qemu/linux-user/flatload.c
Richard Henderson d0b6b79323 linux-user: Replace bprm->fd with bprm->src.fd
There are only a couple of uses of bprm->fd remaining.
Migrate to the other field.

Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
2023-10-30 13:41:55 -07:00

826 lines
26 KiB
C

/****************************************************************************/
/*
* QEMU bFLT binary loader. Based on linux/fs/binfmt_flat.c
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*
* Copyright (C) 2006 CodeSourcery.
* Copyright (C) 2000-2003 David McCullough <davidm@snapgear.com>
* Copyright (C) 2002 Greg Ungerer <gerg@snapgear.com>
* Copyright (C) 2002 SnapGear, by Paul Dale <pauli@snapgear.com>
* Copyright (C) 2000, 2001 Lineo, by David McCullough <davidm@lineo.com>
* based heavily on:
*
* linux/fs/binfmt_aout.c:
* Copyright (C) 1991, 1992, 1996 Linus Torvalds
* linux/fs/binfmt_flat.c for 2.0 kernel
* Copyright (C) 1998 Kenneth Albanowski <kjahds@kjahds.com>
* JAN/99 -- coded full program relocation (gerg@snapgear.com)
*/
/* ??? ZFLAT and shared library support is currently disabled. */
/****************************************************************************/
#include "qemu/osdep.h"
#include "qemu.h"
#include "user-internals.h"
#include "loader.h"
#include "user-mmap.h"
#include "flat.h"
#include "target_flat.h"
//#define DEBUG
#ifdef DEBUG
#define DBG_FLT(...) printf(__VA_ARGS__)
#else
#define DBG_FLT(...)
#endif
#define RELOC_FAILED 0xff00ff01 /* Relocation incorrect somewhere */
#define UNLOADED_LIB 0x7ff000ff /* Placeholder for unused library */
struct lib_info {
abi_ulong start_code; /* Start of text segment */
abi_ulong start_data; /* Start of data segment */
abi_ulong end_data; /* Start of bss section */
abi_ulong start_brk; /* End of data segment */
abi_ulong text_len; /* Length of text segment */
abi_ulong entry; /* Start address for this module */
abi_ulong build_date; /* When this one was compiled */
short loaded; /* Has this library been loaded? */
};
#ifdef CONFIG_BINFMT_SHARED_FLAT
static int load_flat_shared_library(int id, struct lib_info *p);
#endif
struct linux_binprm;
/****************************************************************************/
/*
* create_flat_tables() parses the env- and arg-strings in new user
* memory and creates the pointer tables from them, and puts their
* addresses on the "stack", returning the new stack pointer value.
*/
/* Push a block of strings onto the guest stack. */
static abi_ulong copy_strings(abi_ulong p, int n, char **s)
{
int len;
while (n-- > 0) {
len = strlen(s[n]) + 1;
p -= len;
memcpy_to_target(p, s[n], len);
}
return p;
}
static int target_pread(int fd, abi_ulong ptr, abi_ulong len,
abi_ulong offset)
{
void *buf;
int ret;
buf = lock_user(VERIFY_WRITE, ptr, len, 0);
if (!buf) {
return -EFAULT;
}
ret = pread(fd, buf, len, offset);
if (ret < 0) {
ret = -errno;
}
unlock_user(buf, ptr, len);
return ret;
}
/****************************************************************************/
#ifdef CONFIG_BINFMT_ZFLAT
#include <linux/zlib.h>
#define LBUFSIZE 4000
/* gzip flag byte */
#define ASCII_FLAG 0x01 /* bit 0 set: file probably ASCII text */
#define CONTINUATION 0x02 /* bit 1 set: continuation of multi-part gzip file */
#define EXTRA_FIELD 0x04 /* bit 2 set: extra field present */
#define ORIG_NAME 0x08 /* bit 3 set: original file name present */
#define COMMENT 0x10 /* bit 4 set: file comment present */
#define ENCRYPTED 0x20 /* bit 5 set: file is encrypted */
#define RESERVED 0xC0 /* bit 6,7: reserved */
static int decompress_exec(
struct linux_binprm *bprm,
unsigned long offset,
char *dst,
long len,
int fd)
{
unsigned char *buf;
z_stream strm;
loff_t fpos;
int ret, retval;
