path(op->path, path, dom_id);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* We use *two* NUL terminators at the end of the path, as during the walk
|
|
* we will temporarily turn each '/' into a NUL to allow us to use that
|
|
* path element for the lookup.
|
|
*/
|
|
op->path[strlen(op->path) + 1] = '\0';
|
|
op->watches = NULL;
|
|
op->path[0] = '\0';
|
|
op->inplace = true;
|
|
op->mutating = false;
|
|
op->create_dirs = false;
|
|
op->in_transaction = false;
|
|
op->dom_id = dom_id;
|
|
op->tx_id = tx_id;
|
|
op->s = s;
|
|
|
|
if (tx_id == XBT_NULL) {
|
|
*rootp = &s->root;
|
|
op->new_nr_nodes = s->nr_nodes;
|
|
} else {
|
|
XsTransaction *tx = g_hash_table_lookup(s->transactions,
|
|
GINT_TO_POINTER(tx_id));
|
|
if (!tx) {
|
|
return ENOENT;
|
|
}
|
|
*rootp = &tx->root;
|
|
op->new_nr_nodes = tx->nr_nodes;
|
|
op->in_transaction = true;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int xs_impl_read(XenstoreImplState *s, unsigned int dom_id,
|
|
xs_transaction_t tx_id, const char *path, GByteArray *data)
|
|
{
|
|
/*
|
|
* The data GByteArray shall exist, and will be freed by caller.
|
|
* Just g_byte_array_append() to it.
|
|
*/
|
|
struct walk_op op;
|
|
XsNode **n;
|
|
int ret;
|
|
|
|
ret = init_walk_op(s, &op, tx_id, dom_id, path, &n);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
op.op_fn = xs_node_get_content;
|
|
op.op_opaque = data;
|
|
return xs_node_walk(n, &op);
|
|
}
|
|
|
|
int xs_impl_write(XenstoreImplState *s, unsigned int dom_id,
|
|
xs_transaction_t tx_id, const char *path, GByteArray *data)
|
|
{
|
|
/*
|
|
* The data GByteArray shall exist, will be freed by caller. You are
|
|
* free to use g_byte_array_steal() and keep the data. Or just ref it.
|
|
*/
|
|
struct walk_op op;
|
|
XsNode **n;
|
|
int ret;
|
|
|
|
ret = init_walk_op(s, &op, tx_id, dom_id, path, &n);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
op.op_fn = xs_node_add_content;
|
|
op.op_opaque = data;
|
|
op.mutating = true;
|
|
op.create_dirs = true;
|
|
return xs_node_walk(n, &op);
|
|
}
|
|
|
|
int xs_impl_directory(XenstoreImplState *s, unsigned int dom_id,
|
|
xs_transaction_t tx_id, const char *path,
|
|
uint64_t *gencnt, GList **items)
|
|
{
|
|
/*
|
|
* The items are (char *) to be freed by caller. Although it's consumed
|
|
* immediately so if you want to change it to (const char *) and keep
|
|
* them, go ahead and change the caller.
|
|
*/
|
|
struct walk_op op;
|
|
XsNode **n;
|
|
int ret;
|
|
|
|
ret = init_walk_op(s, &op, tx_id, dom_id, path, &n);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
op.op_fn = xs_node_directory;
|
|
op.op_opaque = items;
|
|
op.op_opaque2 = gencnt;
|
|
return xs_node_walk(n, &op);
|
|
}
|
|
|
|
int xs_impl_transaction_start(XenstoreImplState *s, unsigned int dom_id,
|
|
xs_transaction_t *tx_id)
|
|
{
|
|
XsTransaction *tx;
|
|
|
|
if (*tx_id != XBT_NULL) {
|
|
return EINVAL;
|
|
}
|
|
|
|
if (dom_id && s->nr_domu_transactions >= XS_MAX_TRANSACTIONS) {
|
|
return ENOSPC;
|
|
}
|
|
|
|
tx = g_new0(XsTransaction, 1);
|
|
|
|
tx->nr_nodes = s->nr_nodes;
|
|
tx->tx_id = next_tx(s);
|
|
tx->base_tx = s->root_tx;
|
|
tx->root = xs_node_ref(s->root);
|
|
tx->dom_id = dom_id;
|
|
|
|
g_hash_table_insert(s->transactions, GINT_TO_POINTER(tx->tx_id), tx);
|
|
if (dom_id) {
|
|
s->nr_domu_transactions++;
|
|
}
|
|
*tx_id = tx->tx_id;
|
|
return 0;
|
|
}
|
|
|
|
static gboolean tx_commit_walk(gpointer key, gpointer value,
|
|
gpointer user_data)
|
|
{
|
|
struct walk_op *op = user_data;
|
|
int path_len = strlen(op->path);
|
|
int key_len = strlen(key);
|
|
bool fire_parents = true;
|
|
XsWatch *watch;
|
|
XsNode *n = value;
|
|
|
|
if (n->ref != 1) {
|
|
return false;
|
|
}
|
|
|
|
if (n->deleted_in_tx) {
|
|
/*
|
|
* We fire watches on our parents if we are the *first* node
|
|
* to be deleted (the topmost one). This matches the behaviour
|
|
* when deleting in the live tree.
