qemu/hw/arm/vexpress.c
Eduardo Habkost a489d1951c Use OBJECT_DECLARE_TYPE when possible
This converts existing DECLARE_OBJ_CHECKERS usage to
OBJECT_DECLARE_TYPE when possible.

 $ ./scripts/codeconverter/converter.py -i \
   --pattern=AddObjectDeclareType $(git grep -l '' -- '*.[ch]')

Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Acked-by: Paul Durrant <paul@xen.org>
Message-Id: <20200916182519.415636-5-ehabkost@redhat.com>
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
2020-09-18 14:12:32 -04:00

855 lines
29 KiB
C

/*
* ARM Versatile Express emulation.
*
* Copyright (c) 2010 - 2011 B Labs Ltd.
* Copyright (c) 2011 Linaro Limited
* Written by Bahadir Balban, Amit Mahajan, Peter Maydell
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, see <http://www.gnu.org/licenses/>.
*
* Contributions after 2012-01-13 are licensed under the terms of the
* GNU GPL, version 2 or (at your option) any later version.
*/
#include "qemu/osdep.h"
#include "qapi/error.h"
#include "qemu-common.h"
#include "cpu.h"
#include "hw/sysbus.h"
#include "hw/arm/boot.h"
#include "hw/arm/primecell.h"
#include "hw/net/lan9118.h"
#include "hw/i2c/i2c.h"
#include "net/net.h"
#include "sysemu/sysemu.h"
#include "hw/boards.h"
#include "hw/loader.h"
#include "exec/address-spaces.h"
#include "hw/block/flash.h"
#include "sysemu/device_tree.h"
#include "qemu/error-report.h"
#include <libfdt.h>
#include "hw/char/pl011.h"
#include "hw/cpu/a9mpcore.h"
#include "hw/cpu/a15mpcore.h"
#include "hw/i2c/arm_sbcon_i2c.h"
#include "hw/sd/sd.h"
#include "qom/object.h"
#define VEXPRESS_BOARD_ID 0x8e0
#define VEXPRESS_FLASH_SIZE (64 * 1024 * 1024)
#define VEXPRESS_FLASH_SECT_SIZE (256 * 1024)
/* Number of virtio transports to create (0..8; limited by
* number of available IRQ lines).
*/
#define NUM_VIRTIO_TRANSPORTS 4
/* Address maps for peripherals:
* the Versatile Express motherboard has two possible maps,
* the "legacy" one (used for A9) and the "Cortex-A Series"
* map (used for newer cores).
* Individual daughterboards can also have different maps for
* their peripherals.
*/
enum {
VE_SYSREGS,
VE_SP810,
VE_SERIALPCI,
VE_PL041,
VE_MMCI,
VE_KMI0,
VE_KMI1,
VE_UART0,
VE_UART1,
VE_UART2,
VE_UART3,
VE_WDT,
VE_TIMER01,
VE_TIMER23,
VE_SERIALDVI,
VE_RTC,
VE_COMPACTFLASH,
VE_CLCD,
VE_NORFLASH0,
VE_NORFLASH1,
VE_NORFLASHALIAS,
VE_SRAM,
VE_VIDEORAM,
VE_ETHERNET,
VE_USB,
VE_DAPROM,
VE_VIRTIO,
};
static hwaddr motherboard_legacy_map[] = {
[VE_NORFLASHALIAS] = 0,
/* CS7: 0x10000000 .. 0x10020000 */
[VE_SYSREGS] = 0x10000000,
[VE_SP810] = 0x10001000,
[VE_SERIALPCI] = 0x10002000,
[VE_PL041] = 0x10004000,
[VE_MMCI] = 0x10005000,
[VE_KMI0] = 0x10006000,
[VE_KMI1] = 0x10007000,
[VE_UART0] = 0x10009000,
[VE_UART1] = 0x1000a000,
[VE_UART2] = 0x1000b000,
[VE_UART3] = 0x1000c000,
[VE_WDT] = 0x1000f000,
[VE_TIMER01] = 0x10011000,
[VE_TIMER23] = 0x10012000,
[VE_VIRTIO] = 0x10013000,
[VE_SERIALDVI] = 0x10016000,
[VE_RTC] = 0x10017000,
[VE_COMPACTFLASH] = 0x1001a000,
[VE_CLCD] = 0x1001f000,
/* CS0: 0x40000000 .. 0x44000000 */
[VE_NORFLASH0] = 0x40000000,
