qemu/hw/arm/virt.c
Philippe Mathieu-Daudé c85b843d17 hw/arm/virt: Realize ARM_GICV2M sysbus device before accessing it
sysbus_mmio_map() should not be called on unrealized device.

Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Reviewed-by: Thomas Huth <thuth@redhat.com>
Message-Id: <20231018141151.87466-8-philmd@linaro.org>
2023-10-20 14:46:07 +02:00

3395 lines
122 KiB
C

/*
* ARM mach-virt emulation
*
* Copyright (c) 2013 Linaro Limited
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2 or later, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*
* Emulate a virtual board which works by passing Linux all the information
* it needs about what devices are present via the device tree.
* There are some restrictions about what we can do here:
* + we can only present devices whose Linux drivers will work based
* purely on the device tree with no platform data at all
* + we want to present a very stripped-down minimalist platform,
* both because this reduces the security attack surface from the guest
* and also because it reduces our exposure to being broken when
* the kernel updates its device tree bindings and requires further
* information in a device binding that we aren't providing.
* This is essentially the same approach kvmtool uses.
*/
#include "qemu/osdep.h"
#include "qemu/datadir.h"
#include "qemu/units.h"
#include "qemu/option.h"
#include "monitor/qdev.h"
#include "hw/sysbus.h"
#include "hw/arm/boot.h"
#include "hw/arm/primecell.h"
#include "hw/arm/virt.h"
#include "hw/block/flash.h"
#include "hw/vfio/vfio-calxeda-xgmac.h"
#include "hw/vfio/vfio-amd-xgbe.h"
#include "hw/display/ramfb.h"
#include "net/net.h"
#include "sysemu/device_tree.h"
#include "sysemu/numa.h"
#include "sysemu/runstate.h"
#include "sysemu/tpm.h"
#include "sysemu/tcg.h"
#include "sysemu/kvm.h"
#include "sysemu/hvf.h"
#include "sysemu/qtest.h"
#include "hw/loader.h"
#include "qapi/error.h"
#include "qemu/bitops.h"
#include "qemu/error-report.h"
#include "qemu/module.h"
#include "hw/pci-host/gpex.h"
#include "hw/virtio/virtio-pci.h"
#include "hw/core/sysbus-fdt.h"
#include "hw/platform-bus.h"
#include "hw/qdev-properties.h"
#include "hw/arm/fdt.h"
#include "hw/intc/arm_gic.h"
#include "hw/intc/arm_gicv3_common.h"
#include "hw/intc/arm_gicv3_its_common.h"
#include "hw/irq.h"
#include "kvm_arm.h"
#include "hw/firmware/smbios.h"
#include "qapi/visitor.h"
#include "qapi/qapi-visit-common.h"
#include "standard-headers/linux/input.h"
#include "hw/arm/smmuv3.h"
#include "hw/acpi/acpi.h"
#include "target/arm/internals.h"
#include "hw/mem/pc-dimm.h"
#include "hw/mem/nvdimm.h"
#include "hw/acpi/generic_event_device.h"
#include "hw/virtio/virtio-md-pci.h"
#include "hw/virtio/virtio-iommu.h"
#include "hw/char/pl011.h"
#include "qemu/guest-random.h"
#define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
void *data) \
{ \
MachineClass *mc = MACHINE_CLASS(oc); \
virt_machine_##major##_##minor##_options(mc); \
mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
if (latest) { \
mc->alias = "virt"; \
} \
} \
static const TypeInfo machvirt_##major##_##minor##_info = { \
.name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
.parent = TYPE_VIRT_MACHINE, \
.class_init = virt_##major##_##minor##_class_init, \
}; \
static void machvirt_machine_##major##_##minor##_init(void) \
{ \
type_register_static(&machvirt_##major##_##minor##_info); \
} \
type_init(machvirt_machine_##major##_##minor##_init);
#define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
#define DEFINE_VIRT_MACHINE(major, minor) \
DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
/* Number of external interrupt lines to configure the GIC with */
#define NUM_IRQS 256
#define PLATFORM_BUS_NUM_IRQS 64
/* Legacy RAM limit in GB (< version 4.0) */
#define LEGACY_RAMLIMIT_GB 255
#define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB)
/* Addresses and sizes of our components.
* 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
* 128MB..256MB is used for miscellaneous device I/O.
* 256MB..1GB is reserved for possible future PCI support (ie where the
* PCI memory window will go if we add a PCI host controller).
* 1GB and up is RAM (which may happily spill over into the
* high memory region beyond 4GB).
* This represents a compromise between how much RAM can be given to
* a 32 bit VM and leaving space for expansion and in particular for PCI.
* Note that devices should generally be placed at multiples of 0x10000,
* to accommodate guests using 64K pages.
*/
static const MemMapEntry base_memmap[] = {
/* Space up to 0x8000000 is reserved for a boot ROM */
[VIRT_FLASH] = { 0, 0x08000000 },
[VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 },
/* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
[VIRT_GIC_DIST] = { 0x08000000, 0x00010000 },
[VIRT_GIC_CPU] = { 0x08010000, 0x00010000 },
[VIRT_GIC_V2M] = { 0x08020000, 0x00001000 },
[VIRT_GIC_HYP] = { 0x08030000, 0x00010000 },
[VIRT_GIC_VCPU] = { 0x08040000, 0x00010000 },
/* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
[VIRT_GIC_ITS] = { 0x08080000, 0x00020000 },
/* This redistributor space allows up to 2*64kB*123 CPUs */
[VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 },
[VIRT_UART] = { 0x09000000, 0x00001000 },
[VIRT_RTC] = { 0x09010000, 0x00001000 },
[VIRT_FW_CFG] = { 0x09020000, 0x00000018 },
[VIRT_GPIO] = { 0x09030000, 0x00001000 },
[VIRT_SECURE_UART] = { 0x09040000, 0x00001000 },
[VIRT_SMMU] = { 0x09050000, 0x00020000 },
[VIRT_PCDIMM_ACPI] = { 0x09070000, MEMORY_HOTPLUG_IO_LEN },
[VIRT_ACPI_GED] = { 0x09080000, ACPI_GED_EVT_SEL_LEN },
[VIRT_NVDIMM_ACPI] = { 0x09090000, NVDIMM_ACPI_IO_LEN},
[VIRT_PVTIME] = { 0x090a0000, 0x00010000 },
[VIRT_SECURE_GPIO] = { 0x090b0000, 0x00001000 },
[VIRT_MMIO] = { 0x0a000000, 0x00000200 },
/* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
[VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 },
[VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 },
[VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 },
[VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 },
[VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 },
/* Actual RAM size depends on initial RAM and device memory settings */
[VIRT_MEM] = { GiB, LEGACY_RAMLIMIT_BYTES },
};
/*
* Highmem IO Regions: This memory map is floating, located after the RAM.
* Each MemMapEntry base (GPA) will be dynamically computed, depending on the
* top of the RAM, so that its base get the same alignment as the size,
* ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is
* less than 256GiB of RAM, the floating area starts at the 256GiB mark.
* Note the extended_memmap is sized so that it eventually also includes the
* base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last
* index of base_memmap).
*
* The memory map for these Highmem IO Regions can be in legacy or compact
* layout, depending on 'compact-highmem' property. With legacy layout, the
* PA space for one specific region is always reserved, even if the region
* has been disabled or doesn't fit into the PA space. However, the PA space
* for the region won't be reserved in these circumstances with compact layout.
*/
static MemMapEntry extended_memmap[] = {
/* Additional 64 MB redist region (can contain up to 512 redistributors) */
[VIRT_HIGH_GIC_REDIST2] = { 0x0, 64 * MiB },
[VIRT_HIGH_PCIE_ECAM] = { 0x0, 256 * MiB },
/* Second PCIe window */
[VIRT_HIGH_PCIE_MMIO] = { 0x0, 512 * GiB },
};
static const int a15irqmap[] = {
[VIRT_UART] = 1,
[VIRT_RTC] = 2,
[VIRT_PCIE] = 3, /* ... to 6 */
[VIRT_GPIO] = 7,
[VIRT_SECURE_UART] = 8,
[VIRT_ACPI_GED] = 9,
[VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
[VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
[VIRT_SMMU] = 74, /* ...to 74 + NUM_SMMU_IRQS - 1 */
[VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
};
static const char *valid_cpus[] = {
#ifdef CONFIG_TCG
ARM_CPU_TYPE_NAME("cortex-a7"),
ARM_CPU_TYPE_NAME("cortex-a15"),
ARM_CPU_TYPE_NAME("cortex-a35"),
ARM_CPU_TYPE_NAME("cortex-a55"),
ARM_CPU_TYPE_NAME("cortex-a72"),
ARM_CPU_TYPE_NAME("cortex-a76"),
ARM_CPU_TYPE_NAME("cortex-a710"),
ARM_CPU_TYPE_NAME("a64fx"),
ARM_CPU_TYPE_NAME("neoverse-n1"),
ARM_CPU_TYPE_NAME("neoverse-v1"),
#endif
ARM_CPU_TYPE_NAME("cortex-a53"),
ARM_CPU_TYPE_NAME("cortex-a57"),
ARM_CPU_TYPE_NAME("host"),
ARM_CPU_TYPE_NAME("max"),
};
static bool cpu_type_valid(const char *cpu)
{
int i;
for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
if (strcmp(cpu, valid_cpus[i]) == 0) {
return true;
}
}
return false;
}
static void create_randomness(MachineState *ms, const char *node)
{
struct {
uint64_t kaslr;
uint8_t rng[32];
} seed;
if (qemu_guest_getrandom(&seed, sizeof(seed), NULL)) {
return;
}
qemu_fdt_setprop_u64(ms->fdt, node, "kaslr-seed", seed.kaslr);
qemu_fdt_setprop(ms->fdt, node, "rng-seed", seed.rng, sizeof(seed.rng));
}
static void create_fdt(VirtMachineState *vms)
{
MachineState *ms = MACHINE(vms);
int nb_numa_nodes = ms->numa_state->num_nodes;
void *fdt = create_device_tree(&vms->fdt_size);
if (!fdt) {
error_report("create_device_tree() failed");
exit(1);
}
ms->fdt = fdt;
/* Header */
qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
qemu_fdt_setprop_string(fdt, "/", "model", "linux,dummy-virt");
/* /chosen must exist for load_dtb to fill in necessary properties later */
qemu_fdt_add_subnode(fdt, "/chosen");
if (vms->dtb_randomness) {
create_randomness(ms, "/chosen");
}
if (vms->secure) {
qemu_fdt_add_subnode(fdt, "/secure-chosen");
if (vms->dtb_randomness) {
create_randomness(ms, "/secure-chosen");
}
}
/* Clock node, for the benefit of the UART. The kernel device tree
* binding documentation claims the PL011 node clock properties are
* optional but in practice if you omit them the kernel refuses to
* probe for the device.
*/
vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
qemu_fdt_add_subnode(fdt, "/apb-pclk");
qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
"clk24mhz");
qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
if (nb_numa_nodes > 0 && ms->numa_state->have_numa_distance) {
int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
uint32_t *matrix = g_malloc0(size);
int idx, i, j;
for (i = 0; i < nb_numa_nodes; i++) {
for (j = 0; j < nb_numa_nodes; j++) {
idx = (i * nb_numa_nodes + j) * 3;
matrix[idx + 0] = cpu_to_be32(i);
matrix[idx + 1] = cpu_to_be32(j);
matrix[idx + 2] =
cpu_to_be32(ms->numa_state->nodes[i].distance[j]);
}
}
qemu_fdt_add_subnode(fdt, "/distance-map");
qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
"numa-distance-map-v1");
qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
matrix, size);
g_free(matrix);
}
}
static void fdt_add_timer_nodes(const VirtMachineState *vms)
{
/* On real hardware these interrupts are level-triggered.
* On KVM they were edge-triggered before host kernel version 4.4,
* and level-triggered afterwards.
* On emulated QEMU they are level-triggered.
*
* Getting the DTB info about them wrong is awkward for some
* guest kernels:
* pre-4.8 ignore the DT and leave the interrupt configured
* with whatever the GIC reset value (or the bootloader) left it at
* 4.8 before rc6 honour the incorrect data by programming it back
* into the GIC, causing problems
* 4.8rc6 and later ignore the DT and always write "level triggered"
* into the GIC
*
* For backwards-compatibility, virt-2.8 and earlier will continue
* to say these are edge-triggered, but later machines will report
* the correct information.
*/
ARMCPU *armcpu;
VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
MachineState *ms = MACHINE(vms);
if (vmc->claim_edge_triggered_timers) {
irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
}
if (vms->gic_version == VIRT_GIC_VERSION_2) {
irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
GIC_FDT_IRQ_PPI_CPU_WIDTH,
(1 << MACHINE(vms)->smp.cpus) - 1);
}
qemu_fdt_add_subnode(ms->fdt, "/timer");
armcpu = ARM_CPU(qemu_get_cpu(0));
if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
qemu_fdt_setprop(ms->fdt, "/timer", "compatible",
compat, sizeof(compat));
} else {
qemu_fdt_setprop_string(ms->fdt, "/timer", "compatible",
"arm,armv7-timer");
}
qemu_fdt_setprop(ms->fdt, "/timer", "always-on", NULL, 0);
qemu_fdt_setprop_cells(ms->fdt, "/timer", "interrupts",
GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
}
static void fdt_add_cpu_nodes(const VirtMachineState *vms)
{
int cpu;
int addr_cells = 1;
const MachineState *ms = MACHINE(vms);
const VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
int smp_cpus = ms->smp.cpus;
/*
* See Linux Documentation/devicetree/bindings/arm/cpus.yaml
* On ARM v8 64-bit systems value should be set to 2,
* that corresponds to the MPIDR_EL1 register size.