|
|
*/
|
|
fire_parents = !op->deleted_in_tx;
|
|
|
|
/* Only used on the way down so no need to clear it later */
|
|
op->deleted_in_tx = true;
|
|
}
|
|
|
|
assert(key_len + path_len + 2 <= sizeof(op->path));
|
|
op->path[path_len] = '/';
|
|
memcpy(op->path + path_len + 1, key, key_len + 1);
|
|
|
|
watch = g_hash_table_lookup(op->s->watches, op->path);
|
|
if (watch) {
|
|
op->watches = g_list_append(op->watches, watch);
|
|
}
|
|
|
|
if (n->children) {
|
|
g_hash_table_foreach_remove(n->children, tx_commit_walk, op);
|
|
}
|
|
|
|
if (watch) {
|
|
op->watches = g_list_remove(op->watches, watch);
|
|
}
|
|
|
|
/*
|
|
* Don't fire watches if this node was only copied because a
|
|
* descendent was changed. The modified_in_tx flag indicates the
|
|
* ones which were really changed.
|
|
*/
|
|
if (n->modified_in_tx || n->deleted_in_tx) {
|
|
fire_watches(op, fire_parents);
|
|
n->modified_in_tx = false;
|
|
}
|
|
op->path[path_len] = '\0';
|
|
|
|
/* Deleted nodes really do get expunged when we commit */
|
|
return n->deleted_in_tx;
|
|
}
|
|
|
|
static int transaction_commit(XenstoreImplState *s, XsTransaction *tx)
|
|
{
|
|
struct walk_op op;
|
|
XsNode **n;
|
|
int ret;
|
|
|
|
if (s->root_tx != tx->base_tx) {
|
|
return EAGAIN;
|
|
}
|
|
xs_node_unref(s->root);
|
|
s->root = tx->root;
|
|
tx->root = NULL;
|
|
s->root_tx = tx->tx_id;
|
|
s->nr_nodes = tx->nr_nodes;
|
|
|
|
ret = init_walk_op(s, &op, XBT_NULL, tx->dom_id, "/", &n);
|
|
/*
|
|
* There are two reasons why init_walk_op() may fail: an invalid tx_id,
|
|
* or an invalid path. We pass XBT_NULL and "/", and it cannot fail.
|
|
* If it does, the world is broken. And returning 'ret' would be weird
|
|
* because the transaction *was* committed, and all this tree walk is
|
|
* trying to do is fire the resulting watches on newly-committed nodes.
|
|
*/
|
|
g_assert(!ret);
|
|
|
|
op.deleted_in_tx = false;
|
|
op.mutating = true;
|
|
|
|
/*
|
|
* Walk the new root and fire watches on any node which has a
|
|
* refcount of one (which is therefore unique to this transaction).