/* CS1: 0x44000000 .. 0x48000000 */
[VE_NORFLASH1] = 0x44000000,
/* CS2: 0x48000000 .. 0x4a000000 */
[VE_SRAM] = 0x48000000,
/* CS3: 0x4c000000 .. 0x50000000 */
[VE_VIDEORAM] = 0x4c000000,
[VE_ETHERNET] = 0x4e000000,
[VE_USB] = 0x4f000000,
};
static hwaddr motherboard_aseries_map[] = {
[VE_NORFLASHALIAS] = 0,
/* CS0: 0x08000000 .. 0x0c000000 */
[VE_NORFLASH0] = 0x08000000,
/* CS4: 0x0c000000 .. 0x10000000 */
[VE_NORFLASH1] = 0x0c000000,
/* CS5: 0x10000000 .. 0x14000000 */
/* CS1: 0x14000000 .. 0x18000000 */
[VE_SRAM] = 0x14000000,
/* CS2: 0x18000000 .. 0x1c000000 */
[VE_VIDEORAM] = 0x18000000,
[VE_ETHERNET] = 0x1a000000,
[VE_USB] = 0x1b000000,
/* CS3: 0x1c000000 .. 0x20000000 */
[VE_DAPROM] = 0x1c000000,
[VE_SYSREGS] = 0x1c010000,
[VE_SP810] = 0x1c020000,
[VE_SERIALPCI] = 0x1c030000,
[VE_PL041] = 0x1c040000,
[VE_MMCI] = 0x1c050000,
[VE_KMI0] = 0x1c060000,
[VE_KMI1] = 0x1c070000,
[VE_UART0] = 0x1c090000,
[VE_UART1] = 0x1c0a0000,
[VE_UART2] = 0x1c0b0000,
[VE_UART3] = 0x1c0c0000,
[VE_WDT] = 0x1c0f0000,
[VE_TIMER01] = 0x1c110000,
[VE_TIMER23] = 0x1c120000,
[VE_VIRTIO] = 0x1c130000,
[VE_SERIALDVI] = 0x1c160000,
[VE_RTC] = 0x1c170000,
[VE_COMPACTFLASH] = 0x1c1a0000,
[VE_CLCD] = 0x1c1f0000,
};
/* Structure defining the peculiarities of a specific daughterboard */
typedef struct VEDBoardInfo VEDBoardInfo;
struct VexpressMachineClass {
MachineClass parent;
VEDBoardInfo *daughterboard;
};
struct VexpressMachineState {
MachineState parent;
bool secure;
bool virt;
};
#define TYPE_VEXPRESS_MACHINE "vexpress"
#define TYPE_VEXPRESS_A9_MACHINE MACHINE_TYPE_NAME("vexpress-a9")
#define TYPE_VEXPRESS_A15_MACHINE MACHINE_TYPE_NAME("vexpress-a15")
OBJECT_DECLARE_TYPE(VexpressMachineState, VexpressMachineClass, VEXPRESS_MACHINE)
typedef void DBoardInitFn(const VexpressMachineState *machine,
ram_addr_t ram_size,
const char *cpu_type,
qemu_irq *pic);
struct VEDBoardInfo {
struct arm_boot_info bootinfo;
const hwaddr *motherboard_map;
hwaddr loader_start;
const hwaddr gic_cpu_if_addr;
uint32_t proc_id;
uint32_t num_voltage_sensors;
const uint32_t *voltages;
uint32_t num_clocks;
const uint32_t *clocks;
DBoardInitFn *init;
};
static void init_cpus(MachineState *ms, const char *cpu_type,
const char *privdev, hwaddr periphbase,
qemu_irq *pic, bool secure, bool virt)
{
DeviceState *dev;
SysBusDevice *busdev;
int n;
unsigned int smp_cpus = ms->smp.cpus;
/* Create the actual CPUs */
for (n = 0; n < smp_cpus; n++) {
Object *cpuobj = object_new(cpu_type);
if (!secure) {
object_property_set_bool(cpuobj, "has_el3", false, NULL);
}
if (!virt) {
if (object_property_find(cpuobj, "has_el2", NULL)) {
object_property_set_bool(cpuobj, "has_el2", false, NULL);
}
}
if (object_property_find(cpuobj, "reset-cbar", NULL)) {
object_property_set_int(cpuobj, "reset-cbar", periphbase,
&error_abort);
}
qdev_realize(DEVICE(cpuobj), NULL, &error_fatal);
}
/* Create the private peripheral devices (including the GIC);
* this must happen after the CPUs are created because a15mpcore_priv
* wires itself up to the CPU's generic_timer gpio out lines.