* If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
* in the system, #address-cells can be set to 1, since
* MPIDR_EL1[63:32] bits are not used for CPUs
* identification.
*
* Here we actually don't know whether our system is 32- or 64-bit one.
* The simplest way to go is to examine affinity IDs of all our CPUs. If
* at least one of them has Aff3 populated, we set #address-cells to 2.
*/
for (cpu = 0; cpu < smp_cpus; cpu++) {
ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
if (armcpu->mp_affinity & ARM_AFF3_MASK) {
addr_cells = 2;
break;
}
}
qemu_fdt_add_subnode(ms->fdt, "/cpus");
qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#address-cells", addr_cells);
qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#size-cells", 0x0);
for (cpu = smp_cpus - 1; cpu >= 0; cpu--) {
char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
CPUState *cs = CPU(armcpu);
qemu_fdt_add_subnode(ms->fdt, nodename);
qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "cpu");
qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
armcpu->dtb_compatible);
if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED && smp_cpus > 1) {
qemu_fdt_setprop_string(ms->fdt, nodename,
"enable-method", "psci");
}
if (addr_cells == 2) {
qemu_fdt_setprop_u64(ms->fdt, nodename, "reg",
armcpu->mp_affinity);
} else {
qemu_fdt_setprop_cell(ms->fdt, nodename, "reg",
armcpu->mp_affinity);
}
if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
qemu_fdt_setprop_cell(ms->fdt, nodename, "numa-node-id",
ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
}
if (!vmc->no_cpu_topology) {
qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle",
qemu_fdt_alloc_phandle(ms->fdt));
}
g_free(nodename);
}
if (!vmc->no_cpu_topology) {
/*
* Add vCPU topology description through fdt node cpu-map.
*
* See Linux Documentation/devicetree/bindings/cpu/cpu-topology.txt
* In a SMP system, the hierarchy of CPUs can be defined through
* four entities that are used to describe the layout of CPUs in
* the system: socket/cluster/core/thread.
*
* A socket node represents the boundary of system physical package
* and its child nodes must be one or more cluster nodes. A system
* can contain several layers of clustering within a single physical
* package and cluster nodes can be contained in parent cluster nodes.
*
* Note: currently we only support one layer of clustering within
* each physical package.
*/
qemu_fdt_add_subnode(ms->fdt, "/cpus/cpu-map");
for (cpu = smp_cpus - 1; cpu >= 0; cpu--) {
char *cpu_path = g_strdup_printf("/cpus/cpu@%d", cpu);
char *map_path;
if (ms->smp.threads > 1) {
map_path = g_strdup_printf(
"/cpus/cpu-map/socket%d/cluster%d/core%d/thread%d",
cpu / (ms->smp.clusters * ms->smp.cores * ms->smp.threads),
(cpu / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters,
(cpu / ms->smp.threads) % ms->smp.cores,
cpu % ms->smp.threads);
} else {
map_path = g_strdup_printf(
"/cpus/cpu-map/socket%d/cluster%d/core%d",
cpu / (ms->smp.clusters * ms->smp.cores),
(cpu / ms->smp.cores) % ms->smp.clusters,
cpu % ms->smp.cores);
}
qemu_fdt_add_path(ms->fdt, map_path);
qemu_fdt_setprop_phandle(ms->fdt, map_path, "cpu", cpu_path);
g_free(map_path);
g_free(cpu_path);
}
}
}
static void fdt_add_its_gic_node(VirtMachineState *vms)
{
char *nodename;
MachineState *ms = MACHINE(vms);
vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt);
nodename = g_strdup_printf("/intc/its@%" PRIx64,
vms->memmap[VIRT_GIC_ITS].base);
qemu_fdt_add_subnode(ms->fdt, nodename);
qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
"arm,gic-v3-its");
qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0);
qemu_fdt_setprop_cell(ms->fdt, nodename, "#msi-cells", 1);
qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
2, vms->memmap[VIRT_GIC_ITS].base,
2, vms->memmap[VIRT_GIC_ITS].size);
qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle);
g_free(nodename);
}
static void fdt_add_v2m_gic_node(VirtMachineState *vms)
{
MachineState *ms = MACHINE(vms);
char *nodename;
nodename = g_strdup_printf("/intc/v2m@%" PRIx64,
vms->memmap[VIRT_GIC_V2M].base);
vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt);
qemu_fdt_add_subnode(ms->fdt, nodename);
qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
"arm,gic-v2m-frame");
qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0);
qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
2, vms->memmap[VIRT_GIC_V2M].base,
2, vms->memmap[VIRT_GIC_V2M].size);
qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle);
g_free(nodename);
}
static void fdt_add_gic_node(VirtMachineState *vms)
{
MachineState *ms = MACHINE(vms);
char *nodename;
vms->gic_phandle = qemu_fdt_alloc_phandle(ms->fdt);
qemu_fdt_setprop_cell(ms->fdt, "/", "interrupt-parent", vms->gic_phandle);
nodename = g_strdup_printf("/intc@%" PRIx64,
vms->memmap[VIRT_GIC_DIST].base);
qemu_fdt_add_subnode(ms->fdt, nodename);
qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 3);
qemu_fdt_setprop(ms->fdt, nodename, "interrupt-controller", NULL, 0);
qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 0x2);
qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 0x2);
qemu_fdt_setprop(ms->fdt, nodename, "ranges", NULL, 0);
if (vms->gic_version != VIRT_GIC_VERSION_2) {
int nb_redist_regions = virt_gicv3_redist_region_count(vms);
qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
"arm,gic-v3");
qemu_fdt_setprop_cell(ms->fdt, nodename,
"#redistributor-regions", nb_redist_regions);
if (nb_redist_regions == 1) {
qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
2, vms->memmap[VIRT_GIC_DIST].base,
2, vms->memmap[VIRT_GIC_DIST].size,
2, vms->memmap[VIRT_GIC_REDIST].base,
2, vms->memmap[VIRT_GIC_REDIST].size);
} else {
qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
2, vms->memmap[VIRT_GIC_DIST].base,
2, vms->memmap[VIRT_GIC_DIST].size,
2, vms->memmap[VIRT_GIC_REDIST].base,
2, vms->memmap[VIRT_GIC_REDIST].size,
2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base,
2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size);
}
if (vms->virt) {
qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
GIC_FDT_IRQ_FLAGS_LEVEL_HI);
}
} else {
/* 'cortex-a15-gic' means 'GIC v2' */
qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
"arm,cortex-a15-gic");
if (!vms->virt) {
qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
2, vms->memmap[VIRT_GIC_DIST].base,
2, vms->memmap[VIRT_GIC_DIST].size,
2, vms->memmap[VIRT_GIC_CPU].base,
2, vms->memmap[VIRT_GIC_CPU].size);
} else {
qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
2, vms->memmap[VIRT_GIC_DIST].base,
2, vms->memmap[VIRT_GIC_DIST].size,
2, vms->memmap[VIRT_GIC_CPU].base,
2, vms->memmap[VIRT_GIC_CPU].size,
2, vms->memmap[VIRT_GIC_HYP].base,
2, vms->memmap[VIRT_GIC_HYP].size,
2, vms->memmap[VIRT_GIC_VCPU].base,
2, vms->memmap[VIRT_GIC_VCPU].size);
qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
GIC_FDT_IRQ_FLAGS_LEVEL_HI);
}
}
qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->gic_phandle);
g_free(nodename);
}
static void fdt_add_pmu_nodes(const VirtMachineState *vms)
{
ARMCPU *armcpu = ARM_CPU(first_cpu);
uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
MachineState *ms = MACHINE(vms);
if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
assert(!object_property_get_bool(OBJECT(armcpu), "pmu", NULL));
return;
}
if (vms->gic_version == VIRT_GIC_VERSION_2) {
irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
GIC_FDT_IRQ_PPI_CPU_WIDTH,
(1 << MACHINE(vms)->smp.cpus) - 1);
}
qemu_fdt_add_subnode(ms->fdt, "/pmu");
if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
const char compat[] = "arm,armv8-pmuv3";
qemu_fdt_setprop(ms->fdt, "/pmu", "compatible",
compat, sizeof(compat));
qemu_fdt_setprop_cells(ms->fdt, "/pmu", "interrupts",
GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
}
}
static inline DeviceState *create_acpi_ged(VirtMachineState *vms)
{
DeviceState *dev;
MachineState *ms = MACHINE(vms);
int irq = vms->irqmap[VIRT_ACPI_GED];
uint32_t event = ACPI_GED_PWR_DOWN_EVT;
if (ms->ram_slots) {
event |= ACPI_GED_MEM_HOTPLUG_EVT;
}
if (ms->nvdimms_state->is_enabled) {
event |= ACPI_GED_NVDIMM_HOTPLUG_EVT;
}
dev = qdev_new(TYPE_ACPI_GED);
qdev_prop_set_uint32(dev, "ged-event", event);
sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_ACPI_GED].base);
sysbus_mmio_map(SYS_BUS_DEVICE(dev), 1, vms->memmap[VIRT_PCDIMM_ACPI].base);
sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(vms->gic, irq));
return dev;
}
static void create_its(VirtMachineState *vms)
{
const char *itsclass = its_class_name();
DeviceState *dev;
if (!strcmp(itsclass, "arm-gicv3-its")) {
if (!vms->tcg_its) {
itsclass = NULL;
}
}
if (!itsclass) {
/* Do nothing if not supported */
return;
}
dev = qdev_new(itsclass);
object_property_set_link(OBJECT(dev), "parent-gicv3", OBJECT(vms->gic),
&error_abort);
sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
fdt_add_its_gic_node(vms);
vms->msi_controller = VIRT_MSI_CTRL_ITS;
}
static void create_v2m(VirtMachineState *vms)
{
int i;
int irq = vms->irqmap[VIRT_GIC_V2M];
DeviceState *dev;
dev = qdev_new("arm-gicv2m");
qdev_prop_set_uint32(dev, "base-spi", irq);
qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
for (i = 0; i < NUM_GICV2M_SPIS; i++) {
sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
qdev_get_gpio_in(vms->gic, irq + i));
}
fdt_add_v2m_gic_node(vms);
vms->msi_controller = VIRT_MSI_CTRL_GICV2M;
}
static void create_gic(VirtMachineState *vms, MemoryRegion *mem)
{
MachineState *ms = MACHINE(vms);
/* We create a standalone GIC */
SysBusDevice *gicbusdev;
const char *gictype;
int i;
unsigned int smp_cpus = ms->smp.cpus;
uint32_t nb_redist_regions = 0;
int revision;
if (vms->gic_version == VIRT_GIC_VERSION_2) {
gictype = gic_class_name();
} else {
gictype = gicv3_class_name();
}
switch (vms->gic_version) {
case VIRT_GIC_VERSION_2:
revision = 2;
break;
case VIRT_GIC_VERSION_3:
revision = 3;
break;
case VIRT_GIC_VERSION_4:
revision = 4;
break;
default:
g_assert_not_reached();
}
vms->gic = qdev_new(gictype);
qdev_prop_set_uint32(vms->gic, "revision", revision);
qdev_prop_set_uint32(vms->gic, "num-cpu", smp_cpus);
/* Note that the num-irq property counts both internal and external
* interrupts; there are always 32 of the former (mandated by GIC spec).
*/
qdev_prop_set_uint32(vms->gic, "num-irq", NUM_IRQS + 32);
if (!kvm_irqchip_in_kernel()) {
qdev_prop_set_bit(vms->gic, "has-security-extensions", vms->secure);
}
if (vms->gic_version != VIRT_GIC_VERSION_2) {
uint32_t redist0_capacity = virt_redist_capacity(vms, VIRT_GIC_REDIST);
uint32_t redist0_count = MIN(smp_cpus, redist0_capacity);
nb_redist_regions = virt_gicv3_redist_region_count(vms);
qdev_prop_set_uint32(vms->gic, "len-redist-region-count",
nb_redist_regions);
qdev_prop_set_uint32(vms->gic, "redist-region-count[0]", redist0_count);
if (!kvm_irqchip_in_kernel()) {
if (vms->tcg_its) {
object_property_set_link(OBJECT(vms->gic), "sysmem",
OBJECT(mem), &error_fatal);
qdev_prop_set_bit(vms->gic, "has-lpi", true);
}
}
if (nb_redist_regions == 2) {
uint32_t redist1_capacity =
virt_redist_capacity(vms, VIRT_HIGH_GIC_REDIST2);
qdev_prop_set_uint32(vms->gic, "redist-region-count[1]",
MIN(smp_cpus - redist0_count, redist1_capacity));
}
} else {
if (!kvm_irqchip_in_kernel()) {
qdev_prop_set_bit(vms->gic, "has-virtualization-extensions",
vms->virt);
}
}
gicbusdev = SYS_BUS_DEVICE(vms->gic);
sysbus_realize_and_unref(gicbusdev, &error_fatal);
sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
if (vms->gic_version != VIRT_GIC_VERSION_2) {
sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
if (nb_redist_regions == 2) {
sysbus_mmio_map(gicbusdev, 2,
vms->memmap[VIRT_HIGH_GIC_REDIST2].base);
}
} else {
sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
if (vms->virt) {
sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base);
sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base);
}
}
/* Wire the outputs from each CPU's generic timer and the GICv3
* maintenance interrupt signal to the appropriate GIC PPI inputs,
* and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
*/
for (i = 0; i < smp_cpus; i++) {
DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
/* Mapping from the output timer irq lines from the CPU to the
* GIC PPI inputs we use for the virt board.