|
|
*/
|
|
if (s->root->children) {
|
|
g_hash_table_foreach_remove(s->root->children, tx_commit_walk, &op);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int xs_impl_transaction_end(XenstoreImplState *s, unsigned int dom_id,
|
|
xs_transaction_t tx_id, bool commit)
|
|
{
|
|
int ret = 0;
|
|
XsTransaction *tx = g_hash_table_lookup(s->transactions,
|
|
GINT_TO_POINTER(tx_id));
|
|
|
|
if (!tx || tx->dom_id != dom_id) {
|
|
return ENOENT;
|
|
}
|
|
|
|
if (commit) {
|
|
ret = transaction_commit(s, tx);
|
|
}
|
|
|
|
g_hash_table_remove(s->transactions, GINT_TO_POINTER(tx_id));
|
|
if (dom_id) {
|
|
assert(s->nr_domu_transactions);
|
|
s->nr_domu_transactions--;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
int xs_impl_rm(XenstoreImplState *s, unsigned int dom_id,
|
|
xs_transaction_t tx_id, const char *path)
|
|
{
|
|
struct walk_op op;
|
|
XsNode **n;
|
|
int ret;
|
|
|
|
ret = init_walk_op(s, &op, tx_id, dom_id, path, &n);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
op.op_fn = xs_node_rm;
|
|
op.mutating = true;
|
|
return xs_node_walk(n, &op);
|
|
}
|
|
|
|
int xs_impl_get_perms(XenstoreImplState *s, unsigned int dom_id,
|
|
xs_transaction_t tx_id, const char *path, GList **perms)
|
|
{
|
|
struct walk_op op;
|
|
XsNode **n;
|
|
int ret;
|
|
|
|
ret = init_walk_op(s, &op, tx_id, dom_id, path, &n);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
op.op_fn = xs_node_get_perms;
|
|
op.op_opaque = perms;
|
|
return xs_node_walk(n, &op);
|
|
}
|
|
|
|
static void is_valid_perm(gpointer data, gpointer user_data)
|
|
{
|
|
char *perm = data;
|
|
bool *valid = user_data;
|
|
char letter;
|
|
unsigned int dom_id;
|
|
|
|
if (!*valid) {
|
|
return;
|
|
}
|
|
|
|
if (sscanf(perm, "%c%u", &letter, &dom_id) != 2) {
|
|
*valid = false;
|
|
return;
|
|
}
|
|
|
|
switch (letter) {
|
|
case 'n':
|
|
case 'r':
|
|
case 'w':
|
|
case 'b':
|
|
break;
|
|
|
|
default:
|
|
*valid = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
int xs_impl_set_perms(XenstoreImplState *s, unsigned int dom_id,
|
|
xs_transaction_t tx_id, const char *path, GList *perms)
|
|
{
|
|
struct walk_op op;
|
|
XsNode **n;
|
|
bool valid = true;
|
|
int ret;
|
|
|
|
if (!g_list_length(perms)) {
|
|
return EINVAL;
|
|
}
|
|
|
|
g_list_foreach(perms, is_valid_perm, &valid);
|
|
if (!valid) {
|
|
return EINVAL;
|
|
}
|
|
|
|
ret = init_walk_op(s, &op, tx_id, dom_id, path, &n);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
op.op_fn = xs_node_set_perms;
|
|
op.op_opaque = perms;
|
|
op.mutating = true;
|
|
return xs_node_walk(n, &op);
|
|
}
|
|
|
|
static int do_xs_impl_watch(XenstoreImplState *s, unsigned int dom_id,
|
|
const char *path, const char *token,
|
|
xs_impl_watch_fn fn, void *opaque)
|
|
|
|
{
|
|
char abspath[XENSTORE_ABS_PATH_MAX + 1];
|
|
XsWatch *w, *l;
|
|
int ret;
|
|
|
|
ret = validate_path(abspath, path, dom_id);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
|
|
/* Check for duplicates */
|
|
l = w = g_hash_table_lookup(s->watches, abspath);
|
|
while (w) {
|
|
if (!g_strcmp0(token, w->token) && opaque == w->cb_opaque &&
|
|
fn == w->cb && dom_id == w->dom_id) {
|
|
return EEXIST;
|
|
}
|
|
w = w->next;
|
|
}
|
|
|
|
if (dom_id && s->nr_domu_watches >= XS_MAX_WATCHES) {
|
|
return E2BIG;
|
|
}
|
|
|
|
w = g_new0(XsWatch, 1);
|
|
w->token = g_strdup(token);
|
|
w->cb = fn;
|
|
w->cb_opaque = opaque;
|
|
w->dom_id = dom_id;
|
|
w->rel_prefix = strlen(abspath) - strlen(path);
|
|
|
|
/* l was looked up above when checking for duplicates */
|
|
if (l) {
|
|
w->next = l->next;
|
|
l->next = w;
|
|
} else {
|
|
g_hash_table_insert(s->watches, g_strdup(abspath), w);
|
|
}
|
|
if (dom_id) {
|
|
s->nr_domu_watches++;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int xs_impl_watch(XenstoreImplState *s, unsigned int dom_id, const char *path,
|
|
const char *token, xs_impl_watch_fn fn, void *opaque)
|
|
{
|
|
int ret = do_xs_impl_watch(s, dom_id, path, token, fn, opaque);
|
|
|
|
if (!ret) {
|
|
/* A new watch should fire immediately */
|
|
fn(opaque, path, token);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static XsWatch *free_watch(XenstoreImplState *s, XsWatch *w)
|
|
{
|
|
XsWatch *next = w->next;
|
|
|
|
if (w->dom_id) {
|
|
assert(s->nr_domu_watches);
|
|
s->nr_domu_watches--;
|
|
}
|
|
|
|
g_free(w->token);
|
|
g_free(w);
|
|
|
|
return next;
|
|
}
|
|
|
|
int xs_impl_unwatch(XenstoreImplState *s, unsigned int dom_id,
|
|
const char *path, const char *token,
|
|
xs_impl_watch_fn fn, void *opaque)
|
|
{
|
|
char abspath[XENSTORE_ABS_PATH_MAX + 1];
|
|
XsWatch *w, **l;
|
|
int ret;
|
|
|
|
ret = validate_path(abspath, path, dom_id);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
|
|
w = g_hash_table_lookup(s->watches, abspath);
|
|
if (!w) {
|
|
return ENOENT;
|
|
}
|
|
|
|
/*
|
|
* The hash table contains the first element of a list of
|
|
* watches. Removing the first element in the list is a
|
|
* special case because we have to update the hash table to
|
|
* point to the next (or remove it if there's nothing left).