*/
dev = qdev_new(privdev);
qdev_prop_set_uint32(dev, "num-cpu", smp_cpus);
busdev = SYS_BUS_DEVICE(dev);
sysbus_realize_and_unref(busdev, &error_fatal);
sysbus_mmio_map(busdev, 0, periphbase);
/* Interrupts [42:0] are from the motherboard;
* [47:43] are reserved; [63:48] are daughterboard
* peripherals. Note that some documentation numbers
* external interrupts starting from 32 (because there
* are internal interrupts 0..31).
*/
for (n = 0; n < 64; n++) {
pic[n] = qdev_get_gpio_in(dev, n);
}
/* Connect the CPUs to the GIC */
for (n = 0; n < smp_cpus; n++) {
DeviceState *cpudev = DEVICE(qemu_get_cpu(n));
sysbus_connect_irq(busdev, n, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
sysbus_connect_irq(busdev, n + smp_cpus,
qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
sysbus_connect_irq(busdev, n + 2 * smp_cpus,
qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
sysbus_connect_irq(busdev, n + 3 * smp_cpus,
qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
}
}
static void a9_daughterboard_init(const VexpressMachineState *vms,
ram_addr_t ram_size,
const char *cpu_type,
qemu_irq *pic)
{
MachineState *machine = MACHINE(vms);
MemoryRegion *sysmem = get_system_memory();
MemoryRegion *lowram = g_new(MemoryRegion, 1);
ram_addr_t low_ram_size;
if (ram_size > 0x40000000) {
/* 1GB is the maximum the address space permits */
error_report("vexpress-a9: cannot model more than 1GB RAM");
exit(1);
}
low_ram_size = ram_size;
if (low_ram_size > 0x4000000) {
low_ram_size = 0x4000000;
}
/* RAM is from 0x60000000 upwards. The bottom 64MB of the
* address space should in theory be remappable to various
* things including ROM or RAM; we always map the RAM there.
*/
memory_region_init_alias(lowram, NULL, "vexpress.lowmem", machine->ram,
0, low_ram_size);
memory_region_add_subregion(sysmem, 0x0, lowram);
memory_region_add_subregion(sysmem, 0x60000000, machine->ram);
/* 0x1e000000 A9MPCore (SCU) private memory region */
init_cpus(machine, cpu_type, TYPE_A9MPCORE_PRIV, 0x1e000000, pic,
vms->secure, vms->virt);
/* Daughterboard peripherals : 0x10020000 .. 0x20000000 */
/* 0x10020000 PL111 CLCD (daughterboard) */
sysbus_create_simple("pl111", 0x10020000, pic[44]);
/* 0x10060000 AXI RAM */
/* 0x100e0000 PL341 Dynamic Memory Controller */
/* 0x100e1000 PL354 Static Memory Controller */
/* 0x100e2000 System Configuration Controller */
sysbus_create_simple("sp804", 0x100e4000, pic[48]);
/* 0x100e5000 SP805 Watchdog module */
/* 0x100e6000 BP147 TrustZone Protection Controller */
/* 0x100e9000 PL301 'Fast' AXI matrix */
/* 0x100ea000 PL301 'Slow' AXI matrix */
/* 0x100ec000 TrustZone Address Space Controller */
/* 0x10200000 CoreSight debug APB */
/* 0x1e00a000 PL310 L2 Cache Controller */
sysbus_create_varargs("l2x0", 0x1e00a000, NULL);
}
/* Voltage values for SYS_CFG_VOLT daughterboard registers;
* values are in microvolts.