*/
const int timer_irq[] = {
[GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
[GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
[GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ,
[GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ,
};
for (unsigned irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
qdev_connect_gpio_out(cpudev, irq,
qdev_get_gpio_in(vms->gic,
ppibase + timer_irq[irq]));
}
if (vms->gic_version != VIRT_GIC_VERSION_2) {
qemu_irq irq = qdev_get_gpio_in(vms->gic,
ppibase + ARCH_GIC_MAINT_IRQ);
qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt",
0, irq);
} else if (vms->virt) {
qemu_irq irq = qdev_get_gpio_in(vms->gic,
ppibase + ARCH_GIC_MAINT_IRQ);
sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq);
}
qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
qdev_get_gpio_in(vms->gic, ppibase
+ VIRTUAL_PMU_IRQ));
sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
sysbus_connect_irq(gicbusdev, i + smp_cpus,
qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
}
fdt_add_gic_node(vms);
if (vms->gic_version != VIRT_GIC_VERSION_2 && vms->its) {
create_its(vms);
} else if (vms->gic_version == VIRT_GIC_VERSION_2) {
create_v2m(vms);
}
}
static void create_uart(const VirtMachineState *vms, int uart,
MemoryRegion *mem, Chardev *chr)
{
char *nodename;
hwaddr base = vms->memmap[uart].base;
hwaddr size = vms->memmap[uart].size;
int irq = vms->irqmap[uart];
const char compat[] = "arm,pl011\0arm,primecell";
const char clocknames[] = "uartclk\0apb_pclk";
DeviceState *dev = qdev_new(TYPE_PL011);
SysBusDevice *s = SYS_BUS_DEVICE(dev);
MachineState *ms = MACHINE(vms);
qdev_prop_set_chr(dev, "chardev", chr);
sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
memory_region_add_subregion(mem, base,
sysbus_mmio_get_region(s, 0));
sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
nodename = g_strdup_printf("/pl011@%" PRIx64, base);
qemu_fdt_add_subnode(ms->fdt, nodename);
/* Note that we can't use setprop_string because of the embedded NUL */
qemu_fdt_setprop(ms->fdt, nodename, "compatible",
compat, sizeof(compat));
qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
2, base, 2, size);
qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
GIC_FDT_IRQ_TYPE_SPI, irq,
GIC_FDT_IRQ_FLAGS_LEVEL_HI);
qemu_fdt_setprop_cells(ms->fdt, nodename, "clocks",
vms->clock_phandle, vms->clock_phandle);
qemu_fdt_setprop(ms->fdt, nodename, "clock-names",
clocknames, sizeof(clocknames));
if (uart == VIRT_UART) {
qemu_fdt_setprop_string(ms->fdt, "/chosen", "stdout-path", nodename);
} else {
/* Mark as not usable by the normal world */
qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
qemu_fdt_setprop_string(ms->fdt, "/secure-chosen", "stdout-path",
nodename);
}
g_free(nodename);
}
static void create_rtc(const VirtMachineState *vms)
{
char *nodename;
hwaddr base = vms->memmap[VIRT_RTC].base;
hwaddr size = vms->memmap[VIRT_RTC].size;
int irq = vms->irqmap[VIRT_RTC];
const char compat[] = "arm,pl031\0arm,primecell";
MachineState *ms = MACHINE(vms);
sysbus_create_simple("pl031", base, qdev_get_gpio_in(vms->gic, irq));
nodename = g_strdup_printf("/pl031@%" PRIx64, base);
qemu_fdt_add_subnode(ms->fdt, nodename);
qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat));
qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
2, base, 2, size);
qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
GIC_FDT_IRQ_TYPE_SPI, irq,
GIC_FDT_IRQ_FLAGS_LEVEL_HI);
qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle);
qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk");
g_free(nodename);
}
static DeviceState *gpio_key_dev;
static void virt_powerdown_req(Notifier *n, void *opaque)
{
VirtMachineState *s = container_of(n, VirtMachineState, powerdown_notifier);
if (s->acpi_dev) {
acpi_send_event(s->acpi_dev, ACPI_POWER_DOWN_STATUS);
} else {
/* use gpio Pin 3 for power button event */
qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
}
}
static void create_gpio_keys(char *fdt, DeviceState *pl061_dev,
uint32_t phandle)
{
gpio_key_dev = sysbus_create_simple("gpio-key", -1,
qdev_get_gpio_in(pl061_dev, 3));
qemu_fdt_add_subnode(fdt, "/gpio-keys");
qemu_fdt_setprop_string(fdt, "/gpio-keys", "compatible", "gpio-keys");
qemu_fdt_add_subnode(fdt, "/gpio-keys/poweroff");
qemu_fdt_setprop_string(fdt, "/gpio-keys/poweroff",
"label", "GPIO Key Poweroff");
qemu_fdt_setprop_cell(fdt, "/gpio-keys/poweroff", "linux,code",
KEY_POWER);
qemu_fdt_setprop_cells(fdt, "/gpio-keys/poweroff",
"gpios", phandle, 3, 0);
}
#define SECURE_GPIO_POWEROFF 0
#define SECURE_GPIO_RESET 1
static void create_secure_gpio_pwr(char *fdt, DeviceState *pl061_dev,
uint32_t phandle)
{
DeviceState *gpio_pwr_dev;
/* gpio-pwr */
gpio_pwr_dev = sysbus_create_simple("gpio-pwr", -1, NULL);
/* connect secure pl061 to gpio-pwr */
qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_RESET,
qdev_get_gpio_in_named(gpio_pwr_dev, "reset", 0));
qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_POWEROFF,
qdev_get_gpio_in_named(gpio_pwr_dev, "shutdown", 0));
qemu_fdt_add_subnode(fdt, "/gpio-poweroff");
qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "compatible",
"gpio-poweroff");
qemu_fdt_setprop_cells(fdt, "/gpio-poweroff",
"gpios", phandle, SECURE_GPIO_POWEROFF, 0);
qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "status", "disabled");
qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "secure-status",
"okay");
qemu_fdt_add_subnode(fdt, "/gpio-restart");
qemu_fdt_setprop_string(fdt, "/gpio-restart", "compatible",
"gpio-restart");
qemu_fdt_setprop_cells(fdt, "/gpio-restart",
"gpios", phandle, SECURE_GPIO_RESET, 0);
qemu_fdt_setprop_string(fdt, "/gpio-restart", "status", "disabled");
qemu_fdt_setprop_string(fdt, "/gpio-restart", "secure-status",
"okay");
}
static void create_gpio_devices(const VirtMachineState *vms, int gpio,
MemoryRegion *mem)
{
char *nodename;
DeviceState *pl061_dev;
hwaddr base = vms->memmap[gpio].base;
hwaddr size = vms->memmap[gpio].size;
int irq = vms->irqmap[gpio];
const char compat[] = "arm,pl061\0arm,primecell";
SysBusDevice *s;
MachineState *ms = MACHINE(vms);
pl061_dev = qdev_new("pl061");
/* Pull lines down to 0 if not driven by the PL061 */
qdev_prop_set_uint32(pl061_dev, "pullups", 0);
qdev_prop_set_uint32(pl061_dev, "pulldowns", 0xff);
s = SYS_BUS_DEVICE(pl061_dev);
sysbus_realize_and_unref(s, &error_fatal);
memory_region_add_subregion(mem, base, sysbus_mmio_get_region(s, 0));
sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
uint32_t phandle = qemu_fdt_alloc_phandle(ms->fdt);
nodename = g_strdup_printf("/pl061@%" PRIx64, base);
qemu_fdt_add_subnode(ms->fdt, nodename);
qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
2, base, 2, size);
qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat));
qemu_fdt_setprop_cell(ms->fdt, nodename, "#gpio-cells", 2);
qemu_fdt_setprop(ms->fdt, nodename, "gpio-controller", NULL, 0);
qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
GIC_FDT_IRQ_TYPE_SPI, irq,
GIC_FDT_IRQ_FLAGS_LEVEL_HI);
qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle);
qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk");
qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", phandle);
if (gpio != VIRT_GPIO) {
/* Mark as not usable by the normal world */
qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
}
g_free(nodename);
/* Child gpio devices */
if (gpio == VIRT_GPIO) {
create_gpio_keys(ms->fdt, pl061_dev, phandle);
} else {
create_secure_gpio_pwr(ms->fdt, pl061_dev, phandle);
}
}
static void create_virtio_devices(const VirtMachineState *vms)
{
int i;
hwaddr size = vms->memmap[VIRT_MMIO].size;
MachineState *ms = MACHINE(vms);
/* We create the transports in forwards order. Since qbus_realize()
* prepends (not appends) new child buses, the incrementing loop below will
* create a list of virtio-mmio buses with decreasing base addresses.
*
* When a -device option is processed from the command line,
* qbus_find_recursive() picks the next free virtio-mmio bus in forwards
* order. The upshot is that -device options in increasing command line
* order are mapped to virtio-mmio buses with decreasing base addresses.
*
* When this code was originally written, that arrangement ensured that the
* guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
* the first -device on the command line. (The end-to-end order is a
* function of this loop, qbus_realize(), qbus_find_recursive(), and the
* guest kernel's name-to-address assignment strategy.)
*
* Meanwhile, the kernel's traversal seems to have been reversed; see eg.
* the message, if not necessarily the code, of commit 70161ff336.
* Therefore the loop now establishes the inverse of the original intent.
*
* Unfortunately, we can't counteract the kernel change by reversing the
* loop; it would break existing command lines.
*
* In any case, the kernel makes no guarantee about the stability of
* enumeration order of virtio devices (as demonstrated by it changing
* between kernel versions). For reliable and stable identification
* of disks users must use UUIDs or similar mechanisms.
*/
for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
int irq = vms->irqmap[VIRT_MMIO] + i;
hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
sysbus_create_simple("virtio-mmio", base,
qdev_get_gpio_in(vms->gic, irq));
}
/* We add dtb nodes in reverse order so that they appear in the finished
* device tree lowest address first.
*
* Note that this mapping is independent of the loop above. The previous
* loop influences virtio device to virtio transport assignment, whereas
* this loop controls how virtio transports are laid out in the dtb.
*/
for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
char *nodename;
int irq = vms->irqmap[VIRT_MMIO] + i;
hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
qemu_fdt_add_subnode(ms->fdt, nodename);
qemu_fdt_setprop_string(ms->fdt, nodename,
"compatible", "virtio,mmio");
qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
2, base, 2, size);
qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
GIC_FDT_IRQ_TYPE_SPI, irq,
GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
g_free(nodename);
}
}
#define VIRT_FLASH_SECTOR_SIZE (256 * KiB)
static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms,
const char *name,
const char *alias_prop_name)
{
/*
* Create a single flash device. We use the same parameters as
* the flash devices on the Versatile Express board.
*/
DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE);
qdev_prop_set_uint8(dev, "width", 4);
qdev_prop_set_uint8(dev, "device-width", 2);
qdev_prop_set_bit(dev, "big-endian", false);
qdev_prop_set_uint16(dev, "id0", 0x89);
qdev_prop_set_uint16(dev, "id1", 0x18);
qdev_prop_set_uint16(dev, "id2", 0x00);
qdev_prop_set_uint16(dev, "id3", 0x00);
qdev_prop_set_string(dev, "name", name);
object_property_add_child(OBJECT(vms), name, OBJECT(dev));
object_property_add_alias(OBJECT(vms), alias_prop_name,
OBJECT(dev), "drive");
return PFLASH_CFI01(dev);
}
static void virt_flash_create(VirtMachineState *vms)
{
vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0");
vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1");
}
static void virt_flash_map1(PFlashCFI01 *flash,
hwaddr base, hwaddr size,
MemoryRegion *sysmem)
{
DeviceState *dev = DEVICE(flash);
assert(QEMU_IS_ALIGNED(size, VIRT_FLASH_SECTOR_SIZE));
assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX);
qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE);
sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
memory_region_add_subregion(sysmem, base,
sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
0));
}
static void virt_flash_map(VirtMachineState *vms,
MemoryRegion *sysmem,
MemoryRegion *secure_sysmem)
{
/*
* Map two flash devices to fill the VIRT_FLASH space in the memmap.