DBG_FLT("decompress_exec(offset=%x,buf=%x,len=%x)\n",(int)offset, (int)dst, (int)len);
memset(&strm, 0, sizeof(strm));
strm.workspace = kmalloc(zlib_inflate_workspacesize(), GFP_KERNEL);
if (strm.workspace == NULL) {
DBG_FLT("binfmt_flat: no memory for decompress workspace\n");
return -ENOMEM;
}
buf = kmalloc(LBUFSIZE, GFP_KERNEL);
if (buf == NULL) {
DBG_FLT("binfmt_flat: no memory for read buffer\n");
retval = -ENOMEM;
goto out_free;
}
/* Read in first chunk of data and parse gzip header. */
fpos = offset;
ret = bprm->file->f_op->read(bprm->file, buf, LBUFSIZE, &fpos);
strm.next_in = buf;
strm.avail_in = ret;
strm.total_in = 0;
retval = -ENOEXEC;
/* Check minimum size -- gzip header */
if (ret < 10) {
DBG_FLT("binfmt_flat: file too small?\n");
goto out_free_buf;
}
/* Check gzip magic number */
if ((buf[0] != 037) || ((buf[1] != 0213) && (buf[1] != 0236))) {
DBG_FLT("binfmt_flat: unknown compression magic?\n");
goto out_free_buf;
}
/* Check gzip method */
if (buf[2] != 8) {
DBG_FLT("binfmt_flat: unknown compression method?\n");
goto out_free_buf;
}
/* Check gzip flags */
if ((buf[3] & ENCRYPTED) || (buf[3] & CONTINUATION) ||
(buf[3] & RESERVED)) {
DBG_FLT("binfmt_flat: unknown flags?\n");
goto out_free_buf;
}
ret = 10;
if (buf[3] & EXTRA_FIELD) {
ret += 2 + buf[10] + (buf[11] << 8);
if (unlikely(LBUFSIZE == ret)) {
DBG_FLT("binfmt_flat: buffer overflow (EXTRA)?\n");
goto out_free_buf;
}
}
if (buf[3] & ORIG_NAME) {
for (; ret < LBUFSIZE && (buf[ret] != 0); ret++)
;
if (unlikely(LBUFSIZE == ret)) {
DBG_FLT("binfmt_flat: buffer overflow (ORIG_NAME)?\n");
goto out_free_buf;
}
}
if (buf[3] & COMMENT) {
for (; ret < LBUFSIZE && (buf[ret] != 0); ret++)
;
if (unlikely(LBUFSIZE == ret)) {
DBG_FLT("binfmt_flat: buffer overflow (COMMENT)?\n");
goto out_free_buf;
}
}
strm.next_in += ret;
strm.avail_in -= ret;
strm.next_out = dst;
strm.avail_out = len;
strm.total_out = 0;
if (zlib_inflateInit2(&strm, -MAX_WBITS) != Z_OK) {
DBG_FLT("binfmt_flat: zlib init failed?\n");
goto out_free_buf;
}
while ((ret = zlib_inflate(&strm, Z_NO_FLUSH)) == Z_OK) {
ret = bprm->file->f_op->read(bprm->file, buf, LBUFSIZE, &fpos);
if (ret <= 0)
break;
if (is_error(ret)) {
break;
}
len -= ret;
strm.next_in = buf;
strm.avail_in = ret;
strm.total_in = 0;
}
if (ret < 0) {
DBG_FLT("binfmt_flat: decompression failed (%d), %s\n",
ret, strm.msg);
goto out_zlib;
}
retval = 0;
out_zlib:
zlib_inflateEnd(&strm);
out_free_buf:
kfree(buf);
out_free:
kfree(strm.workspace);
out:
return retval;
}
#endif /* CONFIG_BINFMT_ZFLAT */
/****************************************************************************/
static abi_ulong
calc_reloc(abi_ulong r, struct lib_info *p, int curid, int internalp)
{
abi_ulong addr;
int id;
abi_ulong start_brk;
abi_ulong start_data;
abi_ulong text_len;
abi_ulong start_code;
#ifdef CONFIG_BINFMT_SHARED_FLAT
#error needs checking
if (r == 0)
id = curid; /* Relocs of 0 are always self referring */
else {
id = (r >> 24) & 0xff; /* Find ID for this reloc */
r &= 0x00ffffff; /* Trim ID off here */
}
if (id >= MAX_SHARED_LIBS) {
fprintf(stderr, "BINFMT_FLAT: reference 0x%x to shared library %d\n",
(unsigned) r, id);
goto failed;
}
if (curid != id) {
if (internalp) {
fprintf(stderr, "BINFMT_FLAT: reloc address 0x%x not "
"in same module (%d != %d)\n",
(unsigned) r, curid, id);
goto failed;
} else if (!p[id].loaded && is_error(load_flat_shared_library(id, p))) {
fprintf(stderr, "BINFMT_FLAT: failed to load library %d\n", id);
goto failed;
}
/* Check versioning information (i.e. time stamps) */
if (p[id].build_date && p[curid].build_date
&& p[curid].build_date < p[id].build_date) {
fprintf(stderr, "BINFMT_FLAT: library %d is younger than %d\n",
id, curid);
goto failed;
}
}
#else
id = 0;
#endif
start_brk = p[id].start_brk;