*/
static const uint32_t a9_voltages[] = {
1000000, /* VD10 : 1.0V : SoC internal logic voltage */
1000000, /* VD10_S2 : 1.0V : PL310, L2 cache, RAM, non-PL310 logic */
1000000, /* VD10_S3 : 1.0V : Cortex-A9, cores, MPEs, SCU, PL310 logic */
1800000, /* VCC1V8 : 1.8V : DDR2 SDRAM, test chip DDR2 I/O supply */
900000, /* DDR2VTT : 0.9V : DDR2 SDRAM VTT termination voltage */
3300000, /* VCC3V3 : 3.3V : local board supply for misc external logic */
};
/* Reset values for daughterboard oscillators (in Hz) */
static const uint32_t a9_clocks[] = {
45000000, /* AMBA AXI ACLK: 45MHz */
23750000, /* daughterboard CLCD clock: 23.75MHz */
66670000, /* Test chip reference clock: 66.67MHz */
};
static VEDBoardInfo a9_daughterboard = {
.motherboard_map = motherboard_legacy_map,
.loader_start = 0x60000000,
.gic_cpu_if_addr = 0x1e000100,
.proc_id = 0x0c000191,
.num_voltage_sensors = ARRAY_SIZE(a9_voltages),
.voltages = a9_voltages,
.num_clocks = ARRAY_SIZE(a9_clocks),
.clocks = a9_clocks,
.init = a9_daughterboard_init,
};
static void a15_daughterboard_init(const VexpressMachineState *vms,
ram_addr_t ram_size,
const char *cpu_type,
qemu_irq *pic)
{
MachineState *machine = MACHINE(vms);
MemoryRegion *sysmem = get_system_memory();
MemoryRegion *sram = g_new(MemoryRegion, 1);
{
/* We have to use a separate 64 bit variable here to avoid the gcc
* "comparison is always false due to limited range of data type"
* warning if we are on a host where ram_addr_t is 32 bits.
*/
uint64_t rsz = ram_size;
if (rsz > (30ULL * 1024 * 1024 * 1024)) {
error_report("vexpress-a15: cannot model more than 30GB RAM");
exit(1);
}
}
/* RAM is from 0x80000000 upwards; there is no low-memory alias for it. */
memory_region_add_subregion(sysmem, 0x80000000, machine->ram);
/* 0x2c000000 A15MPCore private memory region (GIC) */
init_cpus(machine, cpu_type, TYPE_A15MPCORE_PRIV,
0x2c000000, pic, vms->secure, vms->virt);
/* A15 daughterboard peripherals: */
/* 0x20000000: CoreSight interfaces: not modelled */
/* 0x2a000000: PL301 AXI interconnect: not modelled */
/* 0x2a420000: SCC: not modelled */
/* 0x2a430000: system counter: not modelled */
/* 0x2b000000: HDLCD controller: not modelled */
/* 0x2b060000: SP805 watchdog: not modelled */
/* 0x2b0a0000: PL341 dynamic memory controller: not modelled */
/* 0x2e000000: system SRAM */
memory_region_init_ram(sram, NULL, "vexpress.a15sram", 0x10000,
&error_fatal);
memory_region_add_subregion(sysmem, 0x2e000000, sram);
/* 0x7ffb0000: DMA330 DMA controller: not modelled */
/* 0x7ffd0000: PL354 static memory controller: not modelled */
}
static const uint32_t a15_voltages[] = {
900000, /* Vcore: 0.9V : CPU core voltage */
};
static const uint32_t a15_clocks[] = {
60000000, /* OSCCLK0: 60MHz : CPU_CLK reference */
0, /* OSCCLK1: reserved */
0, /* OSCCLK2: reserved */
0, /* OSCCLK3: reserved */
40000000, /* OSCCLK4: 40MHz : external AXI master clock */
23750000, /* OSCCLK5: 23.75MHz : HDLCD PLL reference */
50000000, /* OSCCLK6: 50MHz : static memory controller clock */
60000000, /* OSCCLK7: 60MHz : SYSCLK reference */
40000000, /* OSCCLK8: 40MHz : DDR2 PLL reference */
};
static VEDBoardInfo a15_daughterboard = {
.motherboard_map = motherboard_aseries_map,
.loader_start = 0x80000000,
.gic_cpu_if_addr = 0x2c002000,
.proc_id = 0x14000237,
.num_voltage_sensors = ARRAY_SIZE(a15_voltages),
.voltages = a15_voltages,
.num_clocks = ARRAY_SIZE(a15_clocks),
.clocks = a15_clocks,
.init = a15_daughterboard_init,
};
static int add_virtio_mmio_node(void *fdt, uint32_t acells, uint32_t scells,
hwaddr addr, hwaddr size, uint32_t intc,
int irq)
{
/* Add a virtio_mmio node to the device tree blob:
* virtio_mmio@ADDRESS {
* compatible = "virtio,mmio";
* reg = <ADDRESS, SIZE>;
* interrupt-parent = <&intc>;
* interrupts = <0, irq, 1>;
* }
* (Note that the format of the interrupts property is dependent on the
* interrupt controller that interrupt-parent points to; these are for
* the ARM GIC and indicate an SPI interrupt, rising-edge-triggered.)