* sysmem is the system memory space. secure_sysmem is the secure view
* of the system, and the first flash device should be made visible only
* there. The second flash device is visible to both secure and nonsecure.
* If sysmem == secure_sysmem this means there is no separate Secure
* address space and both flash devices are generally visible.
*/
hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
virt_flash_map1(vms->flash[0], flashbase, flashsize,
secure_sysmem);
virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize,
sysmem);
}
static void virt_flash_fdt(VirtMachineState *vms,
MemoryRegion *sysmem,
MemoryRegion *secure_sysmem)
{
hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
MachineState *ms = MACHINE(vms);
char *nodename;
if (sysmem == secure_sysmem) {
/* Report both flash devices as a single node in the DT */
nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
qemu_fdt_add_subnode(ms->fdt, nodename);
qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
2, flashbase, 2, flashsize,
2, flashbase + flashsize, 2, flashsize);
qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
g_free(nodename);
} else {
/*
* Report the devices as separate nodes so we can mark one as
* only visible to the secure world.
*/
nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
qemu_fdt_add_subnode(ms->fdt, nodename);
qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
2, flashbase, 2, flashsize);
qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
g_free(nodename);
nodename = g_strdup_printf("/flash@%" PRIx64, flashbase + flashsize);
qemu_fdt_add_subnode(ms->fdt, nodename);
qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
2, flashbase + flashsize, 2, flashsize);
qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
g_free(nodename);
}
}
static bool virt_firmware_init(VirtMachineState *vms,
MemoryRegion *sysmem,
MemoryRegion *secure_sysmem)
{
int i;
const char *bios_name;
BlockBackend *pflash_blk0;
/* Map legacy -drive if=pflash to machine properties */
for (i = 0; i < ARRAY_SIZE(vms->flash); i++) {
pflash_cfi01_legacy_drive(vms->flash[i],
drive_get(IF_PFLASH, 0, i));
}
virt_flash_map(vms, sysmem, secure_sysmem);
pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]);
bios_name = MACHINE(vms)->firmware;
if (bios_name) {
char *fname;
MemoryRegion *mr;
int image_size;
if (pflash_blk0) {
error_report("The contents of the first flash device may be "
"specified with -bios or with -drive if=pflash... "
"but you cannot use both options at once");
exit(1);
}
/* Fall back to -bios */
fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
if (!fname) {
error_report("Could not find ROM image '%s'", bios_name);
exit(1);
}
mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0);
image_size = load_image_mr(fname, mr);
g_free(fname);
if (image_size < 0) {
error_report("Could not load ROM image '%s'", bios_name);
exit(1);
}
}
return pflash_blk0 || bios_name;
}
static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
{
MachineState *ms = MACHINE(vms);
hwaddr base = vms->memmap[VIRT_FW_CFG].base;
hwaddr size = vms->memmap[VIRT_FW_CFG].size;
FWCfgState *fw_cfg;
char *nodename;
fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus);
nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
qemu_fdt_add_subnode(ms->fdt, nodename);
qemu_fdt_setprop_string(ms->fdt, nodename,
"compatible", "qemu,fw-cfg-mmio");
qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
2, base, 2, size);
qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
g_free(nodename);
return fw_cfg;
}
static void create_pcie_irq_map(const MachineState *ms,
uint32_t gic_phandle,
int first_irq, const char *nodename)
{
int devfn, pin;
uint32_t full_irq_map[4 * 4 * 10] = { 0 };
uint32_t *irq_map = full_irq_map;
for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
for (pin = 0; pin < 4; pin++) {
int irq_type = GIC_FDT_IRQ_TYPE_SPI;
int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
int i;
uint32_t map[] = {
devfn << 8, 0, 0, /* devfn */
pin + 1, /* PCI pin */
gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
/* Convert map to big endian */
for (i = 0; i < 10; i++) {
irq_map[i] = cpu_to_be32(map[i]);
}
irq_map += 10;
}
}
qemu_fdt_setprop(ms->fdt, nodename, "interrupt-map",
full_irq_map, sizeof(full_irq_map));
qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupt-map-mask",
cpu_to_be16(PCI_DEVFN(3, 0)), /* Slot 3 */
0, 0,
0x7 /* PCI irq */);
}
static void create_smmu(const VirtMachineState *vms,
PCIBus *bus)
{
char *node;
const char compat[] = "arm,smmu-v3";
int irq = vms->irqmap[VIRT_SMMU];
int i;
hwaddr base = vms->memmap[VIRT_SMMU].base;
hwaddr size = vms->memmap[VIRT_SMMU].size;
const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror";
DeviceState *dev;
MachineState *ms = MACHINE(vms);
if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) {
return;
}
dev = qdev_new(TYPE_ARM_SMMUV3);
object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus),
&error_abort);
sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
for (i = 0; i < NUM_SMMU_IRQS; i++) {
sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
qdev_get_gpio_in(vms->gic, irq + i));
}
node = g_strdup_printf("/smmuv3@%" PRIx64, base);
qemu_fdt_add_subnode(ms->fdt, node);
qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat));
qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg", 2, base, 2, size);
qemu_fdt_setprop_cells(ms->fdt, node, "interrupts",
GIC_FDT_IRQ_TYPE_SPI, irq , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
qemu_fdt_setprop(ms->fdt, node, "interrupt-names", irq_names,
sizeof(irq_names));
qemu_fdt_setprop(ms->fdt, node, "dma-coherent", NULL, 0);
qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1);
qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle);
g_free(node);
}
static void create_virtio_iommu_dt_bindings(VirtMachineState *vms)
{
const char compat[] = "virtio,pci-iommu\0pci1af4,1057";
uint16_t bdf = vms->virtio_iommu_bdf;
MachineState *ms = MACHINE(vms);
char *node;
vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt);
node = g_strdup_printf("%s/virtio_iommu@%x,%x", vms->pciehb_nodename,
PCI_SLOT(bdf), PCI_FUNC(bdf));
qemu_fdt_add_subnode(ms->fdt, node);
qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat));
qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg",
1, bdf << 8, 1, 0, 1, 0,
1, 0, 1, 0);
qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1);
qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle);
g_free(node);
qemu_fdt_setprop_cells(ms->fdt, vms->pciehb_nodename, "iommu-map",
0x0, vms->iommu_phandle, 0x0, bdf,
bdf + 1, vms->iommu_phandle, bdf + 1, 0xffff - bdf);
}
static void create_pcie(VirtMachineState *vms)
{
hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base;
hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size;
hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
hwaddr base_ecam, size_ecam;
hwaddr base = base_mmio;
int nr_pcie_buses;
int irq = vms->irqmap[VIRT_PCIE];
MemoryRegion *mmio_alias;
MemoryRegion *mmio_reg;
MemoryRegion *ecam_alias;
MemoryRegion *ecam_reg;
DeviceState *dev;
char *nodename;
int i, ecam_id;
PCIHostState *pci;
MachineState *ms = MACHINE(vms);
MachineClass *mc = MACHINE_GET_CLASS(ms);
dev = qdev_new(TYPE_GPEX_HOST);
sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
ecam_id = VIRT_ECAM_ID(vms->highmem_ecam);
base_ecam = vms->memmap[ecam_id].base;
size_ecam = vms->memmap[ecam_id].size;
nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
/* Map only the first size_ecam bytes of ECAM space */
ecam_alias = g_new0(MemoryRegion, 1);
ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
ecam_reg, 0, size_ecam);
memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
/* Map the MMIO window into system address space so as to expose
* the section of PCI MMIO space which starts at the same base address
* (ie 1:1 mapping for that part of PCI MMIO space visible through
* the window).
*/
mmio_alias = g_new0(MemoryRegion, 1);
mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
mmio_reg, base_mmio, size_mmio);
memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
if (vms->highmem_mmio) {
/* Map high MMIO space */
MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
mmio_reg, base_mmio_high, size_mmio_high);
memory_region_add_subregion(get_system_memory(), base_mmio_high,
high_mmio_alias);
}
/* Map IO port space */
sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
for (i = 0; i < GPEX_NUM_IRQS; i++) {
sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
qdev_get_gpio_in(vms->gic, irq + i));
gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
}
pci = PCI_HOST_BRIDGE(dev);
pci->bypass_iommu = vms->default_bus_bypass_iommu;
vms->bus = pci->bus;
if (vms->bus) {
for (i = 0; i < nb_nics; i++) {
pci_nic_init_nofail(&nd_table[i], pci->bus, mc->default_nic, NULL);
}
}
nodename = vms->pciehb_nodename = g_strdup_printf("/pcie@%" PRIx64, base);
qemu_fdt_add_subnode(ms->fdt, nodename);
qemu_fdt_setprop_string(ms->fdt, nodename,
"compatible", "pci-host-ecam-generic");
qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "pci");
qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 3);
qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 2);
qemu_fdt_setprop_cell(ms->fdt, nodename, "linux,pci-domain", 0);
qemu_fdt_setprop_cells(ms->fdt, nodename, "bus-range", 0,
nr_pcie_buses - 1);
qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
if (vms->msi_phandle) {
qemu_fdt_setprop_cells(ms->fdt, nodename, "msi-map",
0, vms->msi_phandle, 0, 0x10000);
}
qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
2, base_ecam, 2, size_ecam);
if (vms->highmem_mmio) {
qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges",
1, FDT_PCI_RANGE_IOPORT, 2, 0,
2, base_pio, 2, size_pio,
1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
2, base_mmio, 2, size_mmio,
1, FDT_PCI_RANGE_MMIO_64BIT,
2, base_mmio_high,
2, base_mmio_high, 2, size_mmio_high);
} else {
qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges",
1, FDT_PCI_RANGE_IOPORT, 2, 0,
2, base_pio, 2, size_pio,
1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
2, base_mmio, 2, size_mmio);
}
qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 1);
create_pcie_irq_map(ms, vms->gic_phandle, irq, nodename);
if (vms->iommu) {
vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt);
switch (vms->iommu) {
case VIRT_IOMMU_SMMUV3:
create_smmu(vms, vms->bus);
qemu_fdt_setprop_cells(ms->fdt, nodename, "iommu-map",
0x0, vms->iommu_phandle, 0x0, 0x10000);
break;
default:
g_assert_not_reached();
}
}
}
static void create_platform_bus(VirtMachineState *vms)
{
DeviceState *dev;
SysBusDevice *s;
int i;
MemoryRegion *sysmem = get_system_memory();
dev = qdev_new(TYPE_PLATFORM_BUS_DEVICE);
dev->id = g_strdup(TYPE_PLATFORM_BUS_DEVICE);
qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS);
qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size);
sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
vms->platform_bus_dev = dev;
s = SYS_BUS_DEVICE(dev);
for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) {
int irq = vms->irqmap[VIRT_PLATFORM_BUS] + i;
sysbus_connect_irq(s, i, qdev_get_gpio_in(vms->gic, irq));
}
memory_region_add_subregion(sysmem,
vms->memmap[VIRT_PLATFORM_BUS].base,
sysbus_mmio_get_region(s, 0));
}
static void create_tag_ram(MemoryRegion *tag_sysmem,
hwaddr base, hwaddr size,
const char *name)
{
MemoryRegion *tagram = g_new(MemoryRegion, 1);
memory_region_init_ram(tagram, NULL, name, size / 32, &error_fatal);
memory_region_add_subregion(tag_sysmem, base / 32, tagram);
}
static void create_secure_ram(VirtMachineState *vms,
MemoryRegion *secure_sysmem,
MemoryRegion *secure_tag_sysmem)
{
MemoryRegion *secram = g_new(MemoryRegion, 1);
char *nodename;
hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
MachineState *ms = MACHINE(vms);
memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
&error_fatal);
memory_region_add_subregion(secure_sysmem, base, secram);
nodename = g_strdup_printf("/secram@%" PRIx64, base);
qemu_fdt_add_subnode(ms->fdt, nodename);
qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "memory");
qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 2, base, 2, size);
qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
if (secure_tag_sysmem) {
create_tag_ram(secure_tag_sysmem, base, size, "mach-virt.secure-tag");
}
g_free(nodename);
}
static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
{
const VirtMachineState *board = container_of(binfo, VirtMachineState,
bootinfo);
MachineState *ms = MACHINE(board);
*fdt_size = board->fdt_size;
return ms->fdt;
}
static void virt_build_smbios(VirtMachineState *vms)
{
MachineClass *mc = MACHINE_GET_CLASS(vms);
MachineState *ms = MACHINE(vms);
VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
uint8_t *smbios_tables, *smbios_anchor;
size_t smbios_tables_len, smbios_anchor_len;
struct smbios_phys_mem_area mem_array;
const char *product = "QEMU Virtual Machine";
if (kvm_enabled()) {
product = "KVM Virtual Machine";
}
smbios_set_defaults("QEMU", product,
vmc->smbios_old_sys_ver ? "1.0" : mc->name, false,
true, SMBIOS_ENTRY_POINT_TYPE_64);
/* build the array of physical mem area from base_memmap */
mem_array.address = vms->memmap[VIRT_MEM].base;
mem_array.length = ms->ram_size;
smbios_get_tables(ms, &mem_array, 1,
&smbios_tables, &smbios_tables_len,
&smbios_anchor, &smbios_anchor_len,
&error_fatal);
if (smbios_anchor) {
fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
smbios_tables, smbios_tables_len);
fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
smbios_anchor, smbios_anchor_len);
}
}
static
void virt_machine_done(Notifier *notifier, void *data)
{
VirtMachineState *vms = container_of(notifier, VirtMachineState,
machine_done);
MachineState *ms = MACHINE(vms);
ARMCPU *cpu = ARM_CPU(first_cpu);
struct arm_boot_info *info = &vms->bootinfo;
AddressSpace *as = arm_boot_address_space(cpu, info);
/*
* If the user provided a dtb, we assume the dynamic sysbus nodes
* already are integrated there. This corresponds to a use case where
* the dynamic sysbus nodes are complex and their generation is not yet
* supported. In that case the user can take charge of the guest dt
* while qemu takes charge of the qom stuff.