start_data = p[id].start_data;
start_code = p[id].start_code;
text_len = p[id].text_len;
if (!flat_reloc_valid(r, start_brk - start_data + text_len)) {
fprintf(stderr, "BINFMT_FLAT: reloc outside program 0x%x "
"(0 - 0x%x/0x%x)\n",
(int) r,(int)(start_brk-start_code),(int)text_len);
goto failed;
}
if (r < text_len) /* In text segment */
addr = r + start_code;
else /* In data segment */
addr = r - text_len + start_data;
/* Range checked already above so doing the range tests is redundant...*/
return(addr);
failed:
abort();
return RELOC_FAILED;
}
/****************************************************************************/
/* ??? This does not handle endianness correctly. */
static void old_reloc(struct lib_info *libinfo, uint32_t rl)
{
#ifdef DEBUG
const char *segment[] = { "TEXT", "DATA", "BSS", "*UNKNOWN*" };
#endif
uint32_t *ptr;
uint32_t offset;
int reloc_type;
offset = rl & 0x3fffffff;
reloc_type = rl >> 30;
/* ??? How to handle this? */
#if defined(CONFIG_COLDFIRE)
ptr = (uint32_t *) ((unsigned long) libinfo->start_code + offset);
#else
ptr = (uint32_t *) ((unsigned long) libinfo->start_data + offset);
#endif
#ifdef DEBUG
fprintf(stderr, "Relocation of variable at DATASEG+%x "
"(address %p, currently %x) into segment %s\n",
offset, ptr, (int)*ptr, segment[reloc_type]);
#endif
switch (reloc_type) {
case OLD_FLAT_RELOC_TYPE_TEXT:
*ptr += libinfo->start_code;
break;
case OLD_FLAT_RELOC_TYPE_DATA:
*ptr += libinfo->start_data;
break;
case OLD_FLAT_RELOC_TYPE_BSS:
*ptr += libinfo->end_data;
break;
default:
fprintf(stderr, "BINFMT_FLAT: Unknown relocation type=%x\n",
reloc_type);
break;
}
DBG_FLT("Relocation became %x\n", (int)*ptr);
}
/****************************************************************************/
static int load_flat_file(struct linux_binprm * bprm,
struct lib_info *libinfo, int id, abi_ulong *extra_stack)
{
struct flat_hdr * hdr;
abi_ulong textpos = 0, datapos = 0;
abi_long result;
abi_ulong realdatastart = 0;
abi_ulong text_len, data_len, bss_len, stack_len, flags;
abi_ulong extra;
abi_ulong reloc = 0, rp;
int i, rev, relocs = 0;
abi_ulong fpos;
abi_ulong start_code;
abi_ulong indx_len;
hdr = ((struct flat_hdr *) bprm->buf); /* exec-header */
text_len = ntohl(hdr->data_start);
data_len = ntohl(hdr->data_end) - ntohl(hdr->data_start);
bss_len = ntohl(hdr->bss_end) - ntohl(hdr->data_end);
stack_len = ntohl(hdr->stack_size);
if (extra_stack) {
stack_len += *extra_stack;
*extra_stack = stack_len;
}
relocs = ntohl(hdr->reloc_count);
flags = ntohl(hdr->flags);
rev = ntohl(hdr->rev);
DBG_FLT("BINFMT_FLAT: Loading file: %s\n", bprm->filename);
if (rev != FLAT_VERSION && rev != OLD_FLAT_VERSION) {
fprintf(stderr, "BINFMT_FLAT: bad magic/rev (0x%x, need 0x%x)\n",
rev, (int) FLAT_VERSION);
return -ENOEXEC;
}
/* Don't allow old format executables to use shared libraries */
if (rev == OLD_FLAT_VERSION && id != 0) {
fprintf(stderr, "BINFMT_FLAT: shared libraries are not available\n");
return -ENOEXEC;
}
/*
* fix up the flags for the older format, there were all kinds
* of endian hacks, this only works for the simple cases
*/
if (rev == OLD_FLAT_VERSION && flat_old_ram_flag(flags))
flags = FLAT_FLAG_RAM;
#ifndef CONFIG_BINFMT_ZFLAT
if (flags & (FLAT_FLAG_GZIP|FLAT_FLAG_GZDATA)) {
fprintf(stderr, "Support for ZFLAT executables is not enabled\n");
return -ENOEXEC;
}
#endif
/*
* calculate the extra space we need to map in
*/
extra = relocs * sizeof(abi_ulong);
if (extra < bss_len + stack_len)
extra = bss_len + stack_len;
/* Add space for library base pointers. Make sure this does not
misalign the doesn't misalign the data segment. */
indx_len = MAX_SHARED_LIBS * sizeof(abi_ulong);
indx_len = (indx_len + 15) & ~(abi_ulong)15;
/*
* Allocate the address space.