|
|
*/
|
|
if (!g_strcmp0(token, w->token) && fn == w->cb && opaque == w->cb_opaque &&
|
|
dom_id == w->dom_id) {
|
|
if (w->next) {
|
|
/* Insert the previous 'next' into the hash table */
|
|
g_hash_table_insert(s->watches, g_strdup(abspath), w->next);
|
|
} else {
|
|
/* Nothing left; remove from hash table */
|
|
g_hash_table_remove(s->watches, abspath);
|
|
}
|
|
free_watch(s, w);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* We're all done messing with the hash table because the element
|
|
* it points to has survived the cull. Now it's just a simple
|
|
* linked list removal operation.
|
|
*/
|
|
for (l = &w->next; *l; l = &w->next) {
|
|
w = *l;
|
|
|
|
if (!g_strcmp0(token, w->token) && fn == w->cb &&
|
|
opaque != w->cb_opaque && dom_id == w->dom_id) {
|
|
*l = free_watch(s, w);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return ENOENT;
|
|
}
|
|
|
|
int xs_impl_reset_watches(XenstoreImplState *s, unsigned int dom_id)
|
|
{
|
|
char **watch_paths;
|
|
guint nr_watch_paths;
|
|
guint i;
|
|
|
|
watch_paths = (char **)g_hash_table_get_keys_as_array(s->watches,
|
|
&nr_watch_paths);
|
|
|
|
for (i = 0; i < nr_watch_paths; i++) {
|
|
XsWatch *w1 = g_hash_table_lookup(s->watches, watch_paths[i]);
|
|
XsWatch *w2, *w, **l;
|
|
|
|
/*
|
|
* w1 is the original list. The hash table has this pointer.
|
|
* w2 is the head of our newly-filtered list.
|
|
* w and l are temporary for processing. w is somewhat redundant
|
|
* with *l but makes my eyes bleed less.
|
|
*/
|
|
|
|
w = w2 = w1;
|
|
l = &w;
|
|
while (w) {
|
|
if (w->dom_id == dom_id) {
|
|
/* If we're freeing the head of the list, bump w2 */
|
|
if (w2 == w) {
|
|
w2 = w->next;
|
|
}
|
|
*l = free_watch(s, w);
|
|
} else {
|
|
l = &w->next;
|
|
}
|
|
w = *l;
|
|
}
|
|
/*
|
|
* If the head of the list survived the cull, we don't need to
|
|
* touch the hash table and we're done with this path. Else...
|
|
*/
|
|
if (w1 != w2) {
|
|
g_hash_table_steal(s->watches, watch_paths[i]);
|
|
|
|
/*
|
|
* It was already freed. (Don't worry, this whole thing is
|
|
* single-threaded and nobody saw it in the meantime). And
|
|
* having *stolen* it, we now own the watch_paths[i] string
|
|
* so if we don't give it back to the hash table, we need
|
|
* to free it.
