4de4a4705f
This commit continues adding support for the Branch History Rolling Buffer (BHRB) as is provided starting with the P8 processor and continuing with its successors. This commit is limited to the recording and filtering of taken branches. The following changes were made: - Enabled functionality on P10 processors only due to performance impact seen with P8 and P9 where it is not disabled for non problem state branches. - Added a BHRB buffer for storing branch instruction and target addresses for taken branches - Renamed gen_update_cfar to gen_update_branch_history and added a 'target' parameter to hold the branch target address and 'inst_type' parameter to use for filtering - Added TCG code to gen_update_branch_history that stores data to the BHRB and updates the BHRB offset. - Added BHRB resource initialization and reset functions Reviewed-by: Nicholas Piggin <npiggin@gmail.com> Signed-off-by: Glenn Miles <milesg@linux.vnet.ibm.com> Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
406 lines
10 KiB
C
406 lines
10 KiB
C
/*
|
|
* PMU emulation helpers for TCG IBM POWER chips
|
|
*
|
|
* Copyright IBM Corp. 2021
|
|
*
|
|
* Authors:
|
|
* Daniel Henrique Barboza <danielhb413@gmail.com>
|
|
*
|
|
* This work is licensed under the terms of the GNU GPL, version 2 or later.
|
|
* See the COPYING file in the top-level directory.
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "cpu.h"
|
|
#include "helper_regs.h"
|
|
#include "exec/exec-all.h"
|
|
#include "exec/helper-proto.h"
|
|
#include "qemu/error-report.h"
|
|
#include "qemu/timer.h"
|
|
#include "hw/ppc/ppc.h"
|
|
#include "power8-pmu.h"
|
|
|
|
#if defined(TARGET_PPC64) && !defined(CONFIG_USER_ONLY)
|
|
|
|
static bool pmc_has_overflow_enabled(CPUPPCState *env, int sprn)
|
|
{
|
|
if (sprn == SPR_POWER_PMC1) {
|
|
return env->spr[SPR_POWER_MMCR0] & MMCR0_PMC1CE;
|
|
}
|
|
|
|
return env->spr[SPR_POWER_MMCR0] & MMCR0_PMCjCE;
|
|
}
|
|
|
|
/*
|
|
* Called after MMCR0 or MMCR1 changes to update pmc_ins_cnt and pmc_cyc_cnt.
|
|
* hflags must subsequently be updated.
|
|
*/
|
|
static void pmu_update_summaries(CPUPPCState *env)
|
|
{
|
|
target_ulong mmcr0 = env->spr[SPR_POWER_MMCR0];
|
|
target_ulong mmcr1 = env->spr[SPR_POWER_MMCR1];
|
|
int ins_cnt = 0;
|
|
int cyc_cnt = 0;
|
|
|
|
if (mmcr0 & MMCR0_FC) {
|
|
goto out;
|
|
}
|
|
|
|
if (!(mmcr0 & MMCR0_FC14) && mmcr1 != 0) {
|
|
target_ulong sel;
|
|
|
|
sel = extract64(mmcr1, MMCR1_PMC1EVT_EXTR, MMCR1_EVT_SIZE);
|
|
switch (sel) {
|
|
case 0x02:
|
|
case 0xfe:
|
|
ins_cnt |= 1 << 1;
|
|
break;
|
|
case 0x1e:
|
|
case 0xf0:
|
|
cyc_cnt |= 1 << 1;
|
|
break;
|
|
}
|
|
|
|
sel = extract64(mmcr1, MMCR1_PMC2EVT_EXTR, MMCR1_EVT_SIZE);
|
|
ins_cnt |= (sel == 0x02) << 2;
|
|
cyc_cnt |= (sel == 0x1e) << 2;
