qemu/tests/libqos/virtio.c
Stefan Hajnoczi e77abbe98b libqos: add virtio used ring support
Existing tests do not touch the virtqueue used ring.  Instead they poll
the virtqueue ISR register and peek into their request's device-specific
status field.

It turns out that the virtqueue ISR register can be set to 1 more than
once for a single notification (see commit
83d768b564 "virtio: set ISR on dataplane
notifications").  This causes problems for tests that assume a 1:1
correspondence between the ISR being 1 and request completion.

Peeking at device-specific status fields is also problematic if the
device has no field that can be abused for EINPROGRESS polling
semantics.  This is the case if all the field's values may be set by the
device; there's no magic constant left for polling.

It's time to process the used ring for completed requests, just like a
real virtio guest driver.  This patch adds the necessary APIs.

Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Reviewed-by: Fam Zheng <famz@redhat.com>
Tested-by: Eric Blake <eblake@redhat.com>
Tested-by: Kevin Wolf <kwolf@redhat.com>
Message-id: 20170628184724.21378-3-stefanha@redhat.com
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
2017-06-30 11:03:45 +01:00

342 lines
9.6 KiB
C

/*
* libqos virtio driver
*
* Copyright (c) 2014 Marc Marí
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*/
#include "qemu/osdep.h"
#include "libqtest.h"
#include "libqos/virtio.h"
#include "standard-headers/linux/virtio_config.h"
#include "standard-headers/linux/virtio_ring.h"
uint8_t qvirtio_config_readb(QVirtioDevice *d, uint64_t addr)
{
return d->bus->config_readb(d, addr);
}
uint16_t qvirtio_config_readw(QVirtioDevice *d, uint64_t addr)
{
return d->bus->config_readw(d, addr);
}
uint32_t qvirtio_config_readl(QVirtioDevice *d, uint64_t addr)
{
return d->bus->config_readl(d, addr);
}
uint64_t qvirtio_config_readq(QVirtioDevice *d, uint64_t addr)
{
return d->bus->config_readq(d, addr);
}
uint32_t qvirtio_get_features(QVirtioDevice *d)
{
return d->bus->get_features(d);
}
void qvirtio_set_features(QVirtioDevice *d, uint32_t features)
{
d->bus->set_features(d, features);
}
QVirtQueue *qvirtqueue_setup(QVirtioDevice *d,
QGuestAllocator *alloc, uint16_t index)
{
return d->bus->virtqueue_setup(d, alloc, index);
}
void qvirtqueue_cleanup(const QVirtioBus *bus, QVirtQueue *vq,
QGuestAllocator *alloc)
{
return bus->virtqueue_cleanup(vq, alloc);
}
void qvirtio_reset(QVirtioDevice *d)
{
d->bus->set_status(d, 0);
g_assert_cmphex(d->bus->get_status(d), ==, 0);
}
void qvirtio_set_acknowledge(QVirtioDevice *d)
{
d->bus->set_status(d, d->bus->get_status(d) | VIRTIO_CONFIG_S_ACKNOWLEDGE);
g_assert_cmphex(d->bus->get_status(d), ==, VIRTIO_CONFIG_S_ACKNOWLEDGE);
}
void qvirtio_set_driver(QVirtioDevice *d)
{
d->bus->set_status(d, d->bus->get_status(d) | VIRTIO_CONFIG_S_DRIVER);
g_assert_cmphex(d->bus->get_status(d), ==,
VIRTIO_CONFIG_S_DRIVER | VIRTIO_CONFIG_S_ACKNOWLEDGE);
}
void qvirtio_set_driver_ok(QVirtioDevice *d)
{
d->bus->set_status(d, d->bus->get_status(d) | VIRTIO_CONFIG_S_DRIVER_OK);
g_assert_cmphex(d->bus->get_status(d), ==, VIRTIO_CONFIG_S_DRIVER_OK |