*/
int rc;
char *nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, addr);
rc = qemu_fdt_add_subnode(fdt, nodename);
rc |= qemu_fdt_setprop_string(fdt, nodename,
"compatible", "virtio,mmio");
rc |= qemu_fdt_setprop_sized_cells(fdt, nodename, "reg",
acells, addr, scells, size);
qemu_fdt_setprop_cells(fdt, nodename, "interrupt-parent", intc);
qemu_fdt_setprop_cells(fdt, nodename, "interrupts", 0, irq, 1);
qemu_fdt_setprop(fdt, nodename, "dma-coherent", NULL, 0);
g_free(nodename);
if (rc) {
return -1;
}
return 0;
}
static uint32_t find_int_controller(void *fdt)
{
/* Find the FDT node corresponding to the interrupt controller
* for virtio-mmio devices. We do this by scanning the fdt for
* a node with the right compatibility, since we know there is
* only one GIC on a vexpress board.
* We return the phandle of the node, or 0 if none was found.
*/
const char *compat = "arm,cortex-a9-gic";
int offset;
offset = fdt_node_offset_by_compatible(fdt, -1, compat);
if (offset >= 0) {
return fdt_get_phandle(fdt, offset);
}
return 0;
}
static void vexpress_modify_dtb(const struct arm_boot_info *info, void *fdt)
{
uint32_t acells, scells, intc;
const VEDBoardInfo *daughterboard = (const VEDBoardInfo *)info;
acells = qemu_fdt_getprop_cell(fdt, "/", "#address-cells",
NULL, &error_fatal);
scells = qemu_fdt_getprop_cell(fdt, "/", "#size-cells",
NULL, &error_fatal);
intc = find_int_controller(fdt);
if (!intc) {
/* Not fatal, we just won't provide virtio. This will
* happen with older device tree blobs.
*/
warn_report("couldn't find interrupt controller in "
"dtb; will not include virtio-mmio devices in the dtb");
} else {
int i;
const hwaddr *map = daughterboard->motherboard_map;
/* We iterate backwards here because adding nodes
* to the dtb puts them in last-first.
*/
for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
add_virtio_mmio_node(fdt, acells, scells,
map[VE_VIRTIO] + 0x200 * i,
0x200, intc, 40 + i);
}
}
}
/* Open code a private version of pflash registration since we
* need to set non-default device width for VExpress platform.