|
|
*/
|
|
if (w2) {
|
|
g_hash_table_insert(s->watches, watch_paths[i], w2);
|
|
} else {
|
|
g_free(watch_paths[i]);
|
|
}
|
|
}
|
|
}
|
|
g_free(watch_paths);
|
|
return 0;
|
|
}
|
|
|
|
static void xs_tx_free(void *_tx)
|
|
{
|
|
XsTransaction *tx = _tx;
|
|
if (tx->root) {
|
|
xs_node_unref(tx->root);
|
|
}
|
|
g_free(tx);
|
|
}
|
|
|
|
XenstoreImplState *xs_impl_create(unsigned int dom_id)
|
|
{
|
|
XenstoreImplState *s = g_new0(XenstoreImplState, 1);
|
|
GList *perms;
|
|
|
|
s->watches = g_hash_table_new_full(g_str_hash, g_str_equal, g_free, NULL);
|
|
s->transactions = g_hash_table_new_full(g_direct_hash, g_direct_equal,
|
|
NULL, xs_tx_free);
|
|
|
|
perms = g_list_append(NULL, xs_perm_as_string(XS_PERM_NONE, 0));
|
|
s->root = xs_node_create("/", perms);
|
|
g_list_free_full(perms, g_free);
|
|
s->nr_nodes = 1;
|
|
|
|
s->root_tx = s->last_tx = 1;
|
|
return s;
|
|
}
|
|
|
|
|
|
static void clear_serialized_tx(gpointer key, gpointer value, gpointer opaque)
|
|
{
|
|
XsNode *n = value;
|
|
|
|
n->serialized_tx = XBT_NULL;
|
|
if (n->children) {
|
|
g_hash_table_foreach(n->children, clear_serialized_tx, NULL);
|
|
}
|
|
}
|
|
|
|
static void clear_tx_serialized_tx(gpointer key, gpointer value,
|
|
gpointer opaque)
|
|
{
|
|
XsTransaction *t = value;
|
|
|
|
clear_serialized_tx(NULL, t->root, NULL);
|
|
}
|
|
|
|
static void write_be32(GByteArray *save, uint32_t val)
|
|
{
|
|
uint32_t be = htonl(val);
|
|
g_byte_array_append(save, (void *)&be, sizeof(be));
|
|
}
|
|
|
|
|
|
struct save_state {
|
|
GByteArray *bytes;
|
|
unsigned int tx_id;
|
|
};
|
|
|
|
#define MODIFIED_IN_TX (1U << 0)
|
|
#define DELETED_IN_TX (1U << 1)
|
|
#define NODE_REF (1U << 2)
|
|
|
|
static void save_node(gpointer key, gpointer value, gpointer opaque)
|
|
{
|
|
struct save_state *ss = opaque;
|
|
XsNode *n = value;
|
|
char *name = key;
|
|
uint8_t flag = 0;
|
|
|
|
/* Child nodes (i.e. anything but the root) have a name */
|
|
if (name) {
|
|
g_byte_array_append(ss->bytes, key, strlen(key) + 1);
|
|
}
|
|
|
|
/*
|
|
* If we already wrote this node, refer to the previous copy.
|
|
* There's no rename/move in XenStore, so all we need to find
|
|
* it is the tx_id of the transation in which it exists. Which
|
|
* may be the root tx.
|
|
*/
|
|
if (n->serialized_tx != XBT_NULL) {
|
|
flag = NODE_REF;
|
|
g_byte_array_append(ss->bytes, &flag, 1);
|
|
write_be32(ss->bytes, n->serialized_tx);
|
|
} else {
|
|
GList *l;
|
|
n->serialized_tx = ss->tx_id;
|
|
|
|
if (n->modified_in_tx) {
|
|
flag |= MODIFIED_IN_TX;
|
|
}
|
|
if (n->deleted_in_tx) {
|
|
flag |= DELETED_IN_TX;
|
|
}
|
|
g_byte_array_append(ss->bytes, &flag, 1);
|
|
|
|
if (n->content) {
|
|
write_be32(ss->bytes, n->content->len);
|
|
g_byte_array_append(ss->bytes, n->content->data, n->content->len);
|
|
} else {
|
|
write_be32(ss->bytes, 0);
|
|
}
|
|
|
|
for (l = n->perms; l; l = l->next) {
|
|
g_byte_array_append(ss->bytes, l->data, strlen(l->data) + 1);
|
|
}
|
|
/* NUL termination after perms */
|
|
g_byte_array_append(ss->bytes, (void *)"", 1);
|
|
|
|
if (n->children) {
|
|
g_hash_table_foreach(n->children, save_node, ss);
|
|
}
|
|
/* NUL termination after children (child name is NUL) */
|
|
g_byte_array_append(ss->bytes, (void *)"", 1);
|
|
}
|
|
}
|
|
|
|
static void save_tree(struct save_state *ss, uint32_t tx_id, XsNode *root)
