qemu/target/arm/vec_helper.c
Richard Henderson 458d0ab683 target/arm: Implement bfloat widening fma (indexed)
This is BFMLAL{B,T} for both AArch64 AdvSIMD and SVE,
and VFMA{B,T}.BF16 for AArch32 NEON.

Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20210525225817.400336-11-richard.henderson@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
2021-06-03 16:43:26 +01:00

2553 lines
85 KiB
C

/*
* ARM AdvSIMD / SVE Vector Operations
*
* Copyright (c) 2018 Linaro
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "cpu.h"
#include "exec/helper-proto.h"
#include "tcg/tcg-gvec-desc.h"
#include "fpu/softfloat.h"
#include "qemu/int128.h"
#include "vec_internal.h"
/* Signed saturating rounding doubling multiply-accumulate high half, 8-bit */
int8_t do_sqrdmlah_b(int8_t src1, int8_t src2, int8_t src3,
bool neg, bool round)
{
/*
* Simplify:
* = ((a3 << 8) + ((e1 * e2) << 1) + (round << 7)) >> 8
* = ((a3 << 7) + (e1 * e2) + (round << 6)) >> 7
*/
int32_t ret = (int32_t)src1 * src2;
if (neg) {
ret = -ret;
}
ret += ((int32_t)src3 << 7) + (round << 6);
ret >>= 7;
if (ret != (int8_t)ret) {
ret = (ret < 0 ? INT8_MIN : INT8_MAX);
}
return ret;
}
void HELPER(sve2_sqrdmlah_b)(void *vd, void *vn, void *vm,
void *va, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc);
int8_t *d = vd, *n = vn, *m = vm, *a = va;
for (i = 0; i < opr_sz; ++i) {
d[i] = do_sqrdmlah_b(n[i], m[i], a[i], false, true);
}
}
void HELPER(sve2_sqrdmlsh_b)(void *vd, void *vn, void *vm,
void *va, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc);
int8_t *d = vd, *n = vn, *m = vm, *a = va;
for (i = 0; i < opr_sz; ++i) {
d[i] = do_sqrdmlah_b(n[i], m[i], a[i], true, true);
}
}
void HELPER(sve2_sqdmulh_b)(void *vd, void *vn, void *vm, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc);
int8_t *d = vd, *n = vn, *m = vm;
for (i = 0; i < opr_sz; ++i) {
d[i] = do_sqrdmlah_b(n[i], m[i], 0, false, false);
}
}
void HELPER(sve2_sqrdmulh_b)(void *vd, void *vn, void *vm, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc);
int8_t *d = vd, *n = vn, *m = vm;
for (i = 0; i < opr_sz; ++i) {
d[i] = do_sqrdmlah_b(n[i], m[i], 0, false, true);
}
}
/* Signed saturating rounding doubling multiply-accumulate high half, 16-bit */
int16_t do_sqrdmlah_h(int16_t src1, int16_t src2, int16_t src3,
bool neg, bool round, uint32_t *sat)
{
/* Simplify similarly to do_sqrdmlah_b above. */
int32_t ret = (int32_t)src1 * src2;
if (neg) {
ret = -ret;
}
ret += ((int32_t)src3 << 15) + (round << 14);
ret >>= 15;
if (ret != (int16_t)ret) {
*sat = 1;
ret = (ret < 0 ? INT16_MIN : INT16_MAX);
}
return ret;
}
uint32_t HELPER(neon_qrdmlah_s16)(CPUARMState *env, uint32_t src1,
uint32_t src2, uint32_t src3)
{
uint32_t *sat = &env->vfp.qc[0];
uint16_t e1 = do_sqrdmlah_h(src1, src2, src3, false, true, sat);
uint16_t e2 = do_sqrdmlah_h(src1 >> 16, src2 >> 16, src3 >> 16,
false, true, sat);
return deposit32(e1, 16, 16, e2);
}
void HELPER(gvec_qrdmlah_s16)(void *vd, void *vn, void *vm,
void *vq, uint32_t desc)
{
uintptr_t opr_sz = simd_oprsz(desc);
int16_t *d = vd;
int16_t *n = vn;
int16_t *m = vm;
uintptr_t i;
for (i = 0; i < opr_sz / 2; ++i) {
d[i] = do_sqrdmlah_h(n[i], m[i], d[i], false, true, vq);
}
clear_tail(d, opr_sz, simd_maxsz(desc));
}
uint32_t HELPER(neon_qrdmlsh_s16)(CPUARMState *env, uint32_t src1,
uint32_t src2, uint32_t src3)
{
uint32_t *sat = &env->vfp.qc[0];