*/
static PFlashCFI01 *ve_pflash_cfi01_register(hwaddr base, const char *name,
DriveInfo *di)
{
DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
if (di) {
qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(di));
}
qdev_prop_set_uint32(dev, "num-blocks",
VEXPRESS_FLASH_SIZE / VEXPRESS_FLASH_SECT_SIZE);
qdev_prop_set_uint64(dev, "sector-length", VEXPRESS_FLASH_SECT_SIZE);
qdev_prop_set_uint8(dev, "width", 4);
qdev_prop_set_uint8(dev, "device-width", 2);
qdev_prop_set_bit(dev, "big-endian", false);
qdev_prop_set_uint16(dev, "id0", 0x89);
qdev_prop_set_uint16(dev, "id1", 0x18);
qdev_prop_set_uint16(dev, "id2", 0x00);
qdev_prop_set_uint16(dev, "id3", 0x00);
qdev_prop_set_string(dev, "name", name);
sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
return PFLASH_CFI01(dev);
}
static void vexpress_common_init(MachineState *machine)
{
VexpressMachineState *vms = VEXPRESS_MACHINE(machine);
VexpressMachineClass *vmc = VEXPRESS_MACHINE_GET_CLASS(machine);
VEDBoardInfo *daughterboard = vmc->daughterboard;
DeviceState *dev, *sysctl, *pl041;
qemu_irq pic[64];
uint32_t sys_id;
DriveInfo *dinfo;
PFlashCFI01 *pflash0;
I2CBus *i2c;
ram_addr_t vram_size, sram_size;
MemoryRegion *sysmem = get_system_memory();
MemoryRegion *vram = g_new(MemoryRegion, 1);
MemoryRegion *sram = g_new(MemoryRegion, 1);
MemoryRegion *flashalias = g_new(MemoryRegion, 1);
MemoryRegion *flash0mem;
const hwaddr *map = daughterboard->motherboard_map;
int i;
daughterboard->init(vms, machine->ram_size, machine->cpu_type, pic);
/*
* If a bios file was provided, attempt to map it into memory
*/
if (bios_name) {
char *fn;
int image_size;
if (drive_get(IF_PFLASH, 0, 0)) {
error_report("The contents of the first flash device may be "
"specified with -bios or with -drive if=pflash... "
"but you cannot use both options at once");
exit(1);
}
fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
if (!fn) {
error_report("Could not find ROM image '%s'", bios_name);
exit(1);
}
image_size = load_image_targphys(fn, map[VE_NORFLASH0],
VEXPRESS_FLASH_SIZE);
g_free(fn);
if (image_size < 0) {
error_report("Could not load ROM image '%s'", bios_name);
exit(1);
}
}
/* Motherboard peripherals: the wiring is the same but the
* addresses vary between the legacy and A-Series memory maps.
*/
sys_id = 0x1190f500;
sysctl = qdev_new("realview_sysctl");
qdev_prop_set_uint32(sysctl, "sys_id", sys_id);
qdev_prop_set_uint32(sysctl, "proc_id", daughterboard->proc_id);
qdev_prop_set_uint32(sysctl, "len-db-voltage",
daughterboard->num_voltage_sensors);
for (i = 0; i < daughterboard->num_voltage_sensors; i++) {
char *propname = g_strdup_printf("db-voltage[%d]", i);
qdev_prop_set_uint32(sysctl, propname, daughterboard->voltages[i]);
g_free(propname);
}
qdev_prop_set_uint32(sysctl, "len-db-clock",
daughterboard->num_clocks);
for (i = 0; i < daughterboard->num_clocks; i++) {
char *propname = g_strdup_printf("db-clock[%d]", i);
qdev_prop_set_uint32(sysctl, propname, daughterboard->clocks[i]);
g_free(propname);
}
sysbus_realize_and_unref(SYS_BUS_DEVICE(sysctl), &error_fatal);
sysbus_mmio_map(SYS_BUS_DEVICE(sysctl), 0, map[VE_SYSREGS]);