|
|
{
|
|
write_be32(ss->bytes, tx_id);
|
|
ss->tx_id = tx_id;
|
|
save_node(NULL, root, ss);
|
|
}
|
|
|
|
static void save_tx(gpointer key, gpointer value, gpointer opaque)
|
|
{
|
|
uint32_t tx_id = GPOINTER_TO_INT(key);
|
|
struct save_state *ss = opaque;
|
|
XsTransaction *n = value;
|
|
|
|
write_be32(ss->bytes, n->base_tx);
|
|
write_be32(ss->bytes, n->dom_id);
|
|
|
|
save_tree(ss, tx_id, n->root);
|
|
}
|
|
|
|
static void save_watch(gpointer key, gpointer value, gpointer opaque)
|
|
{
|
|
struct save_state *ss = opaque;
|
|
XsWatch *w = value;
|
|
|
|
/* We only save the *guest* watches. */
|
|
if (w->dom_id) {
|
|
gpointer relpath = key + w->rel_prefix;
|
|
g_byte_array_append(ss->bytes, relpath, strlen(relpath) + 1);
|
|
g_byte_array_append(ss->bytes, (void *)w->token, strlen(w->token) + 1);
|
|
}
|
|
}
|
|
|
|
GByteArray *xs_impl_serialize(XenstoreImplState *s)
|
|
{
|
|
struct save_state ss;
|
|
|
|
ss.bytes = g_byte_array_new();
|
|
|
|
/*
|
|
* node = flags [ real_node / node_ref ]
|
|
* flags = uint8_t (MODIFIED_IN_TX | DELETED_IN_TX | NODE_REF)
|
|
* node_ref = tx_id (in which the original version of this node exists)
|
|
* real_node = content perms child* NUL
|
|
* content = len data
|
|
* len = uint32_t
|
|
* data = uint8_t{len}
|
|
* perms = perm* NUL
|
|
* perm = asciiz
|
|
* child = name node
|
|
* name = asciiz
|
|
*
|
|
* tree = tx_id node
|
|
* tx_id = uint32_t
|
|
*
|
|
* transaction = base_tx_id dom_id tree
|
|
* base_tx_id = uint32_t
|
|
* dom_id = uint32_t
|
|
*
|
|
* tx_list = tree transaction* XBT_NULL
|
|
*
|
|
* watch = path token
|
|
* path = asciiz
|
|
* token = asciiz
|
|
*
|
|
* watch_list = watch* NUL
|
|
*
|
|
* xs_serialize_stream = last_tx tx_list watch_list
|
|
* last_tx = uint32_t
|
|
*/
|
|
|
|
/* Clear serialized_tx in every node. */
|
|
if (s->serialized) {
|
|
clear_serialized_tx(NULL, s->root, NULL);
|
|
g_hash_table_foreach(s->transactions, clear_tx_serialized_tx, NULL);
|
|
}
|
|
|
|
s->serialized = true;
|
|
|
|
write_be32(ss.bytes, s->last_tx);
|
|
save_tree(&ss, s->root_tx, s->root);
|
|
g_hash_table_foreach(s->transactions, save_tx, &ss);
|
|
|
|
write_be32(ss.bytes, XBT_NULL);
|
|
|
|
g_hash_table_foreach(s->watches, save_watch, &ss);
|
|
g_byte_array_append(ss.bytes, (void *)"", 1);
|
|
|
|
return ss.bytes;
|
|
}
|
|
|
|
struct unsave_state {
|
|
char path[XENSTORE_ABS_PATH_MAX + 1];
|
|
XenstoreImplState *s;
|
|
GByteArray *bytes;
|
|
uint8_t *d;
|
|
size_t l;
|
|
bool root_walk;
|
|
};
|
|
|
|
static int consume_be32(struct unsave_state *us, unsigned int *val)
|
|
{
|
|
uint32_t d;
|
|
|
|
if (us->l < sizeof(d)) {
|
|
return -EINVAL;
|
|
}
|
|
memcpy(&d, us->d, sizeof(d));
|
|
*val = ntohl(d);
|
|
us->d += sizeof(d);
|
|
us->l -= sizeof(d);
|
|
return 0;
|
|
}
|
|
|
|
static int consume_string(struct unsave_state *us, char **str, size_t *len)
|
|
{
|
|
size_t l;
|
|
|
|
if (!us->l) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
l = strnlen((void *)us->d, us->l);
|
|
if (l == us->l) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (str) {
|
|
*str = (void *)us->d;
|
|
}
|
|
if (len) {
|
|
*len = l;
|
|
}
|
|
|
|
us->d += l + 1;
|
|
us->l -= l + 1;
|
|
return 0;
|
|
}
|
|
|
|
static XsNode *lookup_node(XsNode *n, char *path)
|
|
{
|
|
char *slash = strchr(path, '/');
|
|
XsNode *child;
|
|
|
|
if (path[0] == '\0') {