|
|
|
|
sel = extract64(mmcr1, MMCR1_PMC3EVT_EXTR, MMCR1_EVT_SIZE);
|
|
ins_cnt |= (sel == 0x02) << 3;
|
|
cyc_cnt |= (sel == 0x1e) << 3;
|
|
|
|
sel = extract64(mmcr1, MMCR1_PMC4EVT_EXTR, MMCR1_EVT_SIZE);
|
|
ins_cnt |= ((sel == 0xfa) || (sel == 0x2)) << 4;
|
|
cyc_cnt |= (sel == 0x1e) << 4;
|
|
}
|
|
|
|
ins_cnt |= !(mmcr0 & MMCR0_FC56) << 5;
|
|
cyc_cnt |= !(mmcr0 & MMCR0_FC56) << 6;
|
|
|
|
out:
|
|
env->pmc_ins_cnt = ins_cnt;
|
|
env->pmc_cyc_cnt = cyc_cnt;
|
|
}
|
|
|
|
static void hreg_bhrb_filter_update(CPUPPCState *env)
|
|
{
|
|
target_long ifm;
|
|
|
|
if (!(env->spr[SPR_POWER_MMCR0] & MMCR0_PMAE)) {
|
|
/* disable recording to BHRB */
|
|
env->bhrb_filter = BHRB_TYPE_NORECORD;
|
|
return;
|
|
}
|
|
|
|
ifm = (env->spr[SPR_POWER_MMCRA] & MMCRA_IFM_MASK) >> MMCRA_IFM_SHIFT;
|
|
switch (ifm) {
|
|
case 0:
|
|
/* record all branches */
|
|
env->bhrb_filter = -1;
|
|
break;
|
|
case 1:
|
|
/* only record calls (LK = 1) */
|
|
env->bhrb_filter = BHRB_TYPE_CALL;
|
|
break;
|
|
case 2:
|
|
/* only record indirect branches */
|
|
env->bhrb_filter = BHRB_TYPE_INDIRECT;
|
|
break;
|
|
case 3:
|
|
/* only record conditional branches */
|
|
env->bhrb_filter = BHRB_TYPE_COND;
|
|
break;
|
|
}
|
|
}
|
|
|
|
void pmu_mmcr01a_updated(CPUPPCState *env)
|
|
{
|
|
PowerPCCPU *cpu = env_archcpu(env);
|
|
|
|
pmu_update_summaries(env);
|
|
hreg_update_pmu_hflags(env);
|
|
|
|
if (env->spr[SPR_POWER_MMCR0] & MMCR0_PMAO) {
|
|
ppc_set_irq(cpu, PPC_INTERRUPT_PERFM, 1);
|
|
} else {
|
|
ppc_set_irq(cpu, PPC_INTERRUPT_PERFM, 0);
|
|
}
|
|
|
|
hreg_bhrb_filter_update(env);
|
|
|
|
/*
|
|
* Should this update overflow timers (if mmcr0 is updated) so they
|
|
* get set in cpu_post_load?
|
|
*/
|
|
}
|
|
|
|
static bool pmu_increment_insns(CPUPPCState *env, uint32_t num_insns)
|
|
{
|
|
target_ulong mmcr0 = env->spr[SPR_POWER_MMCR0];
|
|
unsigned ins_cnt = env->pmc_ins_cnt;
|
|
bool overflow_triggered = false;
|
|
target_ulong tmp;
|
|
|
|
if (ins_cnt & (1 << 1)) {
|
|
tmp = env->spr[SPR_POWER_PMC1];
|
|
tmp += num_insns;
|
|
if (tmp >= PMC_COUNTER_NEGATIVE_VAL && (mmcr0 & MMCR0_PMC1CE)) {
|
|
tmp = PMC_COUNTER_NEGATIVE_VAL;
|
|
overflow_triggered = true;
|
|
}
|
|
env->spr[SPR_POWER_PMC1] = tmp;
|
|
}
|
|
|
|
if (ins_cnt & (1 << 2)) {
|
|
tmp = env->spr[SPR_POWER_PMC2];
|
|
tmp += num_insns;
|
|
if (tmp >= PMC_COUNTER_NEGATIVE_VAL && (mmcr0 & MMCR0_PMCjCE)) {
|
|
tmp = PMC_COUNTER_NEGATIVE_VAL;
|
|
overflow_triggered = true;
|
|
}
|
|
env->spr[SPR_POWER_PMC2] = tmp;
|
|
}
|
|
|
|
if (ins_cnt & (1 << 3)) {
|
|
tmp = env->spr[SPR_POWER_PMC3];
|
|
tmp += num_insns;
|
|
if (tmp >= PMC_COUNTER_NEGATIVE_VAL && (mmcr0 & MMCR0_PMCjCE)) {
|
|
tmp = PMC_COUNTER_NEGATIVE_VAL;
|
|
overflow_triggered = true;
|
|
}
|
|