/* VE_SP810: not modelled */
/* VE_SERIALPCI: not modelled */
pl041 = qdev_new("pl041");
qdev_prop_set_uint32(pl041, "nc_fifo_depth", 512);
sysbus_realize_and_unref(SYS_BUS_DEVICE(pl041), &error_fatal);
sysbus_mmio_map(SYS_BUS_DEVICE(pl041), 0, map[VE_PL041]);
sysbus_connect_irq(SYS_BUS_DEVICE(pl041), 0, pic[11]);
dev = sysbus_create_varargs("pl181", map[VE_MMCI], pic[9], pic[10], NULL);
/* Wire up MMC card detect and read-only signals */
qdev_connect_gpio_out_named(dev, "card-read-only", 0,
qdev_get_gpio_in(sysctl, ARM_SYSCTL_GPIO_MMC_WPROT));
qdev_connect_gpio_out_named(dev, "card-inserted", 0,
qdev_get_gpio_in(sysctl, ARM_SYSCTL_GPIO_MMC_CARDIN));
dinfo = drive_get_next(IF_SD);
if (dinfo) {
DeviceState *card;
card = qdev_new(TYPE_SD_CARD);
qdev_prop_set_drive_err(card, "drive", blk_by_legacy_dinfo(dinfo),
&error_fatal);
qdev_realize_and_unref(card, qdev_get_child_bus(dev, "sd-bus"),
&error_fatal);
}
sysbus_create_simple("pl050_keyboard", map[VE_KMI0], pic[12]);
sysbus_create_simple("pl050_mouse", map[VE_KMI1], pic[13]);
pl011_create(map[VE_UART0], pic[5], serial_hd(0));
pl011_create(map[VE_UART1], pic[6], serial_hd(1));
pl011_create(map[VE_UART2], pic[7], serial_hd(2));
pl011_create(map[VE_UART3], pic[8], serial_hd(3));
sysbus_create_simple("sp804", map[VE_TIMER01], pic[2]);
sysbus_create_simple("sp804", map[VE_TIMER23], pic[3]);
dev = sysbus_create_simple(TYPE_VERSATILE_I2C, map[VE_SERIALDVI], NULL);
i2c = (I2CBus *)qdev_get_child_bus(dev, "i2c");
i2c_slave_create_simple(i2c, "sii9022", 0x39);
sysbus_create_simple("pl031", map[VE_RTC], pic[4]); /* RTC */
/* VE_COMPACTFLASH: not modelled */
sysbus_create_simple("pl111", map[VE_CLCD], pic[14]);
dinfo = drive_get_next(IF_PFLASH);
pflash0 = ve_pflash_cfi01_register(map[VE_NORFLASH0], "vexpress.flash0",
dinfo);
if (!pflash0) {
error_report("vexpress: error registering flash 0");
exit(1);
}
if (map[VE_NORFLASHALIAS] != -1) {
/* Map flash 0 as an alias into low memory */
flash0mem = sysbus_mmio_get_region(SYS_BUS_DEVICE(pflash0), 0);
memory_region_init_alias(flashalias, NULL, "vexpress.flashalias",
flash0mem, 0, VEXPRESS_FLASH_SIZE);
memory_region_add_subregion(sysmem, map[VE_NORFLASHALIAS], flashalias);
}
dinfo = drive_get_next(IF_PFLASH);
if (!ve_pflash_cfi01_register(map[VE_NORFLASH1], "vexpress.flash1",
dinfo)) {
error_report("vexpress: error registering flash 1");
exit(1);
}
sram_size = 0x2000000;
memory_region_init_ram(sram, NULL, "vexpress.sram", sram_size,
&error_fatal);
memory_region_add_subregion(sysmem, map[VE_SRAM], sram);
vram_size = 0x800000;
memory_region_init_ram(vram, NULL, "vexpress.vram", vram_size,
&error_fatal);
memory_region_add_subregion(sysmem, map[VE_VIDEORAM], vram);
/* 0x4e000000 LAN9118 Ethernet */
if (nd_table[0].used) {
lan9118_init(&nd_table[0], map[VE_ETHERNET], pic[15]);
}
/* VE_USB: not modelled */
/* VE_DAPROM: not modelled */
/* Create mmio transports, so the user can create virtio backends
* (which will be automatically plugged in to the transports). If
* no backend is created the transport will just sit harmlessly idle.