|
|
return n;
|
|
}
|
|
|
|
if (slash) {
|
|
*slash = '\0';
|
|
}
|
|
|
|
if (!n->children) {
|
|
return NULL;
|
|
}
|
|
child = g_hash_table_lookup(n->children, path);
|
|
if (!slash) {
|
|
return child;
|
|
}
|
|
|
|
*slash = '/';
|
|
if (!child) {
|
|
return NULL;
|
|
}
|
|
return lookup_node(child, slash + 1);
|
|
}
|
|
|
|
static XsNode *lookup_tx_node(struct unsave_state *us, unsigned int tx_id)
|
|
{
|
|
XsTransaction *t;
|
|
if (tx_id == us->s->root_tx) {
|
|
return lookup_node(us->s->root, us->path + 1);
|
|
}
|
|
|
|
t = g_hash_table_lookup(us->s->transactions, GINT_TO_POINTER(tx_id));
|
|
if (!t) {
|
|
return NULL;
|
|
}
|
|
g_assert(t->root);
|
|
return lookup_node(t->root, us->path + 1);
|
|
}
|
|
|
|
static void count_child_nodes(gpointer key, gpointer value, gpointer user_data)
|
|
{
|
|
unsigned int *nr_nodes = user_data;
|
|
XsNode *n = value;
|
|
|
|
(*nr_nodes)++;
|
|
|
|
if (n->children) {
|
|
g_hash_table_foreach(n->children, count_child_nodes, nr_nodes);
|
|
}
|
|
}
|
|
|
|
static int consume_node(struct unsave_state *us, XsNode **nodep,
|
|
unsigned int *nr_nodes)
|
|
{
|
|
XsNode *n = NULL;
|
|
uint8_t flags;
|
|
int ret;
|
|
|
|
if (us->l < 1) {
|
|
return -EINVAL;
|
|
}
|
|
flags = us->d[0];
|
|
us->d++;
|
|
us->l--;
|
|
|
|
if (flags == NODE_REF) {
|
|
unsigned int tx;
|
|
|
|
ret = consume_be32(us, &tx);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
|
|
n = lookup_tx_node(us, tx);
|
|
if (!n) {
|
|
return -EINVAL;
|
|
}
|
|
n->ref++;
|
|
if (n->children) {
|
|
g_hash_table_foreach(n->children, count_child_nodes, nr_nodes);
|
|
}
|
|
} else {
|
|
uint32_t datalen;
|
|
|
|
if (flags & ~(DELETED_IN_TX | MODIFIED_IN_TX)) {
|
|
return -EINVAL;
|
|
}
|
|
n = xs_node_new();
|
|
|
|
if (flags & DELETED_IN_TX) {
|
|
n->deleted_in_tx = true;
|
|
}
|
|
if (flags & MODIFIED_IN_TX) {
|
|
n->modified_in_tx = true;
|
|
}
|
|
ret = consume_be32(us, &datalen);
|
|
if (ret) {
|
|
xs_node_unref(n);
|
|
return -EINVAL;
|
|
}
|
|
if (datalen) {
|
|
if (datalen > us->l) {
|
|
xs_node_unref(n);
|
|
return -EINVAL;
|
|
}
|
|
|
|
GByteArray *node_data = g_byte_array_new();
|
|
g_byte_array_append(node_data, us->d, datalen);
|
|
us->d += datalen;
|
|
us->l -= datalen;
|
|
n->content = node_data;
|
|
|
|
if (us->root_walk) {
|
|
n->modified_in_tx = true;
|
|
}
|
|
}
|
|
while (1) {
|
|
char *perm = NULL;
|
|
size_t permlen = 0;
|
|
|
|
ret = consume_string(us, &perm, &permlen);
|
|
if (ret) {
|
|
xs_node_unref(n);
|
|
return ret;
|
|
}
|
|
|
|
if (!permlen) {
|
|
break;
|
|
}
|
|
|
|
n->perms = g_list_append(n->perms, g_strdup(perm));
|
|
}
|
|
|
|
/* Now children */
|
|
while (1) {
|
|
size_t childlen;
|
|
char *childname;
|
|
char *pathend;
|
|
XsNode *child = NULL;
|
|
|
|
ret = consume_string(us, &childname, &childlen);
|
|
if (ret) {
|
|
xs_node_unref(n);
|
|
return ret;
|
|
}
|
|
|
|
if (!childlen) {
|
|
break;
|
|
}
|
|
|
|
pathend = us->path + strlen(us->path);
|
|
strncat(us->path, "/", sizeof(us->path) - 1);
|
|
strncat(us->path, childname, sizeof(us->path) - 1);
|
|
|
|
ret = consume_node(us, &child, nr_nodes);
|
|
*pathend = '\0';
|
|
if (ret) {
|
|
xs_node_unref(n);
|
|
return ret;
|
|
}
|
|
g_assert(child);
|
|
xs_node_add_child(n, childname, child);
|
|
}
|
|
|
|
/*
|
|
* If the node has no data and no children we still want to fire
|
|
* a watch on it.