*/
if (info->dtb_filename == NULL) {
platform_bus_add_all_fdt_nodes(ms->fdt, "/intc",
vms->memmap[VIRT_PLATFORM_BUS].base,
vms->memmap[VIRT_PLATFORM_BUS].size,
vms->irqmap[VIRT_PLATFORM_BUS]);
}
if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) {
exit(1);
}
fw_cfg_add_extra_pci_roots(vms->bus, vms->fw_cfg);
virt_acpi_setup(vms);
virt_build_smbios(vms);
}
static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
{
uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
if (!vmc->disallow_affinity_adjustment) {
/* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
* GIC's target-list limitations. 32-bit KVM hosts currently
* always create clusters of 4 CPUs, but that is expected to
* change when they gain support for gicv3. When KVM is enabled
* it will override the changes we make here, therefore our
* purposes are to make TCG consistent (with 64-bit KVM hosts)
* and to improve SGI efficiency.
*/
if (vms->gic_version == VIRT_GIC_VERSION_2) {
clustersz = GIC_TARGETLIST_BITS;
} else {
clustersz = GICV3_TARGETLIST_BITS;
}
}
return arm_cpu_mp_affinity(idx, clustersz);
}
static inline bool *virt_get_high_memmap_enabled(VirtMachineState *vms,
int index)
{
bool *enabled_array[] = {
&vms->highmem_redists,
&vms->highmem_ecam,
&vms->highmem_mmio,
};
assert(ARRAY_SIZE(extended_memmap) - VIRT_LOWMEMMAP_LAST ==
ARRAY_SIZE(enabled_array));
assert(index - VIRT_LOWMEMMAP_LAST < ARRAY_SIZE(enabled_array));
return enabled_array[index - VIRT_LOWMEMMAP_LAST];
}
static void virt_set_high_memmap(VirtMachineState *vms,
hwaddr base, int pa_bits)
{
hwaddr region_base, region_size;
bool *region_enabled, fits;
int i;
for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) {
region_enabled = virt_get_high_memmap_enabled(vms, i);
region_base = ROUND_UP(base, extended_memmap[i].size);
region_size = extended_memmap[i].size;
vms->memmap[i].base = region_base;
vms->memmap[i].size = region_size;
/*
* Check each device to see if it fits in the PA space,
* moving highest_gpa as we go. For compatibility, move
* highest_gpa for disabled fitting devices as well, if
* the compact layout has been disabled.
*
* For each device that doesn't fit, disable it.
*/
fits = (region_base + region_size) <= BIT_ULL(pa_bits);
*region_enabled &= fits;
if (vms->highmem_compact && !*region_enabled) {
continue;
}
base = region_base + region_size;
if (fits) {
vms->highest_gpa = base - 1;
}
}
}
static void virt_set_memmap(VirtMachineState *vms, int pa_bits)
{
MachineState *ms = MACHINE(vms);
hwaddr base, device_memory_base, device_memory_size, memtop;
int i;
vms->memmap = extended_memmap;
for (i = 0; i < ARRAY_SIZE(base_memmap); i++) {
vms->memmap[i] = base_memmap[i];
}
if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) {
error_report("unsupported number of memory slots: %"PRIu64,
ms->ram_slots);
exit(EXIT_FAILURE);
}
/*
* !highmem is exactly the same as limiting the PA space to 32bit,
* irrespective of the underlying capabilities of the HW.
*/
if (!vms->highmem) {
pa_bits = 32;
}
/*
* We compute the base of the high IO region depending on the
* amount of initial and device memory. The device memory start/size
* is aligned on 1GiB. We never put the high IO region below 256GiB
* so that if maxram_size is < 255GiB we keep the legacy memory map.
* The device region size assumes 1GiB page max alignment per slot.
*/
device_memory_base =
ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB);
device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB;
/* Base address of the high IO region */
memtop = base = device_memory_base + ROUND_UP(device_memory_size, GiB);
if (memtop > BIT_ULL(pa_bits)) {
error_report("Addressing limited to %d bits, but memory exceeds it by %llu bytes\n",
pa_bits, memtop - BIT_ULL(pa_bits));
exit(EXIT_FAILURE);
}
if (base < device_memory_base) {
error_report("maxmem/slots too huge");
exit(EXIT_FAILURE);
}
if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) {
base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES;
}
/* We know for sure that at least the memory fits in the PA space */
vms->highest_gpa = memtop - 1;
virt_set_high_memmap(vms, base, pa_bits);
if (device_memory_size > 0) {
machine_memory_devices_init(ms, device_memory_base, device_memory_size);
}
}
static VirtGICType finalize_gic_version_do(const char *accel_name,
VirtGICType gic_version,
int gics_supported,
unsigned int max_cpus)
{
/* Convert host/max/nosel to GIC version number */
switch (gic_version) {
case VIRT_GIC_VERSION_HOST:
if (!kvm_enabled()) {
error_report("gic-version=host requires KVM");
exit(1);
}
/* For KVM, gic-version=host means gic-version=max */
return finalize_gic_version_do(accel_name, VIRT_GIC_VERSION_MAX,
gics_supported, max_cpus);
case VIRT_GIC_VERSION_MAX:
if (gics_supported & VIRT_GIC_VERSION_4_MASK) {
gic_version = VIRT_GIC_VERSION_4;
} else if (gics_supported & VIRT_GIC_VERSION_3_MASK) {
gic_version = VIRT_GIC_VERSION_3;
} else {
gic_version = VIRT_GIC_VERSION_2;
}
break;
case VIRT_GIC_VERSION_NOSEL:
if ((gics_supported & VIRT_GIC_VERSION_2_MASK) &&
max_cpus <= GIC_NCPU) {
gic_version = VIRT_GIC_VERSION_2;
} else if (gics_supported & VIRT_GIC_VERSION_3_MASK) {
/*
* in case the host does not support v2 emulation or
* the end-user requested more than 8 VCPUs we now default
* to v3. In any case defaulting to v2 would be broken.
*/
gic_version = VIRT_GIC_VERSION_3;
} else if (max_cpus > GIC_NCPU) {
error_report("%s only supports GICv2 emulation but more than 8 "
"vcpus are requested", accel_name);
exit(1);
}
break;
case VIRT_GIC_VERSION_2:
case VIRT_GIC_VERSION_3:
case VIRT_GIC_VERSION_4:
break;
}
/* Check chosen version is effectively supported */
switch (gic_version) {
case VIRT_GIC_VERSION_2:
if (!(gics_supported & VIRT_GIC_VERSION_2_MASK)) {
error_report("%s does not support GICv2 emulation", accel_name);
exit(1);
}
break;
case VIRT_GIC_VERSION_3:
if (!(gics_supported & VIRT_GIC_VERSION_3_MASK)) {
error_report("%s does not support GICv3 emulation", accel_name);
exit(1);
}
break;
case VIRT_GIC_VERSION_4:
if (!(gics_supported & VIRT_GIC_VERSION_4_MASK)) {
error_report("%s does not support GICv4 emulation, is virtualization=on?",
accel_name);
exit(1);
}
break;
default:
error_report("logic error in finalize_gic_version");
exit(1);
break;
}
return gic_version;
}
/*
* finalize_gic_version - Determines the final gic_version
* according to the gic-version property
*
* Default GIC type is v2
*/
static void finalize_gic_version(VirtMachineState *vms)
{
const char *accel_name = current_accel_name();
unsigned int max_cpus = MACHINE(vms)->smp.max_cpus;
int gics_supported = 0;
/* Determine which GIC versions the current environment supports */
if (kvm_enabled() && kvm_irqchip_in_kernel()) {
int probe_bitmap = kvm_arm_vgic_probe();
if (!probe_bitmap) {
error_report("Unable to determine GIC version supported by host");
exit(1);
}
if (probe_bitmap & KVM_ARM_VGIC_V2) {
gics_supported |= VIRT_GIC_VERSION_2_MASK;
}
if (probe_bitmap & KVM_ARM_VGIC_V3) {
gics_supported |= VIRT_GIC_VERSION_3_MASK;
}
} else if (kvm_enabled() && !kvm_irqchip_in_kernel()) {
/* KVM w/o kernel irqchip can only deal with GICv2 */
gics_supported |= VIRT_GIC_VERSION_2_MASK;
accel_name = "KVM with kernel-irqchip=off";
} else if (tcg_enabled() || hvf_enabled() || qtest_enabled()) {
gics_supported |= VIRT_GIC_VERSION_2_MASK;
if (module_object_class_by_name("arm-gicv3")) {
gics_supported |= VIRT_GIC_VERSION_3_MASK;
if (vms->virt) {
/* GICv4 only makes sense if CPU has EL2 */
gics_supported |= VIRT_GIC_VERSION_4_MASK;
}
}
} else {
error_report("Unsupported accelerator, can not determine GIC support");
exit(1);
}
/*
* Then convert helpers like host/max to concrete GIC versions and ensure
* the desired version is supported
*/
vms->gic_version = finalize_gic_version_do(accel_name, vms->gic_version,
gics_supported, max_cpus);
}
/*
* virt_cpu_post_init() must be called after the CPUs have
* been realized and the GIC has been created.
*/
static void virt_cpu_post_init(VirtMachineState *vms, MemoryRegion *sysmem)
{
int max_cpus = MACHINE(vms)->smp.max_cpus;
bool aarch64, pmu, steal_time;
CPUState *cpu;
aarch64 = object_property_get_bool(OBJECT(first_cpu), "aarch64", NULL);
pmu = object_property_get_bool(OBJECT(first_cpu), "pmu", NULL);
steal_time = object_property_get_bool(OBJECT(first_cpu),
"kvm-steal-time", NULL);
if (kvm_enabled()) {
hwaddr pvtime_reg_base = vms->memmap[VIRT_PVTIME].base;
hwaddr pvtime_reg_size = vms->memmap[VIRT_PVTIME].size;
if (steal_time) {
MemoryRegion *pvtime = g_new(MemoryRegion, 1);
hwaddr pvtime_size = max_cpus * PVTIME_SIZE_PER_CPU;
/* The memory region size must be a multiple of host page size. */
pvtime_size = REAL_HOST_PAGE_ALIGN(pvtime_size);
if (pvtime_size > pvtime_reg_size) {
error_report("pvtime requires a %" HWADDR_PRId
" byte memory region for %d CPUs,"
" but only %" HWADDR_PRId " has been reserved",
pvtime_size, max_cpus, pvtime_reg_size);
exit(1);
}
memory_region_init_ram(pvtime, NULL, "pvtime", pvtime_size, NULL);
memory_region_add_subregion(sysmem, pvtime_reg_base, pvtime);
}
CPU_FOREACH(cpu) {
if (pmu) {
assert(arm_feature(&ARM_CPU(cpu)->env, ARM_FEATURE_PMU));
if (kvm_irqchip_in_kernel()) {
kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ));
}
kvm_arm_pmu_init(cpu);
}
if (steal_time) {
kvm_arm_pvtime_init(cpu, pvtime_reg_base +
cpu->cpu_index * PVTIME_SIZE_PER_CPU);
}
}
} else {
if (aarch64 && vms->highmem) {
int requested_pa_size = 64 - clz64(vms->highest_gpa);
int pamax = arm_pamax(ARM_CPU(first_cpu));
if (pamax < requested_pa_size) {
error_report("VCPU supports less PA bits (%d) than "
"requested by the memory map (%d)",
pamax, requested_pa_size);
exit(1);
}
}
}
}
static void machvirt_init(MachineState *machine)
{
VirtMachineState *vms = VIRT_MACHINE(machine);
VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
MachineClass *mc = MACHINE_GET_CLASS(machine);
const CPUArchIdList *possible_cpus;
MemoryRegion *sysmem = get_system_memory();
MemoryRegion *secure_sysmem = NULL;
MemoryRegion *tag_sysmem = NULL;
MemoryRegion *secure_tag_sysmem = NULL;
int n, virt_max_cpus;
bool firmware_loaded;
bool aarch64 = true;
bool has_ged = !vmc->no_ged;
unsigned int smp_cpus = machine->smp.cpus;
unsigned int max_cpus = machine->smp.max_cpus;
if (!cpu_type_valid(machine->cpu_type)) {
error_report("mach-virt: CPU type %s not supported", machine->cpu_type);
exit(1);
}
possible_cpus = mc->possible_cpu_arch_ids(machine);
/*
* In accelerated mode, the memory map is computed earlier in kvm_type()
* to create a VM with the right number of IPA bits.