*/
probe_guest_base(bprm->filename, 0,
text_len + data_len + extra + indx_len - 1);
/*
* there are a couple of cases here, the separate code/data
* case, and then the fully copied to RAM case which lumps
* it all together.
*/
if ((flags & (FLAT_FLAG_RAM|FLAT_FLAG_GZIP)) == 0) {
/*
* this should give us a ROM ptr, but if it doesn't we don't
* really care
*/
DBG_FLT("BINFMT_FLAT: ROM mapping of file (we hope)\n");
textpos = target_mmap(0, text_len, PROT_READ|PROT_EXEC,
MAP_PRIVATE, bprm->src.fd, 0);
if (textpos == -1) {
fprintf(stderr, "Unable to mmap process text\n");
return -1;
}
realdatastart = target_mmap(0, data_len + extra + indx_len,
PROT_READ|PROT_WRITE|PROT_EXEC,
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
if (realdatastart == -1) {
fprintf(stderr, "Unable to allocate RAM for process data\n");
return realdatastart;
}
datapos = realdatastart + indx_len;
DBG_FLT("BINFMT_FLAT: Allocated data+bss+stack (%d bytes): %x\n",
(int)(data_len + bss_len + stack_len), (int)datapos);
fpos = ntohl(hdr->data_start);
#ifdef CONFIG_BINFMT_ZFLAT
if (flags & FLAT_FLAG_GZDATA) {
result = decompress_exec(bprm, fpos, (char *) datapos,
data_len + (relocs * sizeof(abi_ulong)))
} else
#endif
{
result = target_pread(bprm->src.fd, datapos,
data_len + (relocs * sizeof(abi_ulong)),
fpos);
}
if (result < 0) {
fprintf(stderr, "Unable to read data+bss\n");
return result;
}
reloc = datapos + (ntohl(hdr->reloc_start) - text_len);
} else {
textpos = target_mmap(0, text_len + data_len + extra + indx_len,
PROT_READ | PROT_EXEC | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
if (textpos == -1 ) {
fprintf(stderr, "Unable to allocate RAM for process text/data\n");
return -1;
}
realdatastart = textpos + ntohl(hdr->data_start);
datapos = realdatastart + indx_len;
reloc = (textpos + ntohl(hdr->reloc_start) + indx_len);
#ifdef CONFIG_BINFMT_ZFLAT
#error code needs checking
/*
* load it all in and treat it like a RAM load from now on
*/
if (flags & FLAT_FLAG_GZIP) {
result = decompress_exec(bprm, sizeof (struct flat_hdr),
(((char *) textpos) + sizeof (struct flat_hdr)),
(text_len + data_len + (relocs * sizeof(unsigned long))
- sizeof (struct flat_hdr)),
0);
memmove((void *) datapos, (void *) realdatastart,
data_len + (relocs * sizeof(unsigned long)));
} else if (flags & FLAT_FLAG_GZDATA) {
fpos = 0;
result = bprm->file->f_op->read(bprm->file,
(char *) textpos, text_len, &fpos);
if (!is_error(result)) {
result = decompress_exec(bprm, text_len, (char *) datapos,
data_len + (relocs * sizeof(unsigned long)), 0);
}
}
else
#endif
{
result = target_pread(bprm->src.fd, textpos,
text_len, 0);
if (result >= 0) {
result = target_pread(bprm->src.fd, datapos,
data_len + (relocs * sizeof(abi_ulong)),
ntohl(hdr->data_start));
}
}
if (result < 0) {
fprintf(stderr, "Unable to read code+data+bss\n");
return result;
}
}
DBG_FLT("Mapping is 0x%x, Entry point is 0x%x, data_start is 0x%x\n",
(int)textpos, 0x00ffffff&ntohl(hdr->entry),
ntohl(hdr->data_start));
/* The main program needs a little extra setup in the task structure */
start_code = textpos + sizeof (struct flat_hdr);
DBG_FLT("%s %s: TEXT=%x-%x DATA=%x-%x BSS=%x-%x\n",
id ? "Lib" : "Load", bprm->filename,
(int) start_code, (int) (textpos + text_len),
(int) datapos,
(int) (datapos + data_len),
(int) (datapos + data_len),
(int) (((datapos + data_len + bss_len) + 3) & ~3));