VIRTIO_CONFIG_S_DRIVER | VIRTIO_CONFIG_S_ACKNOWLEDGE);
}
void qvirtio_wait_queue_isr(QVirtioDevice *d,
QVirtQueue *vq, gint64 timeout_us)
{
gint64 start_time = g_get_monotonic_time();
for (;;) {
clock_step(100);
if (d->bus->get_queue_isr_status(d, vq)) {
return;
}
g_assert(g_get_monotonic_time() - start_time <= timeout_us);
}
}
/* Wait for the status byte at given guest memory address to be set
*
* The virtqueue interrupt must not be raised, making this useful for testing
* event_index functionality.
*/
uint8_t qvirtio_wait_status_byte_no_isr(QVirtioDevice *d,
QVirtQueue *vq,
uint64_t addr,
gint64 timeout_us)
{
gint64 start_time = g_get_monotonic_time();
uint8_t val;
while ((val = readb(addr)) == 0xff) {
clock_step(100);
g_assert(!d->bus->get_queue_isr_status(d, vq));
g_assert(g_get_monotonic_time() - start_time <= timeout_us);
}
return val;
}
/*
* qvirtio_wait_used_elem:
* @desc_idx: The next expected vq->desc[] index in the used ring
* @timeout_us: How many microseconds to wait before failing
*
* This function waits for the next completed request on the used ring.
*/
void qvirtio_wait_used_elem(QVirtioDevice *d,
QVirtQueue *vq,
uint32_t desc_idx,
gint64 timeout_us)
{
gint64 start_time = g_get_monotonic_time();
for (;;) {
uint32_t got_desc_idx;
clock_step(100);
if (d->bus->get_queue_isr_status(d, vq) &&
qvirtqueue_get_buf(vq, &got_desc_idx)) {
g_assert_cmpint(got_desc_idx, ==, desc_idx);
return;
}
g_assert(g_get_monotonic_time() - start_time <= timeout_us);
}
}
void qvirtio_wait_config_isr(QVirtioDevice *d, gint64 timeout_us)
{
gint64 start_time = g_get_monotonic_time();
for (;;) {
clock_step(100);
if (d->bus->get_config_isr_status(d)) {
return;
}
g_assert(g_get_monotonic_time() - start_time <= timeout_us);
}
}
void qvring_init(const QGuestAllocator *alloc, QVirtQueue *vq, uint64_t addr)
{
int i;
vq->desc = addr;
vq->avail = vq->desc + vq->size * sizeof(struct vring_desc);
vq->used = (uint64_t)((vq->avail + sizeof(uint16_t) * (3 + vq->size)
+ vq->align - 1) & ~(vq->align - 1));
for (i = 0; i < vq->size - 1; i++) {
/* vq->desc[i].addr */
writeq(vq->desc + (16 * i), 0);
/* vq->desc[i].next */
writew(vq->desc + (16 * i) + 14, i + 1);
}
/* vq->avail->flags */
writew(vq->avail, 0);
/* vq->avail->idx */
writew(vq->avail + 2, 0);
/* vq->avail->used_event */
writew(vq->avail + 4 + (2 * vq->size), 0);
/* vq->used->flags */
writew(vq->used, 0);
/* vq->used->avail_event */
writew(vq->used + 2 + sizeof(struct vring_used_elem) * vq->size, 0);
}
QVRingIndirectDesc *qvring_indirect_desc_setup(QVirtioDevice *d,
QGuestAllocator *alloc, uint16_t elem)
{
int i;
QVRingIndirectDesc *indirect = g_malloc(sizeof(*indirect));
indirect->index = 0;
indirect->elem = elem;
indirect->desc = guest_alloc(alloc, sizeof(struct vring_desc) * elem);
for (i = 0; i < elem - 1; ++i) {
/* indirect->desc[i].addr */
writeq(indirect->desc + (16 * i), 0);
/* indirect->desc[i].flags */
writew(indirect->desc + (16 * i) + 12, VRING_DESC_F_NEXT);
/* indirect->desc[i].next */
writew(indirect->desc + (16 * i) + 14, i + 1);
}
return indirect;
}
void qvring_indirect_desc_add(QVRingIndirectDesc *indirect, uint64_t data,
uint32_t len, bool write)
{
uint16_t flags;