*/
if (!vms->memmap) {
Object *cpuobj;
ARMCPU *armcpu;
int pa_bits;
/*
* Instantiate a temporary CPU object to find out about what
* we are about to deal with. Once this is done, get rid of
* the object.
*/
cpuobj = object_new(possible_cpus->cpus[0].type);
armcpu = ARM_CPU(cpuobj);
pa_bits = arm_pamax(armcpu);
object_unref(cpuobj);
virt_set_memmap(vms, pa_bits);
}
/* We can probe only here because during property set
* KVM is not available yet
*/
finalize_gic_version(vms);
if (vms->secure) {
/*
* The Secure view of the world is the same as the NonSecure,
* but with a few extra devices. Create it as a container region
* containing the system memory at low priority; any secure-only
* devices go in at higher priority and take precedence.
*/
secure_sysmem = g_new(MemoryRegion, 1);
memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
UINT64_MAX);
memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
}
firmware_loaded = virt_firmware_init(vms, sysmem,
secure_sysmem ?: sysmem);
/* If we have an EL3 boot ROM then the assumption is that it will
* implement PSCI itself, so disable QEMU's internal implementation
* so it doesn't get in the way. Instead of starting secondary
* CPUs in PSCI powerdown state we will start them all running and
* let the boot ROM sort them out.
* The usual case is that we do use QEMU's PSCI implementation;
* if the guest has EL2 then we will use SMC as the conduit,
* and otherwise we will use HVC (for backwards compatibility and
* because if we're using KVM then we must use HVC).
*/
if (vms->secure && firmware_loaded) {
vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
} else if (vms->virt) {
vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
} else {
vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
}
/*
* The maximum number of CPUs depends on the GIC version, or on how
* many redistributors we can fit into the memory map (which in turn
* depends on whether this is a GICv3 or v4).
*/
if (vms->gic_version == VIRT_GIC_VERSION_2) {
virt_max_cpus = GIC_NCPU;
} else {
virt_max_cpus = virt_redist_capacity(vms, VIRT_GIC_REDIST);
if (vms->highmem_redists) {
virt_max_cpus += virt_redist_capacity(vms, VIRT_HIGH_GIC_REDIST2);
}
}
if (max_cpus > virt_max_cpus) {
error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
"supported by machine 'mach-virt' (%d)",
max_cpus, virt_max_cpus);
if (vms->gic_version != VIRT_GIC_VERSION_2 && !vms->highmem_redists) {
error_printf("Try 'highmem-redists=on' for more CPUs\n");
}
exit(1);
}
if (vms->secure && (kvm_enabled() || hvf_enabled())) {
error_report("mach-virt: %s does not support providing "
"Security extensions (TrustZone) to the guest CPU",
current_accel_name());
exit(1);
}
if (vms->virt && (kvm_enabled() || hvf_enabled())) {
error_report("mach-virt: %s does not support providing "
"Virtualization extensions to the guest CPU",
current_accel_name());
exit(1);
}
if (vms->mte && (kvm_enabled() || hvf_enabled())) {
error_report("mach-virt: %s does not support providing "
"MTE to the guest CPU",
current_accel_name());
exit(1);
}
create_fdt(vms);
assert(possible_cpus->len == max_cpus);
for (n = 0; n < possible_cpus->len; n++) {
Object *cpuobj;
CPUState *cs;
if (n >= smp_cpus) {
break;
}
cpuobj = object_new(possible_cpus->cpus[n].type);
object_property_set_int(cpuobj, "mp-affinity",
possible_cpus->cpus[n].arch_id, NULL);
cs = CPU(cpuobj);
cs->cpu_index = n;
numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
&error_fatal);
aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL);
if (!vms->secure) {
object_property_set_bool(cpuobj, "has_el3", false, NULL);
}
if (!vms->virt && object_property_find(cpuobj, "has_el2")) {
object_property_set_bool(cpuobj, "has_el2", false, NULL);
}
if (vmc->kvm_no_adjvtime &&
object_property_find(cpuobj, "kvm-no-adjvtime")) {
object_property_set_bool(cpuobj, "kvm-no-adjvtime", true, NULL);
}
if (vmc->no_kvm_steal_time &&
object_property_find(cpuobj, "kvm-steal-time")) {
object_property_set_bool(cpuobj, "kvm-steal-time", false, NULL);
}
if (vmc->no_pmu && object_property_find(cpuobj, "pmu")) {
object_property_set_bool(cpuobj, "pmu", false, NULL);
}
if (vmc->no_tcg_lpa2 && object_property_find(cpuobj, "lpa2")) {
object_property_set_bool(cpuobj, "lpa2", false, NULL);
}
if (object_property_find(cpuobj, "reset-cbar")) {
object_property_set_int(cpuobj, "reset-cbar",
vms->memmap[VIRT_CPUPERIPHS].base,
&error_abort);
}
object_property_set_link(cpuobj, "memory", OBJECT(sysmem),
&error_abort);
if (vms->secure) {
object_property_set_link(cpuobj, "secure-memory",
OBJECT(secure_sysmem), &error_abort);
}
if (vms->mte) {
/* Create the memory region only once, but link to all cpus. */
if (!tag_sysmem) {
/*
* The property exists only if MemTag is supported.
* If it is, we must allocate the ram to back that up.
*/
if (!object_property_find(cpuobj, "tag-memory")) {
error_report("MTE requested, but not supported "
"by the guest CPU");
exit(1);
}
tag_sysmem = g_new(MemoryRegion, 1);
memory_region_init(tag_sysmem, OBJECT(machine),
"tag-memory", UINT64_MAX / 32);
if (vms->secure) {
secure_tag_sysmem = g_new(MemoryRegion, 1);
memory_region_init(secure_tag_sysmem, OBJECT(machine),
"secure-tag-memory", UINT64_MAX / 32);
/* As with ram, secure-tag takes precedence over tag. */
memory_region_add_subregion_overlap(secure_tag_sysmem, 0,
tag_sysmem, -1);
}
}
object_property_set_link(cpuobj, "tag-memory", OBJECT(tag_sysmem),
&error_abort);
if (vms->secure) {
object_property_set_link(cpuobj, "secure-tag-memory",
OBJECT(secure_tag_sysmem),
&error_abort);
}
}
qdev_realize(DEVICE(cpuobj), NULL, &error_fatal);
object_unref(cpuobj);
}
fdt_add_timer_nodes(vms);
fdt_add_cpu_nodes(vms);
memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base,
machine->ram);
virt_flash_fdt(vms, sysmem, secure_sysmem ?: sysmem);
create_gic(vms, sysmem);
virt_cpu_post_init(vms, sysmem);
fdt_add_pmu_nodes(vms);
create_uart(vms, VIRT_UART, sysmem, serial_hd(0));
if (vms->secure) {
create_secure_ram(vms, secure_sysmem, secure_tag_sysmem);
create_uart(vms, VIRT_SECURE_UART, secure_sysmem, serial_hd(1));
}
if (tag_sysmem) {
create_tag_ram(tag_sysmem, vms->memmap[VIRT_MEM].base,
machine->ram_size, "mach-virt.tag");
}
vms->highmem_ecam &= (!firmware_loaded || aarch64);
create_rtc(vms);
create_pcie(vms);
if (has_ged && aarch64 && firmware_loaded && virt_is_acpi_enabled(vms)) {
vms->acpi_dev = create_acpi_ged(vms);
} else {
create_gpio_devices(vms, VIRT_GPIO, sysmem);
}
if (vms->secure && !vmc->no_secure_gpio) {
create_gpio_devices(vms, VIRT_SECURE_GPIO, secure_sysmem);
}
/* connect powerdown request */
vms->powerdown_notifier.notify = virt_powerdown_req;
qemu_register_powerdown_notifier(&vms->powerdown_notifier);
/* Create mmio transports, so the user can create virtio backends
* (which will be automatically plugged in to the transports). If
* no backend is created the transport will just sit harmlessly idle.
*/
create_virtio_devices(vms);
vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
rom_set_fw(vms->fw_cfg);
create_platform_bus(vms);
if (machine->nvdimms_state->is_enabled) {
const struct AcpiGenericAddress arm_virt_nvdimm_acpi_dsmio = {
.space_id = AML_AS_SYSTEM_MEMORY,
.address = vms->memmap[VIRT_NVDIMM_ACPI].base,
.bit_width = NVDIMM_ACPI_IO_LEN << 3
};
nvdimm_init_acpi_state(machine->nvdimms_state, sysmem,
arm_virt_nvdimm_acpi_dsmio,
vms->fw_cfg, OBJECT(vms));
}
vms->bootinfo.ram_size = machine->ram_size;
vms->bootinfo.board_id = -1;
vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
vms->bootinfo.get_dtb = machvirt_dtb;
vms->bootinfo.skip_dtb_autoload = true;
vms->bootinfo.firmware_loaded = firmware_loaded;
vms->bootinfo.psci_conduit = vms->psci_conduit;
arm_load_kernel(ARM_CPU(first_cpu), machine, &vms->bootinfo);
vms->machine_done.notify = virt_machine_done;
qemu_add_machine_init_done_notifier(&vms->machine_done);
}
static bool virt_get_secure(Object *obj, Error **errp)
{
VirtMachineState *vms = VIRT_MACHINE(obj);
return vms->secure;
}
static void virt_set_secure(Object *obj, bool value, Error **errp)
{
VirtMachineState *vms = VIRT_MACHINE(obj);
vms->secure = value;
}
static bool virt_get_virt(Object *obj, Error **errp)
{
VirtMachineState *vms = VIRT_MACHINE(obj);
return vms->virt;
}
static void virt_set_virt(Object *obj, bool value, Error **errp)
{
VirtMachineState *vms = VIRT_MACHINE(obj);
vms->virt = value;
}
static bool virt_get_highmem(Object *obj, Error **errp)
{
VirtMachineState *vms = VIRT_MACHINE(obj);
return vms->highmem;
}
static void virt_set_highmem(Object *obj, bool value, Error **errp)
{
VirtMachineState *vms = VIRT_MACHINE(obj);
vms->highmem = value;
}
static bool virt_get_compact_highmem(Object *obj, Error **errp)
{
VirtMachineState *vms = VIRT_MACHINE(obj);
return vms->highmem_compact;
}
static void virt_set_compact_highmem(Object *obj, bool value, Error **errp)
{
VirtMachineState *vms = VIRT_MACHINE(obj);
vms->highmem_compact = value;
}
static bool virt_get_highmem_redists(Object *obj, Error **errp)
{
VirtMachineState *vms = VIRT_MACHINE(obj);
return vms->highmem_redists;
}
static void virt_set_highmem_redists(Object *obj, bool value, Error **errp)
{
VirtMachineState *vms = VIRT_MACHINE(obj);
vms->highmem_redists = value;
}
static bool virt_get_highmem_ecam(Object *obj, Error **errp)
{
VirtMachineState *vms = VIRT_MACHINE(obj);
return vms->highmem_ecam;
}
static void virt_set_highmem_ecam(Object *obj, bool value, Error **errp)
{
VirtMachineState *vms = VIRT_MACHINE(obj);
vms->highmem_ecam = value;
}
static bool virt_get_highmem_mmio(Object *obj, Error **errp)
{
VirtMachineState *vms = VIRT_MACHINE(obj);
return vms->highmem_mmio;
}
static void virt_set_highmem_mmio(Object *obj, bool value, Error **errp)
{
VirtMachineState *vms = VIRT_MACHINE(obj);
vms->highmem_mmio = value;
}
static bool virt_get_its(Object *obj, Error **errp)
{
VirtMachineState *vms = VIRT_MACHINE(obj);
return vms->its;
}
static void virt_set_its(Object *obj, bool value, Error **errp)
{
VirtMachineState *vms = VIRT_MACHINE(obj);
vms->its = value;
}
static bool virt_get_dtb_randomness(Object *obj, Error **errp)
{
VirtMachineState *vms = VIRT_MACHINE(obj);
return vms->dtb_randomness;
}
static void virt_set_dtb_randomness(Object *obj, bool value, Error **errp)
{
VirtMachineState *vms = VIRT_MACHINE(obj);
vms->dtb_randomness = value;
}
static char *virt_get_oem_id(Object *obj, Error **errp)
{
VirtMachineState *vms = VIRT_MACHINE(obj);
return g_strdup(vms->oem_id);
}
static void virt_set_oem_id(Object *obj, const char *value, Error **errp)
{
VirtMachineState *vms = VIRT_MACHINE(obj);
size_t len = strlen(value);
if (len > 6) {
error_setg(errp,
"User specified oem-id value is bigger than 6 bytes in size");
return;
}
strncpy(vms->oem_id, value, 6);
}
static char *virt_get_oem_table_id(Object *obj, Error **errp)
{
VirtMachineState *vms = VIRT_MACHINE(obj);
return g_strdup(vms->oem_table_id);
}
static void virt_set_oem_table_id(Object *obj, const char *value,
Error **errp)
{
VirtMachineState *vms = VIRT_MACHINE(obj);
size_t len = strlen(value);
if (len > 8) {
error_setg(errp,
"User specified oem-table-id value is bigger than 8 bytes in size");
return;
}
strncpy(vms->oem_table_id, value, 8);
}