text_len -= sizeof(struct flat_hdr); /* the real code len */
/* Store the current module values into the global library structure */
libinfo[id].start_code = start_code;
libinfo[id].start_data = datapos;
libinfo[id].end_data = datapos + data_len;
libinfo[id].start_brk = datapos + data_len + bss_len;
libinfo[id].text_len = text_len;
libinfo[id].loaded = 1;
libinfo[id].entry = (0x00ffffff & ntohl(hdr->entry)) + textpos;
libinfo[id].build_date = ntohl(hdr->build_date);
/*
* We just load the allocations into some temporary memory to
* help simplify all this mumbo jumbo
*
* We've got two different sections of relocation entries.
* The first is the GOT which resides at the beginning of the data segment
* and is terminated with a -1. This one can be relocated in place.
* The second is the extra relocation entries tacked after the image's
* data segment. These require a little more processing as the entry is
* really an offset into the image which contains an offset into the
* image.
*/
if (flags & FLAT_FLAG_GOTPIC) {
rp = datapos;
while (1) {
abi_ulong addr;
if (get_user_ual(addr, rp))
return -EFAULT;
if (addr == -1)
break;
if (addr) {
addr = calc_reloc(addr, libinfo, id, 0);
if (addr == RELOC_FAILED)
return -ENOEXEC;
if (put_user_ual(addr, rp))
return -EFAULT;
}
rp += sizeof(abi_ulong);
}
}
/*
* Now run through the relocation entries.
* We've got to be careful here as C++ produces relocatable zero
* entries in the constructor and destructor tables which are then
* tested for being not zero (which will always occur unless we're
* based from address zero). This causes an endless loop as __start
* is at zero. The solution used is to not relocate zero addresses.
* This has the negative side effect of not allowing a global data
* reference to be statically initialised to _stext (I've moved
* __start to address 4 so that is okay).
*/
if (rev > OLD_FLAT_VERSION) {
abi_ulong persistent = 0;
for (i = 0; i < relocs; i++) {
abi_ulong addr, relval;
/* Get the address of the pointer to be
relocated (of course, the address has to be
relocated first). */
if (get_user_ual(relval, reloc + i * sizeof(abi_ulong)))
return -EFAULT;
relval = ntohl(relval);
if (flat_set_persistent(relval, &persistent))
continue;
addr = flat_get_relocate_addr(relval);
rp = calc_reloc(addr, libinfo, id, 1);
if (rp == RELOC_FAILED)
return -ENOEXEC;
/* Get the pointer's value. */
if (get_user_ual(addr, rp))
return -EFAULT;
addr = flat_get_addr_from_rp(addr, relval, flags, &persistent);
if (addr != 0) {
/*
* Do the relocation. PIC relocs in the data section are
* already in target order
*/
if ((flags & FLAT_FLAG_GOTPIC) == 0)
addr = ntohl(addr);
addr = calc_reloc(addr, libinfo, id, 0);
if (addr == RELOC_FAILED)
return -ENOEXEC;
/* Write back the relocated pointer. */
if (flat_put_addr_at_rp(rp, addr, relval))
return -EFAULT;
}
}
} else {
for (i = 0; i < relocs; i++) {
abi_ulong relval;
if (get_user_ual(relval, reloc + i * sizeof(abi_ulong)))
return -EFAULT;
old_reloc(&libinfo[0], relval);
}
}
/* zero the BSS. */
memset(g2h_untagged(datapos + data_len), 0, bss_len);
return 0;
}
/****************************************************************************/
#ifdef CONFIG_BINFMT_SHARED_FLAT
/*
* Load a shared library into memory. The library gets its own data
* segment (including bss) but not argv/argc/environ.