env->spr[SPR_POWER_PMC3] = tmp;
|
|
}
|
|
|
|
if (ins_cnt & (1 << 4)) {
|
|
target_ulong mmcr1 = env->spr[SPR_POWER_MMCR1];
|
|
int sel = extract64(mmcr1, MMCR1_PMC4EVT_EXTR, MMCR1_EVT_SIZE);
|
|
if (sel == 0x02 || (env->spr[SPR_CTRL] & CTRL_RUN)) {
|
|
tmp = env->spr[SPR_POWER_PMC4];
|
|
tmp += num_insns;
|
|
if (tmp >= PMC_COUNTER_NEGATIVE_VAL && (mmcr0 & MMCR0_PMCjCE)) {
|
|
tmp = PMC_COUNTER_NEGATIVE_VAL;
|
|
overflow_triggered = true;
|
|
}
|
|
env->spr[SPR_POWER_PMC4] = tmp;
|
|
}
|
|
}
|
|
|
|
if (ins_cnt & (1 << 5)) {
|
|
tmp = env->spr[SPR_POWER_PMC5];
|
|
tmp += num_insns;
|
|
if (tmp >= PMC_COUNTER_NEGATIVE_VAL && (mmcr0 & MMCR0_PMCjCE)) {
|
|
tmp = PMC_COUNTER_NEGATIVE_VAL;
|
|
overflow_triggered = true;
|
|
}
|
|
env->spr[SPR_POWER_PMC5] = tmp;
|
|
}
|
|
|
|
return overflow_triggered;
|
|
}
|
|
|
|
static void pmu_update_cycles(CPUPPCState *env)
|
|
{
|
|
uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
|
|
uint64_t time_delta = now - env->pmu_base_time;
|
|
int sprn, cyc_cnt = env->pmc_cyc_cnt;
|
|
|
|
for (sprn = SPR_POWER_PMC1; sprn <= SPR_POWER_PMC6; sprn++) {
|
|
if (cyc_cnt & (1 << (sprn - SPR_POWER_PMC1 + 1))) {
|
|
/*
|
|
* The pseries and powernv clock runs at 1Ghz, meaning
|
|
* that 1 nanosec equals 1 cycle.
|
|
*/
|
|
env->spr[sprn] += time_delta;
|
|
}
|
|
}
|
|
|
|
/* Update base_time for future calculations */
|
|
env->pmu_base_time = now;
|
|
}
|
|
|
|
/*
|
|
* Helper function to retrieve the cycle overflow timer of the
|
|
* 'sprn' counter.
|
|
*/
|
|
static QEMUTimer *get_cyc_overflow_timer(CPUPPCState *env, int sprn)
|
|
{
|
|
return env->pmu_cyc_overflow_timers[sprn - SPR_POWER_PMC1];
|
|
}
|
|
|
|
static void pmc_update_overflow_timer(CPUPPCState *env, int sprn)
|
|
{
|
|
QEMUTimer *pmc_overflow_timer = get_cyc_overflow_timer(env, sprn);
|
|
int64_t timeout;
|
|
|
|
/*
|
|
* PMC5 does not have an overflow timer and this pointer
|
|
* will be NULL.
|
|
*/
|
|
if (!pmc_overflow_timer) {
|
|
return;
|
|
}
|
|
|
|
if (!(env->pmc_cyc_cnt & (1 << (sprn - SPR_POWER_PMC1 + 1))) ||
|
|
!pmc_has_overflow_enabled(env, sprn)) {
|
|
/* Overflow timer is not needed for this counter */
|
|
timer_del(pmc_overflow_timer);
|
|
return;
|
|
}
|
|
|
|
if (env->spr[sprn] >= PMC_COUNTER_NEGATIVE_VAL) {
|
|
timeout = 0;
|
|
} else {
|
|
timeout = PMC_COUNTER_NEGATIVE_VAL - env->spr[sprn];
|
|
}
|
|
|
|
/*
|
|
* Use timer_mod_anticipate() because an overflow timer might
|
|
* be already running for this PMC.
|
|
*/
|
|
timer_mod_anticipate(pmc_overflow_timer, env->pmu_base_time + timeout);
|
|
}
|
|
|
|
static void pmu_update_overflow_timers(CPUPPCState *env)
|
|
{
|
|
int sprn;
|
|
|
|
/*
|
|
* Scroll through all PMCs and start counter overflow timers for
|
|
* PM_CYC events, if needed.