bool virt_is_acpi_enabled(VirtMachineState *vms)
{
if (vms->acpi == ON_OFF_AUTO_OFF) {
return false;
}
return true;
}
static void virt_get_acpi(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
VirtMachineState *vms = VIRT_MACHINE(obj);
OnOffAuto acpi = vms->acpi;
visit_type_OnOffAuto(v, name, &acpi, errp);
}
static void virt_set_acpi(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
VirtMachineState *vms = VIRT_MACHINE(obj);
visit_type_OnOffAuto(v, name, &vms->acpi, errp);
}
static bool virt_get_ras(Object *obj, Error **errp)
{
VirtMachineState *vms = VIRT_MACHINE(obj);
return vms->ras;
}
static void virt_set_ras(Object *obj, bool value, Error **errp)
{
VirtMachineState *vms = VIRT_MACHINE(obj);
vms->ras = value;
}
static bool virt_get_mte(Object *obj, Error **errp)
{
VirtMachineState *vms = VIRT_MACHINE(obj);
return vms->mte;
}
static void virt_set_mte(Object *obj, bool value, Error **errp)
{
VirtMachineState *vms = VIRT_MACHINE(obj);
vms->mte = value;
}
static char *virt_get_gic_version(Object *obj, Error **errp)
{
VirtMachineState *vms = VIRT_MACHINE(obj);
const char *val;
switch (vms->gic_version) {
case VIRT_GIC_VERSION_4:
val = "4";
break;
case VIRT_GIC_VERSION_3:
val = "3";
break;
default:
val = "2";
break;
}
return g_strdup(val);
}
static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
{
VirtMachineState *vms = VIRT_MACHINE(obj);
if (!strcmp(value, "4")) {
vms->gic_version = VIRT_GIC_VERSION_4;
} else if (!strcmp(value, "3")) {
vms->gic_version = VIRT_GIC_VERSION_3;
} else if (!strcmp(value, "2")) {
vms->gic_version = VIRT_GIC_VERSION_2;
} else if (!strcmp(value, "host")) {
vms->gic_version = VIRT_GIC_VERSION_HOST; /* Will probe later */
} else if (!strcmp(value, "max")) {
vms->gic_version = VIRT_GIC_VERSION_MAX; /* Will probe later */
} else {
error_setg(errp, "Invalid gic-version value");
error_append_hint(errp, "Valid values are 3, 2, host, max.\n");
}
}
static char *virt_get_iommu(Object *obj, Error **errp)
{
VirtMachineState *vms = VIRT_MACHINE(obj);
switch (vms->iommu) {
case VIRT_IOMMU_NONE:
return g_strdup("none");
case VIRT_IOMMU_SMMUV3:
return g_strdup("smmuv3");
default:
g_assert_not_reached();
}
}
static void virt_set_iommu(Object *obj, const char *value, Error **errp)
{
VirtMachineState *vms = VIRT_MACHINE(obj);
if (!strcmp(value, "smmuv3")) {
vms->iommu = VIRT_IOMMU_SMMUV3;
} else if (!strcmp(value, "none")) {
vms->iommu = VIRT_IOMMU_NONE;
} else {
error_setg(errp, "Invalid iommu value");
error_append_hint(errp, "Valid values are none, smmuv3.\n");
}
}
static bool virt_get_default_bus_bypass_iommu(Object *obj, Error **errp)
{
VirtMachineState *vms = VIRT_MACHINE(obj);
return vms->default_bus_bypass_iommu;
}
static void virt_set_default_bus_bypass_iommu(Object *obj, bool value,
Error **errp)
{
VirtMachineState *vms = VIRT_MACHINE(obj);
vms->default_bus_bypass_iommu = value;
}
static CpuInstanceProperties
virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
{
MachineClass *mc = MACHINE_GET_CLASS(ms);
const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
assert(cpu_index < possible_cpus->len);
return possible_cpus->cpus[cpu_index].props;
}
static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx)
{
int64_t socket_id = ms->possible_cpus->cpus[idx].props.socket_id;
return socket_id % ms->numa_state->num_nodes;
}
static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
{
int n;
unsigned int max_cpus = ms->smp.max_cpus;
VirtMachineState *vms = VIRT_MACHINE(ms);
MachineClass *mc = MACHINE_GET_CLASS(vms);
if (ms->possible_cpus) {
assert(ms->possible_cpus->len == max_cpus);
return ms->possible_cpus;
}
ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
sizeof(CPUArchId) * max_cpus);
ms->possible_cpus->len = max_cpus;
for (n = 0; n < ms->possible_cpus->len; n++) {
ms->possible_cpus->cpus[n].type = ms->cpu_type;
ms->possible_cpus->cpus[n].arch_id =
virt_cpu_mp_affinity(vms, n);
assert(!mc->smp_props.dies_supported);
ms->possible_cpus->cpus[n].props.has_socket_id = true;
ms->possible_cpus->cpus[n].props.socket_id =
n / (ms->smp.clusters * ms->smp.cores * ms->smp.threads);
ms->possible_cpus->cpus[n].props.has_cluster_id = true;
ms->possible_cpus->cpus[n].props.cluster_id =
(n / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters;
ms->possible_cpus->cpus[n].props.has_core_id = true;
ms->possible_cpus->cpus[n].props.core_id =
(n / ms->smp.threads) % ms->smp.cores;
ms->possible_cpus->cpus[n].props.has_thread_id = true;
ms->possible_cpus->cpus[n].props.thread_id =
n % ms->smp.threads;
}
return ms->possible_cpus;
}
static void virt_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
Error **errp)
{
VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
const MachineState *ms = MACHINE(hotplug_dev);
const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
if (!vms->acpi_dev) {
error_setg(errp,
"memory hotplug is not enabled: missing acpi-ged device");
return;
}
if (vms->mte) {
error_setg(errp, "memory hotplug is not enabled: MTE is enabled");
return;
}
if (is_nvdimm && !ms->nvdimms_state->is_enabled) {
error_setg(errp, "nvdimm is not enabled: add 'nvdimm=on' to '-M'");
return;
}
pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), NULL, errp);
}
static void virt_memory_plug(HotplugHandler *hotplug_dev,
DeviceState *dev, Error **errp)
{
VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
MachineState *ms = MACHINE(hotplug_dev);
bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
pc_dimm_plug(PC_DIMM(dev), MACHINE(vms));
if (is_nvdimm) {
nvdimm_plug(ms->nvdimms_state);
}
hotplug_handler_plug(HOTPLUG_HANDLER(vms->acpi_dev),
dev, &error_abort);
}
static void virt_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
DeviceState *dev, Error **errp)
{
VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
virt_memory_pre_plug(hotplug_dev, dev, errp);
} else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) {
virtio_md_pci_pre_plug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp);
} else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
hwaddr db_start = 0, db_end = 0;
char *resv_prop_str;
if (vms->iommu != VIRT_IOMMU_NONE) {
error_setg(errp, "virt machine does not support multiple IOMMUs");
return;
}
switch (vms->msi_controller) {
case VIRT_MSI_CTRL_NONE:
return;
case VIRT_MSI_CTRL_ITS:
/* GITS_TRANSLATER page */
db_start = base_memmap[VIRT_GIC_ITS].base + 0x10000;
db_end = base_memmap[VIRT_GIC_ITS].base +
base_memmap[VIRT_GIC_ITS].size - 1;
break;
case VIRT_MSI_CTRL_GICV2M:
/* MSI_SETSPI_NS page */
db_start = base_memmap[VIRT_GIC_V2M].base;
db_end = db_start + base_memmap[VIRT_GIC_V2M].size - 1;
break;
}
resv_prop_str = g_strdup_printf("0x%"PRIx64":0x%"PRIx64":%u",
db_start, db_end,
VIRTIO_IOMMU_RESV_MEM_T_MSI);
object_property_set_uint(OBJECT(dev), "len-reserved-regions", 1, errp);
object_property_set_str(OBJECT(dev), "reserved-regions[0]",
resv_prop_str, errp);
g_free(resv_prop_str);
}
}
static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev,
DeviceState *dev, Error **errp)
{
VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
if (vms->platform_bus_dev) {
MachineClass *mc = MACHINE_GET_CLASS(vms);
if (device_is_dynamic_sysbus(mc, dev)) {
platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev),
SYS_BUS_DEVICE(dev));
}
}
if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
virt_memory_plug(hotplug_dev, dev, errp);
} else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) {
virtio_md_pci_plug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp);
}
if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
PCIDevice *pdev = PCI_DEVICE(dev);
vms->iommu = VIRT_IOMMU_VIRTIO;
vms->virtio_iommu_bdf = pci_get_bdf(pdev);
create_virtio_iommu_dt_bindings(vms);
}
}
static void virt_dimm_unplug_request(HotplugHandler *hotplug_dev,
DeviceState *dev, Error **errp)
{
VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
if (!vms->acpi_dev) {
error_setg(errp,
"memory hotplug is not enabled: missing acpi-ged device");
return;
}
if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
error_setg(errp, "nvdimm device hot unplug is not supported yet.");
return;
}
hotplug_handler_unplug_request(HOTPLUG_HANDLER(vms->acpi_dev), dev,
errp);
}
static void virt_dimm_unplug(HotplugHandler *hotplug_dev,
DeviceState *dev, Error **errp)
{
VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
Error *local_err = NULL;
hotplug_handler_unplug(HOTPLUG_HANDLER(vms->acpi_dev), dev, &local_err);
if (local_err) {
goto out;
}
pc_dimm_unplug(PC_DIMM(dev), MACHINE(vms));
qdev_unrealize(dev);
out:
error_propagate(errp, local_err);
}
static void virt_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
DeviceState *dev, Error **errp)
{
if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
virt_dimm_unplug_request(hotplug_dev, dev, errp);
} else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) {
virtio_md_pci_unplug_request(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev),
errp);
} else {
error_setg(errp, "device unplug request for unsupported device"
" type: %s", object_get_typename(OBJECT(dev)));
}
}
static void virt_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
DeviceState *dev, Error **errp)
{
if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
virt_dimm_unplug(hotplug_dev, dev, errp);
} else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) {
virtio_md_pci_unplug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp);
} else {
error_setg(errp, "virt: device unplug for unsupported device"
" type: %s", object_get_typename(OBJECT(dev)));
}
}
static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine,
DeviceState *dev)
{
MachineClass *mc = MACHINE_GET_CLASS(machine);
if (device_is_dynamic_sysbus(mc, dev) ||
object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI) ||
object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
return HOTPLUG_HANDLER(machine);
}
return NULL;
}
/*
* for arm64 kvm_type [7-0] encodes the requested number of bits
* in the IPA address space
*/
static int virt_kvm_type(MachineState *ms, const char *type_str)
{
VirtMachineState *vms = VIRT_MACHINE(ms);
int max_vm_pa_size, requested_pa_size;
bool fixed_ipa;
max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms, &fixed_ipa);
/* we freeze the memory map to compute the highest gpa */
virt_set_memmap(vms, max_vm_pa_size);
requested_pa_size = 64 - clz64(vms->highest_gpa);
/*
* KVM requires the IPA size to be at least 32 bits.
*/
if (requested_pa_size < 32) {
requested_pa_size = 32;
}
if (requested_pa_size > max_vm_pa_size) {
error_report("-m and ,maxmem option values "
"require an IPA range (%d bits) larger than "
"the one supported by the host (%d bits)",
requested_pa_size, max_vm_pa_size);
return -1;
}
/*
* We return the requested PA log size, unless KVM only supports
* the implicit legacy 40b IPA setting, in which case the kvm_type
* must be 0.
*/
return fixed_ipa ? 0 : requested_pa_size;
}
static void virt_machine_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
mc->init = machvirt_init;
/* Start with max_cpus set to 512, which is the maximum supported by KVM.
* The value may be reduced later when we have more information about the
* configuration of the particular instance.