*/
static int load_flat_shared_library(int id, struct lib_info *libs)
{
struct linux_binprm bprm;
int res;
char buf[16];
/* Create the file name */
sprintf(buf, "/lib/lib%d.so", id);
/* Open the file up */
bprm.filename = buf;
bprm.file = open_exec(bprm.filename);
res = PTR_ERR(bprm.file);
if (IS_ERR(bprm.file))
return res;
res = prepare_binprm(&bprm);
if (!is_error(res)) {
res = load_flat_file(&bprm, libs, id, NULL);
}
if (bprm.file) {
allow_write_access(bprm.file);
fput(bprm.file);
bprm.file = NULL;
}
return(res);
}
#endif /* CONFIG_BINFMT_SHARED_FLAT */
int load_flt_binary(struct linux_binprm *bprm, struct image_info *info)
{
struct lib_info libinfo[MAX_SHARED_LIBS];
abi_ulong p;
abi_ulong stack_len;
abi_ulong start_addr;
abi_ulong sp;
int res;
int i, j;
memset(libinfo, 0, sizeof(libinfo));
/*
* We have to add the size of our arguments to our stack size
* otherwise it's too easy for users to create stack overflows
* by passing in a huge argument list. And yes, we have to be
* pedantic and include space for the argv/envp array as it may have
* a lot of entries.
*/
stack_len = 0;
for (i = 0; i < bprm->argc; ++i) {
/* the argv strings */
stack_len += strlen(bprm->argv[i]);
}
for (i = 0; i < bprm->envc; ++i) {
/* the envp strings */
stack_len += strlen(bprm->envp[i]);
}
stack_len += (bprm->argc + 1) * 4; /* the argv array */
stack_len += (bprm->envc + 1) * 4; /* the envp array */
res = load_flat_file(bprm, libinfo, 0, &stack_len);
if (is_error(res)) {
return res;
}
/* Update data segment pointers for all libraries */
for (i=0; i<MAX_SHARED_LIBS; i++) {
if (libinfo[i].loaded) {
abi_ulong seg;
seg = libinfo[i].start_data;
for (j=0; j<MAX_SHARED_LIBS; j++) {
seg -= 4;
/* FIXME - handle put_user() failures */
if (put_user_ual(libinfo[j].loaded
? libinfo[j].start_data
: UNLOADED_LIB,
seg))
return -EFAULT;
}
}
}
p = ((libinfo[0].start_brk + stack_len + 3) & ~3) - 4;
DBG_FLT("p=%x\n", (int)p);
/* Copy argv/envp. */
p = copy_strings(p, bprm->envc, bprm->envp);
p = copy_strings(p, bprm->argc, bprm->argv);
/* Align stack. */
sp = p & ~(abi_ulong)(sizeof(abi_ulong) - 1);
/* Enforce final stack alignment of 16 bytes. This is sufficient
for all current targets, and excess alignment is harmless. */
stack_len = bprm->envc + bprm->argc + 2;
stack_len += flat_argvp_envp_on_stack() ? 2 : 0; /* argv, argp */
stack_len += 1; /* argc */
stack_len *= sizeof(abi_ulong);
sp -= (sp - stack_len) & 15;
sp = loader_build_argptr(bprm->envc, bprm->argc, sp, p,
flat_argvp_envp_on_stack());
/* Fake some return addresses to ensure the call chain will
* initialise library in order for us. We are required to call
* lib 1 first, then 2, ... and finally the main program (id 0).
*/
start_addr = libinfo[0].entry;
#ifdef CONFIG_BINFMT_SHARED_FLAT
#error here
for (i = MAX_SHARED_LIBS-1; i>0; i--) {
if (libinfo[i].loaded) {
/* Push previous first to call address */
--sp;
if (put_user_ual(start_addr, sp))
return -EFAULT;
start_addr = libinfo[i].entry;
}
}
#endif
/* Stash our initial stack pointer into the mm structure */
info->start_code = libinfo[0].start_code;
info->end_code = libinfo[0].start_code + libinfo[0].text_len;
info->start_data = libinfo[0].start_data;
info->end_data = libinfo[0].end_data;
info->brk = libinfo[0].start_brk;
info->start_stack = sp;
info->stack_limit = libinfo[0].start_brk;
info->entry = start_addr;
info->code_offset = info->start_code;
info->data_offset = info->start_data - libinfo[0].text_len;
DBG_FLT("start_thread(entry=0x%x, start_stack=0x%x)\n",
(int)info->entry, (int)info->start_stack);
return 0;
}