uint16_t e1 = do_sqrdmlah_h(src1, src2, src3, true, true, sat);
uint16_t e2 = do_sqrdmlah_h(src1 >> 16, src2 >> 16, src3 >> 16,
true, true, sat);
return deposit32(e1, 16, 16, e2);
}
void HELPER(gvec_qrdmlsh_s16)(void *vd, void *vn, void *vm,
void *vq, uint32_t desc)
{
uintptr_t opr_sz = simd_oprsz(desc);
int16_t *d = vd;
int16_t *n = vn;
int16_t *m = vm;
uintptr_t i;
for (i = 0; i < opr_sz / 2; ++i) {
d[i] = do_sqrdmlah_h(n[i], m[i], d[i], true, true, vq);
}
clear_tail(d, opr_sz, simd_maxsz(desc));
}
void HELPER(neon_sqdmulh_h)(void *vd, void *vn, void *vm,
void *vq, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc);
int16_t *d = vd, *n = vn, *m = vm;
for (i = 0; i < opr_sz / 2; ++i) {
d[i] = do_sqrdmlah_h(n[i], m[i], 0, false, false, vq);
}
clear_tail(d, opr_sz, simd_maxsz(desc));
}
void HELPER(neon_sqrdmulh_h)(void *vd, void *vn, void *vm,
void *vq, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc);
int16_t *d = vd, *n = vn, *m = vm;
for (i = 0; i < opr_sz / 2; ++i) {
d[i] = do_sqrdmlah_h(n[i], m[i], 0, false, true, vq);
}
clear_tail(d, opr_sz, simd_maxsz(desc));
}
void HELPER(sve2_sqrdmlah_h)(void *vd, void *vn, void *vm,
void *va, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc);
int16_t *d = vd, *n = vn, *m = vm, *a = va;
uint32_t discard;
for (i = 0; i < opr_sz / 2; ++i) {
d[i] = do_sqrdmlah_h(n[i], m[i], a[i], false, true, &discard);
}
}
void HELPER(sve2_sqrdmlsh_h)(void *vd, void *vn, void *vm,
void *va, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc);
int16_t *d = vd, *n = vn, *m = vm, *a = va;
uint32_t discard;
for (i = 0; i < opr_sz / 2; ++i) {
d[i] = do_sqrdmlah_h(n[i], m[i], a[i], true, true, &discard);
}
}
void HELPER(sve2_sqdmulh_h)(void *vd, void *vn, void *vm, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc);
int16_t *d = vd, *n = vn, *m = vm;
uint32_t discard;
for (i = 0; i < opr_sz / 2; ++i) {
d[i] = do_sqrdmlah_h(n[i], m[i], 0, false, false, &discard);
}
}
void HELPER(sve2_sqrdmulh_h)(void *vd, void *vn, void *vm, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc);
int16_t *d = vd, *n = vn, *m = vm;
uint32_t discard;
for (i = 0; i < opr_sz / 2; ++i) {
d[i] = do_sqrdmlah_h(n[i], m[i], 0, false, true, &discard);
}
}
void HELPER(sve2_sqdmulh_idx_h)(void *vd, void *vn, void *vm, uint32_t desc)
{
intptr_t i, j, opr_sz = simd_oprsz(desc);
int idx = simd_data(desc);
int16_t *d = vd, *n = vn, *m = (int16_t *)vm + H2(idx);
uint32_t discard;
for (i = 0; i < opr_sz / 2; i += 16 / 2) {
int16_t mm = m[i];
for (j = 0; j < 16 / 2; ++j) {
d[i + j] = do_sqrdmlah_h(n[i + j], mm, 0, false, false, &discard);
}
}
}
void HELPER(sve2_sqrdmulh_idx_h)(void *vd, void *vn, void *vm, uint32_t desc)
{
intptr_t i, j, opr_sz = simd_oprsz(desc);
int idx = simd_data(desc);
int16_t *d = vd, *n = vn, *m = (int16_t *)vm + H2(idx);
uint32_t discard;
for (i = 0; i < opr_sz / 2; i += 16 / 2) {
int16_t mm = m[i];
for (j = 0; j < 16 / 2; ++j) {
d[i + j] = do_sqrdmlah_h(n[i + j], mm, 0, false, true, &discard);
}
}
}
/* Signed saturating rounding doubling multiply-accumulate high half, 32-bit */
int32_t do_sqrdmlah_s(int32_t src1, int32_t src2, int32_t src3,
bool neg, bool round, uint32_t *sat)
{
/* Simplify similarly to do_sqrdmlah_b above. */
int64_t ret = (int64_t)src1 * src2;
if (neg) {
ret = -ret;
}
ret += ((int64_t)src3 << 31) + (round << 30);
ret >>= 31;
if (ret != (int32_t)ret) {