*/
mc->max_cpus = 512;
machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC);
machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE);
machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM);
#ifdef CONFIG_TPM
machine_class_allow_dynamic_sysbus_dev(mc, TYPE_TPM_TIS_SYSBUS);
#endif
mc->block_default_type = IF_VIRTIO;
mc->no_cdrom = 1;
mc->pci_allow_0_address = true;
/* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
mc->minimum_page_bits = 12;
mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
#ifdef CONFIG_TCG
mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
#else
mc->default_cpu_type = ARM_CPU_TYPE_NAME("max");
#endif
mc->get_default_cpu_node_id = virt_get_default_cpu_node_id;
mc->kvm_type = virt_kvm_type;
assert(!mc->get_hotplug_handler);
mc->get_hotplug_handler = virt_machine_get_hotplug_handler;
hc->pre_plug = virt_machine_device_pre_plug_cb;
hc->plug = virt_machine_device_plug_cb;
hc->unplug_request = virt_machine_device_unplug_request_cb;
hc->unplug = virt_machine_device_unplug_cb;
mc->nvdimm_supported = true;
mc->smp_props.clusters_supported = true;
mc->auto_enable_numa_with_memhp = true;
mc->auto_enable_numa_with_memdev = true;
/* platform instead of architectural choice */
mc->cpu_cluster_has_numa_boundary = true;
mc->default_ram_id = "mach-virt.ram";
mc->default_nic = "virtio-net-pci";
object_class_property_add(oc, "acpi", "OnOffAuto",
virt_get_acpi, virt_set_acpi,
NULL, NULL);
object_class_property_set_description(oc, "acpi",
"Enable ACPI");
object_class_property_add_bool(oc, "secure", virt_get_secure,
virt_set_secure);
object_class_property_set_description(oc, "secure",
"Set on/off to enable/disable the ARM "
"Security Extensions (TrustZone)");
object_class_property_add_bool(oc, "virtualization", virt_get_virt,
virt_set_virt);
object_class_property_set_description(oc, "virtualization",
"Set on/off to enable/disable emulating a "
"guest CPU which implements the ARM "
"Virtualization Extensions");
object_class_property_add_bool(oc, "highmem", virt_get_highmem,
virt_set_highmem);
object_class_property_set_description(oc, "highmem",
"Set on/off to enable/disable using "
"physical address space above 32 bits");
object_class_property_add_bool(oc, "compact-highmem",
virt_get_compact_highmem,
virt_set_compact_highmem);
object_class_property_set_description(oc, "compact-highmem",
"Set on/off to enable/disable compact "
"layout for high memory regions");
object_class_property_add_bool(oc, "highmem-redists",
virt_get_highmem_redists,
virt_set_highmem_redists);
object_class_property_set_description(oc, "highmem-redists",
"Set on/off to enable/disable high "
"memory region for GICv3 or GICv4 "
"redistributor");
object_class_property_add_bool(oc, "highmem-ecam",
virt_get_highmem_ecam,
virt_set_highmem_ecam);
object_class_property_set_description(oc, "highmem-ecam",
"Set on/off to enable/disable high "
"memory region for PCI ECAM");
object_class_property_add_bool(oc, "highmem-mmio",
virt_get_highmem_mmio,
virt_set_highmem_mmio);
object_class_property_set_description(oc, "highmem-mmio",
"Set on/off to enable/disable high "
"memory region for PCI MMIO");
object_class_property_add_str(oc, "gic-version", virt_get_gic_version,
virt_set_gic_version);
object_class_property_set_description(oc, "gic-version",
"Set GIC version. "
"Valid values are 2, 3, 4, host and max");
object_class_property_add_str(oc, "iommu", virt_get_iommu, virt_set_iommu);
object_class_property_set_description(oc, "iommu",
"Set the IOMMU type. "
"Valid values are none and smmuv3");
object_class_property_add_bool(oc, "default-bus-bypass-iommu",
virt_get_default_bus_bypass_iommu,
virt_set_default_bus_bypass_iommu);
object_class_property_set_description(oc, "default-bus-bypass-iommu",
"Set on/off to enable/disable "
"bypass_iommu for default root bus");
object_class_property_add_bool(oc, "ras", virt_get_ras,
virt_set_ras);
object_class_property_set_description(oc, "ras",
"Set on/off to enable/disable reporting host memory errors "
"to a KVM guest using ACPI and guest external abort exceptions");
object_class_property_add_bool(oc, "mte", virt_get_mte, virt_set_mte);
object_class_property_set_description(oc, "mte",
"Set on/off to enable/disable emulating a "
"guest CPU which implements the ARM "
"Memory Tagging Extension");
object_class_property_add_bool(oc, "its", virt_get_its,
virt_set_its);
object_class_property_set_description(oc, "its",
"Set on/off to enable/disable "
"ITS instantiation");
object_class_property_add_bool(oc, "dtb-randomness",
virt_get_dtb_randomness,
virt_set_dtb_randomness);
object_class_property_set_description(oc, "dtb-randomness",
"Set off to disable passing random or "
"non-deterministic dtb nodes to guest");
object_class_property_add_bool(oc, "dtb-kaslr-seed",
virt_get_dtb_randomness,
virt_set_dtb_randomness);
object_class_property_set_description(oc, "dtb-kaslr-seed",
"Deprecated synonym of dtb-randomness");
object_class_property_add_str(oc, "x-oem-id",
virt_get_oem_id,
virt_set_oem_id);
object_class_property_set_description(oc, "x-oem-id",
"Override the default value of field OEMID "
"in ACPI table header."
"The string may be up to 6 bytes in size");
object_class_property_add_str(oc, "x-oem-table-id",
virt_get_oem_table_id,
virt_set_oem_table_id);
object_class_property_set_description(oc, "x-oem-table-id",
"Override the default value of field OEM Table ID "
"in ACPI table header."
"The string may be up to 8 bytes in size");
}
static void virt_instance_init(Object *obj)
{
VirtMachineState *vms = VIRT_MACHINE(obj);
VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
/* EL3 is disabled by default on virt: this makes us consistent
* between KVM and TCG for this board, and it also allows us to
* boot UEFI blobs which assume no TrustZone support.
*/
vms->secure = false;
/* EL2 is also disabled by default, for similar reasons */
vms->virt = false;
/* High memory is enabled by default */
vms->highmem = true;
vms->highmem_compact = !vmc->no_highmem_compact;
vms->gic_version = VIRT_GIC_VERSION_NOSEL;
vms->highmem_ecam = !vmc->no_highmem_ecam;
vms->highmem_mmio = true;
vms->highmem_redists = true;
if (vmc->no_its) {
vms->its = false;
} else {
/* Default allows ITS instantiation */
vms->its = true;
if (vmc->no_tcg_its) {
vms->tcg_its = false;
} else {
vms->tcg_its = true;
}
}
/* Default disallows iommu instantiation */
vms->iommu = VIRT_IOMMU_NONE;
/* The default root bus is attached to iommu by default */
vms->default_bus_bypass_iommu = false;
/* Default disallows RAS instantiation */
vms->ras = false;
/* MTE is disabled by default. */
vms->mte = false;
/* Supply kaslr-seed and rng-seed by default */
vms->dtb_randomness = true;
vms->irqmap = a15irqmap;
virt_flash_create(vms);
vms->oem_id = g_strndup(ACPI_BUILD_APPNAME6, 6);
vms->oem_table_id = g_strndup(ACPI_BUILD_APPNAME8, 8);
}
static const TypeInfo virt_machine_info = {
.name = TYPE_VIRT_MACHINE,
.parent = TYPE_MACHINE,
.abstract = true,
.instance_size = sizeof(VirtMachineState),
.class_size = sizeof(VirtMachineClass),
.class_init = virt_machine_class_init,
.instance_init = virt_instance_init,
.interfaces = (InterfaceInfo[]) {
{ TYPE_HOTPLUG_HANDLER },
{ }
},
};
static void machvirt_machine_init(void)
{
type_register_static(&virt_machine_info);
}
type_init(machvirt_machine_init);
static void virt_machine_8_2_options(MachineClass *mc)
{
}
DEFINE_VIRT_MACHINE_AS_LATEST(8, 2)
static void virt_machine_8_1_options(MachineClass *mc)
{
virt_machine_8_2_options(mc);
compat_props_add(mc->compat_props, hw_compat_8_1, hw_compat_8_1_len);
}
DEFINE_VIRT_MACHINE(8, 1)
static void virt_machine_8_0_options(MachineClass *mc)
{
virt_machine_8_1_options(mc);
compat_props_add(mc->compat_props, hw_compat_8_0, hw_compat_8_0_len);
}
DEFINE_VIRT_MACHINE(8, 0)
static void virt_machine_7_2_options(MachineClass *mc)
{
virt_machine_8_0_options(mc);
compat_props_add(mc->compat_props, hw_compat_7_2, hw_compat_7_2_len);
}
DEFINE_VIRT_MACHINE(7, 2)
static void virt_machine_7_1_options(MachineClass *mc)
{
VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
virt_machine_7_2_options(mc);
compat_props_add(mc->compat_props, hw_compat_7_1, hw_compat_7_1_len);
/* Compact layout for high memory regions was introduced with 7.2 */
vmc->no_highmem_compact = true;
}
DEFINE_VIRT_MACHINE(7, 1)
static void virt_machine_7_0_options(MachineClass *mc)
{
virt_machine_7_1_options(mc);
compat_props_add(mc->compat_props, hw_compat_7_0, hw_compat_7_0_len);
}
DEFINE_VIRT_MACHINE(7, 0)
static void virt_machine_6_2_options(MachineClass *mc)
{
VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
virt_machine_7_0_options(mc);
compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len);
vmc->no_tcg_lpa2 = true;
}
DEFINE_VIRT_MACHINE(6, 2)
static void virt_machine_6_1_options(MachineClass *mc)
{
VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
virt_machine_6_2_options(mc);
compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len);
mc->smp_props.prefer_sockets = true;
vmc->no_cpu_topology = true;
/* qemu ITS was introduced with 6.2 */
vmc->no_tcg_its = true;
}
DEFINE_VIRT_MACHINE(6, 1)
static void virt_machine_6_0_options(MachineClass *mc)
{
virt_machine_6_1_options(mc);
compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len);
}
DEFINE_VIRT_MACHINE(6, 0)
static void virt_machine_5_2_options(MachineClass *mc)
{
VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
virt_machine_6_0_options(mc);
compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
vmc->no_secure_gpio = true;
}
DEFINE_VIRT_MACHINE(5, 2)
static void virt_machine_5_1_options(MachineClass *mc)
{
VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
virt_machine_5_2_options(mc);
compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
vmc->no_kvm_steal_time = true;
}
DEFINE_VIRT_MACHINE(5, 1)
static void virt_machine_5_0_options(MachineClass *mc)
{
VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
virt_machine_5_1_options(mc);
compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
mc->numa_mem_supported = true;
vmc->acpi_expose_flash = true;
mc->auto_enable_numa_with_memdev = false;
}
DEFINE_VIRT_MACHINE(5, 0)
static void virt_machine_4_2_options(MachineClass *mc)
{
VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
virt_machine_5_0_options(mc);
compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
vmc->kvm_no_adjvtime = true;
}
DEFINE_VIRT_MACHINE(4, 2)
static void virt_machine_4_1_options(MachineClass *mc)
{
VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
virt_machine_4_2_options(mc);
compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
vmc->no_ged = true;
mc->auto_enable_numa_with_memhp = false;
}
DEFINE_VIRT_MACHINE(4, 1)
static void virt_machine_4_0_options(MachineClass *mc)
{
virt_machine_4_1_options(mc);
compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
}
DEFINE_VIRT_MACHINE(4, 0)
static void virt_machine_3_1_options(MachineClass *mc)
{
virt_machine_4_0_options(mc);
compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
}
DEFINE_VIRT_MACHINE(3, 1)
static void virt_machine_3_0_options(MachineClass *mc)
{
virt_machine_3_1_options(mc);
compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
}
DEFINE_VIRT_MACHINE(3, 0)
static void virt_machine_2_12_options(MachineClass *mc)
{
VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
virt_machine_3_0_options(mc);
compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
vmc->no_highmem_ecam = true;
mc->max_cpus = 255;
}
DEFINE_VIRT_MACHINE(2, 12)
static void virt_machine_2_11_options(MachineClass *mc)
{
VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
virt_machine_2_12_options(mc);
compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
vmc->smbios_old_sys_ver = true;
}
DEFINE_VIRT_MACHINE(2, 11)
static void virt_machine_2_10_options(MachineClass *mc)
{
virt_machine_2_11_options(mc);
compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
/* before 2.11 we never faulted accesses to bad addresses */
mc->ignore_memory_transaction_failures = true;
}
DEFINE_VIRT_MACHINE(2, 10)
static void virt_machine_2_9_options(MachineClass *mc)
{
virt_machine_2_10_options(mc);
compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
}
DEFINE_VIRT_MACHINE(2, 9)
static void virt_machine_2_8_options(MachineClass *mc)
{
VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
virt_machine_2_9_options(mc);
compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
/* For 2.8 and earlier we falsely claimed in the DT that
* our timers were edge-triggered, not level-triggered.
*/
vmc->claim_edge_triggered_timers = true;
}
DEFINE_VIRT_MACHINE(2, 8)
static void virt_machine_2_7_options(MachineClass *mc)
{
VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
virt_machine_2_8_options(mc);
compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
/* ITS was introduced with 2.8 */
vmc->no_its = true;
/* Stick with 1K pages for migration compatibility */
mc->minimum_page_bits = 0;
}
DEFINE_VIRT_MACHINE(2, 7)
static void virt_machine_2_6_options(MachineClass *mc)
{
VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
virt_machine_2_7_options(mc);
compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
vmc->disallow_affinity_adjustment = true;
/* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
vmc->no_pmu = true;
}
DEFINE_VIRT_MACHINE(2, 6)