|
|
*/
|
|
for (sprn = SPR_POWER_PMC1; sprn <= SPR_POWER_PMC6; sprn++) {
|
|
pmc_update_overflow_timer(env, sprn);
|
|
}
|
|
}
|
|
|
|
static void pmu_delete_timers(CPUPPCState *env)
|
|
{
|
|
QEMUTimer *pmc_overflow_timer;
|
|
int sprn;
|
|
|
|
for (sprn = SPR_POWER_PMC1; sprn <= SPR_POWER_PMC6; sprn++) {
|
|
pmc_overflow_timer = get_cyc_overflow_timer(env, sprn);
|
|
|
|
if (pmc_overflow_timer) {
|
|
timer_del(pmc_overflow_timer);
|
|
}
|
|
}
|
|
}
|
|
|
|
void helper_store_mmcr0(CPUPPCState *env, target_ulong value)
|
|
{
|
|
pmu_update_cycles(env);
|
|
|
|
env->spr[SPR_POWER_MMCR0] = value;
|
|
|
|
pmu_mmcr01a_updated(env);
|
|
|
|
/* Update cycle overflow timers with the current MMCR0 state */
|
|
pmu_update_overflow_timers(env);
|
|
}
|
|
|
|
void helper_store_mmcr1(CPUPPCState *env, uint64_t value)
|
|
{
|
|
pmu_update_cycles(env);
|
|
|
|
env->spr[SPR_POWER_MMCR1] = value;
|
|
|
|
pmu_mmcr01a_updated(env);
|
|
}
|
|
|
|
void helper_store_mmcrA(CPUPPCState *env, uint64_t value)
|
|
{
|
|
env->spr[SPR_POWER_MMCRA] = value;
|
|
|
|
pmu_mmcr01a_updated(env);
|
|
}
|
|
|
|
target_ulong helper_read_pmc(CPUPPCState *env, uint32_t sprn)
|
|
{
|
|
pmu_update_cycles(env);
|
|
|
|
return env->spr[sprn];
|
|
}
|
|
|
|
void helper_store_pmc(CPUPPCState *env, uint32_t sprn, uint64_t value)
|
|
{
|
|
pmu_update_cycles(env);
|
|
|
|
env->spr[sprn] = (uint32_t)value;
|
|
|
|
pmc_update_overflow_timer(env, sprn);
|
|
}
|
|
|
|
static void perfm_alert(PowerPCCPU *cpu)
|
|
{
|
|
CPUPPCState *env = &cpu->env;
|
|
|
|
pmu_update_cycles(env);
|
|
|
|
if (env->spr[SPR_POWER_MMCR0] & MMCR0_FCECE) {
|
|
env->spr[SPR_POWER_MMCR0] |= MMCR0_FC;
|
|
|
|
/* Changing MMCR0_FC requires summaries and hflags update */
|
|
pmu_mmcr01a_updated(env);
|
|
|
|
/*
|
|
* Delete all pending timers if we need to freeze
|
|
* the PMC. We'll restart them when the PMC starts
|
|
* running again.
|
|
*/
|
|
pmu_delete_timers(env);
|
|
}
|
|
|
|
if (env->spr[SPR_POWER_MMCR0] & MMCR0_PMAE) {
|
|
/* These MMCR0 bits do not require summaries or hflags update. */
|
|
env->spr[SPR_POWER_MMCR0] &= ~MMCR0_PMAE;
|
|
env->spr[SPR_POWER_MMCR0] |= MMCR0_PMAO;
|
|
ppc_set_irq(cpu, PPC_INTERRUPT_PERFM, 1);
|
|
}
|
|
|
|
raise_ebb_perfm_exception(env);
|
|
}
|
|
|
|
void helper_handle_pmc5_overflow(CPUPPCState *env)
|
|
{
|
|
env->spr[SPR_POWER_PMC5] = PMC_COUNTER_NEGATIVE_VAL;
|
|
perfm_alert(env_archcpu(env));
|
|
}
|
|
|
|
/* This helper assumes that the PMC is running. */
|
|
void helper_insns_inc(CPUPPCState *env, uint32_t num_insns)
|
|
{
|
|
bool overflow_triggered;
|
|
|
|
overflow_triggered = pmu_increment_insns(env, num_insns);
|
|
if (overflow_triggered) {
|
|
perfm_alert(env_archcpu(env));
|
|
}
|
|
}
|
|
|
|
static void cpu_ppc_pmu_timer_cb(void *opaque)
|
|
{
|
|
PowerPCCPU *cpu = opaque;
|
|
|
|
perfm_alert(cpu);
|
|
}
|
|
|
|
void cpu_ppc_pmu_init(CPUPPCState *env)
|
|
{
|
|
PowerPCCPU *cpu = env_archcpu(env);
|
|
int i, sprn;
|
|
|
|
for (sprn = SPR_POWER_PMC1; sprn <= SPR_POWER_PMC6; sprn++) {
|
|
if (sprn == SPR_POWER_PMC5) {
|
|
continue;
|
|
}
|
|
|
|
i = sprn - SPR_POWER_PMC1;
|
|
|
|
env->pmu_cyc_overflow_timers[i] = timer_new_ns(QEMU_CLOCK_VIRTUAL,
|
|
&cpu_ppc_pmu_timer_cb,
|
|
cpu);
|
|
}
|
|
}
|
|
#endif /* defined(TARGET_PPC64) && !defined(CONFIG_USER_ONLY) */
|