*/
for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
sysbus_create_simple("virtio-mmio", map[VE_VIRTIO] + 0x200 * i,
pic[40 + i]);
}
daughterboard->bootinfo.ram_size = machine->ram_size;
daughterboard->bootinfo.nb_cpus = machine->smp.cpus;
daughterboard->bootinfo.board_id = VEXPRESS_BOARD_ID;
daughterboard->bootinfo.loader_start = daughterboard->loader_start;
daughterboard->bootinfo.smp_loader_start = map[VE_SRAM];
daughterboard->bootinfo.smp_bootreg_addr = map[VE_SYSREGS] + 0x30;
daughterboard->bootinfo.gic_cpu_if_addr = daughterboard->gic_cpu_if_addr;
daughterboard->bootinfo.modify_dtb = vexpress_modify_dtb;
/* When booting Linux we should be in secure state if the CPU has one. */
daughterboard->bootinfo.secure_boot = vms->secure;
arm_load_kernel(ARM_CPU(first_cpu), machine, &daughterboard->bootinfo);
}
static bool vexpress_get_secure(Object *obj, Error **errp)
{
VexpressMachineState *vms = VEXPRESS_MACHINE(obj);
return vms->secure;
}
static void vexpress_set_secure(Object *obj, bool value, Error **errp)
{
VexpressMachineState *vms = VEXPRESS_MACHINE(obj);
vms->secure = value;
}
static bool vexpress_get_virt(Object *obj, Error **errp)
{
VexpressMachineState *vms = VEXPRESS_MACHINE(obj);
return vms->virt;
}
static void vexpress_set_virt(Object *obj, bool value, Error **errp)
{
VexpressMachineState *vms = VEXPRESS_MACHINE(obj);
vms->virt = value;
}
static void vexpress_instance_init(Object *obj)
{
VexpressMachineState *vms = VEXPRESS_MACHINE(obj);
/* EL3 is enabled by default on vexpress */
vms->secure = true;
object_property_add_bool(obj, "secure", vexpress_get_secure,
vexpress_set_secure);
object_property_set_description(obj, "secure",
"Set on/off to enable/disable the ARM "
"Security Extensions (TrustZone)");
}
static void vexpress_a15_instance_init(Object *obj)
{
VexpressMachineState *vms = VEXPRESS_MACHINE(obj);
/*
* For the vexpress-a15, EL2 is by default enabled if EL3 is,
* but can also be specifically set to on or off.
*/
vms->virt = true;
object_property_add_bool(obj, "virtualization", vexpress_get_virt,
vexpress_set_virt);
object_property_set_description(obj, "virtualization",
"Set on/off to enable/disable the ARM "
"Virtualization Extensions "
"(defaults to same as 'secure')");
}
static void vexpress_a9_instance_init(Object *obj)
{
VexpressMachineState *vms = VEXPRESS_MACHINE(obj);
/* The A9 doesn't have the virt extensions */
vms->virt = false;
}
static void vexpress_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
mc->desc = "ARM Versatile Express";
mc->init = vexpress_common_init;
mc->max_cpus = 4;
mc->ignore_memory_transaction_failures = true;
mc->default_ram_id = "vexpress.highmem";
}
static void vexpress_a9_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
VexpressMachineClass *vmc = VEXPRESS_MACHINE_CLASS(oc);
mc->desc = "ARM Versatile Express for Cortex-A9";
mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a9");
vmc->daughterboard = &a9_daughterboard;
}
static void vexpress_a15_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
VexpressMachineClass *vmc = VEXPRESS_MACHINE_CLASS(oc);
mc->desc = "ARM Versatile Express for Cortex-A15";
mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
vmc->daughterboard = &a15_daughterboard;
}
static const TypeInfo vexpress_info = {
.name = TYPE_VEXPRESS_MACHINE,
.parent = TYPE_MACHINE,
.abstract = true,
.instance_size = sizeof(VexpressMachineState),
.instance_init = vexpress_instance_init,
.class_size = sizeof(VexpressMachineClass),
.class_init = vexpress_class_init,
};
static const TypeInfo vexpress_a9_info = {
.name = TYPE_VEXPRESS_A9_MACHINE,
.parent = TYPE_VEXPRESS_MACHINE,
.class_init = vexpress_a9_class_init,
.instance_init = vexpress_a9_instance_init,
};
static const TypeInfo vexpress_a15_info = {
.name = TYPE_VEXPRESS_A15_MACHINE,
.parent = TYPE_VEXPRESS_MACHINE,
.class_init = vexpress_a15_class_init,
.instance_init = vexpress_a15_instance_init,
};
static void vexpress_machine_init(void)
{
type_register_static(&vexpress_info);
type_register_static(&vexpress_a9_info);
type_register_static(&vexpress_a15_info);
}
type_init(vexpress_machine_init);