*sat = 1;
ret = (ret < 0 ? INT32_MIN : INT32_MAX);
}
return ret;
}
uint32_t HELPER(neon_qrdmlah_s32)(CPUARMState *env, int32_t src1,
int32_t src2, int32_t src3)
{
uint32_t *sat = &env->vfp.qc[0];
return do_sqrdmlah_s(src1, src2, src3, false, true, sat);
}
void HELPER(gvec_qrdmlah_s32)(void *vd, void *vn, void *vm,
void *vq, uint32_t desc)
{
uintptr_t opr_sz = simd_oprsz(desc);
int32_t *d = vd;
int32_t *n = vn;
int32_t *m = vm;
uintptr_t i;
for (i = 0; i < opr_sz / 4; ++i) {
d[i] = do_sqrdmlah_s(n[i], m[i], d[i], false, true, vq);
}
clear_tail(d, opr_sz, simd_maxsz(desc));
}
uint32_t HELPER(neon_qrdmlsh_s32)(CPUARMState *env, int32_t src1,
int32_t src2, int32_t src3)
{
uint32_t *sat = &env->vfp.qc[0];
return do_sqrdmlah_s(src1, src2, src3, true, true, sat);
}
void HELPER(gvec_qrdmlsh_s32)(void *vd, void *vn, void *vm,
void *vq, uint32_t desc)
{
uintptr_t opr_sz = simd_oprsz(desc);
int32_t *d = vd;
int32_t *n = vn;
int32_t *m = vm;
uintptr_t i;
for (i = 0; i < opr_sz / 4; ++i) {
d[i] = do_sqrdmlah_s(n[i], m[i], d[i], true, true, vq);
}
clear_tail(d, opr_sz, simd_maxsz(desc));
}
void HELPER(neon_sqdmulh_s)(void *vd, void *vn, void *vm,
void *vq, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc);
int32_t *d = vd, *n = vn, *m = vm;
for (i = 0; i < opr_sz / 4; ++i) {
d[i] = do_sqrdmlah_s(n[i], m[i], 0, false, false, vq);
}
clear_tail(d, opr_sz, simd_maxsz(desc));
}
void HELPER(neon_sqrdmulh_s)(void *vd, void *vn, void *vm,
void *vq, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc);
int32_t *d = vd, *n = vn, *m = vm;
for (i = 0; i < opr_sz / 4; ++i) {
d[i] = do_sqrdmlah_s(n[i], m[i], 0, false, true, vq);
}
clear_tail(d, opr_sz, simd_maxsz(desc));
}
void HELPER(sve2_sqrdmlah_s)(void *vd, void *vn, void *vm,
void *va, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc);
int32_t *d = vd, *n = vn, *m = vm, *a = va;
uint32_t discard;
for (i = 0; i < opr_sz / 4; ++i) {
d[i] = do_sqrdmlah_s(n[i], m[i], a[i], false, true, &discard);
}
}
void HELPER(sve2_sqrdmlsh_s)(void *vd, void *vn, void *vm,
void *va, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc);
int32_t *d = vd, *n = vn, *m = vm, *a = va;
uint32_t discard;
for (i = 0; i < opr_sz / 4; ++i) {
d[i] = do_sqrdmlah_s(n[i], m[i], a[i], true, true, &discard);
}
}
void HELPER(sve2_sqdmulh_s)(void *vd, void *vn, void *vm, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc);
int32_t *d = vd, *n = vn, *m = vm;
uint32_t discard;
for (i = 0; i < opr_sz / 4; ++i) {
d[i] = do_sqrdmlah_s(n[i], m[i], 0, false, false, &discard);
}
}
void HELPER(sve2_sqrdmulh_s)(void *vd, void *vn, void *vm, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc);
int32_t *d = vd, *n = vn, *m = vm;
uint32_t discard;
for (i = 0; i < opr_sz / 4; ++i) {
d[i] = do_sqrdmlah_s(n[i], m[i], 0, false, true, &discard);
}
}
void HELPER(sve2_sqdmulh_idx_s)(void *vd, void *vn, void *vm, uint32_t desc)
{
intptr_t i, j, opr_sz = simd_oprsz(desc);
int idx = simd_data(desc);
int32_t *d = vd, *n = vn, *m = (int32_t *)vm + H4(idx);
uint32_t discard;
for (i = 0; i < opr_sz / 4; i += 16 / 4) {
int32_t mm = m[i];
for (j = 0; j < 16 / 4; ++j) {
d[i + j] = do_sqrdmlah_s(n[i + j], mm, 0, false, false, &discard);
}
}
}
void HELPER(sve2_sqrdmulh_idx_s)(void *vd, void *vn, void *vm, uint32_t desc)
{
intptr_t i, j, opr_sz = simd_oprsz(desc);
int idx = simd_data(desc);