|
|
*/
|
|
if (us->root_walk && !n->children) {
|
|
n->modified_in_tx = true;
|
|
}
|
|
}
|
|
|
|
if (!n->deleted_in_tx) {
|
|
(*nr_nodes)++;
|
|
}
|
|
|
|
*nodep = n;
|
|
return 0;
|
|
}
|
|
|
|
static int consume_tree(struct unsave_state *us, XsTransaction *t)
|
|
{
|
|
int ret;
|
|
|
|
ret = consume_be32(us, &t->tx_id);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
|
|
if (t->tx_id > us->s->last_tx) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
us->path[0] = '\0';
|
|
|
|
return consume_node(us, &t->root, &t->nr_nodes);
|
|
}
|
|
|
|
int xs_impl_deserialize(XenstoreImplState *s, GByteArray *bytes,
|
|
unsigned int dom_id, xs_impl_watch_fn watch_fn,
|
|
void *watch_opaque)
|
|
{
|
|
struct unsave_state us;
|
|
XsTransaction base_t = { 0 };
|
|
int ret;
|
|
|
|
us.s = s;
|
|
us.bytes = bytes;
|
|
us.d = bytes->data;
|
|
us.l = bytes->len;
|
|
|
|
xs_impl_reset_watches(s, dom_id);
|
|
g_hash_table_remove_all(s->transactions);
|
|
|
|
xs_node_unref(s->root);
|
|
s->root = NULL;
|
|
s->root_tx = s->last_tx = XBT_NULL;
|
|
|
|
ret = consume_be32(&us, &s->last_tx);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Consume the base tree into a transaction so that watches can be
|
|
* fired as we commit it. By setting us.root_walk we cause the nodes
|
|
* to be marked as 'modified_in_tx' as they are created, so that the
|
|
* watches are triggered on them.
|
|
*/
|
|
base_t.dom_id = dom_id;
|
|
base_t.base_tx = XBT_NULL;
|
|
us.root_walk = true;
|
|
ret = consume_tree(&us, &base_t);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
us.root_walk = false;
|
|
|
|
/*
|
|
* Commit the transaction now while the refcount on all nodes is 1.
|
|
* Note that we haven't yet reinstated the *guest* watches but that's
|
|
* OK because we don't want the guest to see any changes. Even any
|
|
* backend nodes which get recreated should be *precisely* as they
|
|
* were before the migration. Back ends may have been instantiated
|
|
* already, and will see the frontend magically blink into existence
|
|
* now (well, from the aio_bh which fires the watches). It's their
|
|
* responsibility to rebuild everything precisely as it was before.
|
|
*/
|
|
ret = transaction_commit(s, &base_t);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
|
|
while (1) {
|
|
unsigned int base_tx;
|
|
XsTransaction *t;
|
|
|
|
ret = consume_be32(&us, &base_tx);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
if (base_tx == XBT_NULL) {
|
|
break;
|
|
}
|
|
|
|
t = g_new0(XsTransaction, 1);
|
|
t->base_tx = base_tx;
|
|
|
|
ret = consume_be32(&us, &t->dom_id);
|
|
if (!ret) {
|
|
ret = consume_tree(&us, t);
|
|
}
|
|
if (ret) {
|
|
g_free(t);
|
|
return ret;
|
|
}
|
|
g_assert(t->root);
|
|
if (t->dom_id) {
|
|
s->nr_domu_transactions++;
|
|
}
|
|
g_hash_table_insert(s->transactions, GINT_TO_POINTER(t->tx_id), t);
|
|
}
|
|
|
|
while (1) {
|
|
char *path, *token;
|
|
size_t pathlen, toklen;
|
|
|
|
ret = consume_string(&us, &path, &pathlen);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
if (!pathlen) {
|
|
break;
|
|
}
|
|
|
|
ret = consume_string(&us, &token, &toklen);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
|
|
if (!watch_fn) {
|
|
continue;
|
|
}
|
|
|
|
ret = do_xs_impl_watch(s, dom_id, path, token, watch_fn, watch_opaque);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
if (us.l) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|