g_assert_cmpint(indirect->index, <, indirect->elem);
flags = readw(indirect->desc + (16 * indirect->index) + 12);
if (write) {
flags |= VRING_DESC_F_WRITE;
}
/* indirect->desc[indirect->index].addr */
writeq(indirect->desc + (16 * indirect->index), data);
/* indirect->desc[indirect->index].len */
writel(indirect->desc + (16 * indirect->index) + 8, len);
/* indirect->desc[indirect->index].flags */
writew(indirect->desc + (16 * indirect->index) + 12, flags);
indirect->index++;
}
uint32_t qvirtqueue_add(QVirtQueue *vq, uint64_t data, uint32_t len, bool write,
bool next)
{
uint16_t flags = 0;
vq->num_free--;
if (write) {
flags |= VRING_DESC_F_WRITE;
}
if (next) {
flags |= VRING_DESC_F_NEXT;
}
/* vq->desc[vq->free_head].addr */
writeq(vq->desc + (16 * vq->free_head), data);
/* vq->desc[vq->free_head].len */
writel(vq->desc + (16 * vq->free_head) + 8, len);
/* vq->desc[vq->free_head].flags */
writew(vq->desc + (16 * vq->free_head) + 12, flags);
return vq->free_head++; /* Return and increase, in this order */
}
uint32_t qvirtqueue_add_indirect(QVirtQueue *vq, QVRingIndirectDesc *indirect)
{
g_assert(vq->indirect);
g_assert_cmpint(vq->size, >=, indirect->elem);
g_assert_cmpint(indirect->index, ==, indirect->elem);
vq->num_free--;
/* vq->desc[vq->free_head].addr */
writeq(vq->desc + (16 * vq->free_head), indirect->desc);
/* vq->desc[vq->free_head].len */
writel(vq->desc + (16 * vq->free_head) + 8,
sizeof(struct vring_desc) * indirect->elem);
/* vq->desc[vq->free_head].flags */
writew(vq->desc + (16 * vq->free_head) + 12, VRING_DESC_F_INDIRECT);
return vq->free_head++; /* Return and increase, in this order */
}
void qvirtqueue_kick(QVirtioDevice *d, QVirtQueue *vq, uint32_t free_head)
{
/* vq->avail->idx */
uint16_t idx = readw(vq->avail + 2);
/* vq->used->flags */
uint16_t flags;
/* vq->used->avail_event */
uint16_t avail_event;
/* vq->avail->ring[idx % vq->size] */
writew(vq->avail + 4 + (2 * (idx % vq->size)), free_head);
/* vq->avail->idx */
writew(vq->avail + 2, idx + 1);
/* Must read after idx is updated */
flags = readw(vq->avail);
avail_event = readw(vq->used + 4 +
sizeof(struct vring_used_elem) * vq->size);
/* < 1 because we add elements to avail queue one by one */
if ((flags & VRING_USED_F_NO_NOTIFY) == 0 &&
(!vq->event || (uint16_t)(idx-avail_event) < 1)) {
d->bus->virtqueue_kick(d, vq);
}
}
/*
* qvirtqueue_get_buf:
* @desc_idx: A pointer that is filled with the vq->desc[] index, may be NULL
*
* This function gets the next used element if there is one ready.
*
* Returns: true if an element was ready, false otherwise
*/
bool qvirtqueue_get_buf(QVirtQueue *vq, uint32_t *desc_idx)
{
uint16_t idx;
idx = readw(vq->used + offsetof(struct vring_used, idx));
if (idx == vq->last_used_idx) {
return false;
}
if (desc_idx) {
uint64_t elem_addr;
elem_addr = vq->used +
offsetof(struct vring_used, ring) +
(vq->last_used_idx % vq->size) *
sizeof(struct vring_used_elem);
*desc_idx = readl(elem_addr + offsetof(struct vring_used_elem, id));
}
vq->last_used_idx++;
return true;
}
void qvirtqueue_set_used_event(QVirtQueue *vq, uint16_t idx)
{
g_assert(vq->event);
/* vq->avail->used_event */
writew(vq->avail + 4 + (2 * vq->size), idx);
}