int32_t *d = vd, *n = vn, *m = (int32_t *)vm + H4(idx);
uint32_t discard;
for (i = 0; i < opr_sz / 4; i += 16 / 4) {
int32_t mm = m[i];
for (j = 0; j < 16 / 4; ++j) {
d[i + j] = do_sqrdmlah_s(n[i + j], mm, 0, false, true, &discard);
}
}
}
/* Signed saturating rounding doubling multiply-accumulate high half, 64-bit */
static int64_t do_sat128_d(Int128 r)
{
int64_t ls = int128_getlo(r);
int64_t hs = int128_gethi(r);
if (unlikely(hs != (ls >> 63))) {
return hs < 0 ? INT64_MIN : INT64_MAX;
}
return ls;
}
int64_t do_sqrdmlah_d(int64_t n, int64_t m, int64_t a, bool neg, bool round)
{
uint64_t l, h;
Int128 r, t;
/* As in do_sqrdmlah_b, but with 128-bit arithmetic. */
muls64(&l, &h, m, n);
r = int128_make128(l, h);
if (neg) {
r = int128_neg(r);
}
if (a) {
t = int128_exts64(a);
t = int128_lshift(t, 63);
r = int128_add(r, t);
}
if (round) {
t = int128_exts64(1ll << 62);
r = int128_add(r, t);
}
r = int128_rshift(r, 63);
return do_sat128_d(r);
}
void HELPER(sve2_sqrdmlah_d)(void *vd, void *vn, void *vm,
void *va, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc);
int64_t *d = vd, *n = vn, *m = vm, *a = va;
for (i = 0; i < opr_sz / 8; ++i) {
d[i] = do_sqrdmlah_d(n[i], m[i], a[i], false, true);
}
}
void HELPER(sve2_sqrdmlsh_d)(void *vd, void *vn, void *vm,
void *va, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc);
int64_t *d = vd, *n = vn, *m = vm, *a = va;
for (i = 0; i < opr_sz / 8; ++i) {
d[i] = do_sqrdmlah_d(n[i], m[i], a[i], true, true);
}
}
void HELPER(sve2_sqdmulh_d)(void *vd, void *vn, void *vm, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc);
int64_t *d = vd, *n = vn, *m = vm;
for (i = 0; i < opr_sz / 8; ++i) {
d[i] = do_sqrdmlah_d(n[i], m[i], 0, false, false);
}
}
void HELPER(sve2_sqrdmulh_d)(void *vd, void *vn, void *vm, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc);
int64_t *d = vd, *n = vn, *m = vm;
for (i = 0; i < opr_sz / 8; ++i) {
d[i] = do_sqrdmlah_d(n[i], m[i], 0, false, true);
}
}
void HELPER(sve2_sqdmulh_idx_d)(void *vd, void *vn, void *vm, uint32_t desc)
{
intptr_t i, j, opr_sz = simd_oprsz(desc);
int idx = simd_data(desc);
int64_t *d = vd, *n = vn, *m = (int64_t *)vm + idx;
for (i = 0; i < opr_sz / 8; i += 16 / 8) {
int64_t mm = m[i];
for (j = 0; j < 16 / 8; ++j) {
d[i + j] = do_sqrdmlah_d(n[i + j], mm, 0, false, false);
}
}
}
void HELPER(sve2_sqrdmulh_idx_d)(void *vd, void *vn, void *vm, uint32_t desc)
{
intptr_t i, j, opr_sz = simd_oprsz(desc);
int idx = simd_data(desc);
int64_t *d = vd, *n = vn, *m = (int64_t *)vm + idx;
for (i = 0; i < opr_sz / 8; i += 16 / 8) {
int64_t mm = m[i];
for (j = 0; j < 16 / 8; ++j) {
d[i + j] = do_sqrdmlah_d(n[i + j], mm, 0, false, true);
}
}
}
/* Integer 8 and 16-bit dot-product.
*
* Note that for the loops herein, host endianness does not matter
* with respect to the ordering of data within the quad-width lanes.
* All elements are treated equally, no matter where they are.
*/
#define DO_DOT(NAME, TYPED, TYPEN, TYPEM) \
void HELPER(NAME)(void *vd, void *vn, void *vm, void *va, uint32_t desc) \
{ \
intptr_t i, opr_sz = simd_oprsz(desc); \
TYPED *d = vd, *a = va; \
TYPEN *n = vn; \
TYPEM *m = vm; \
for (i = 0; i < opr_sz / sizeof(TYPED); ++i) { \
d[i] = (a[i] + \
(TYPED)n[i * 4 + 0] * m[i * 4 + 0] + \
(TYPED)n[i * 4 + 1] * m[i * 4 + 1] + \
(TYPED)n[i * 4 + 2] * m[i * 4 + 2] + \
(TYPED)n[i * 4 + 3] * m[i * 4 + 3]); \
} \
clear_tail(d, opr_sz, simd_maxsz(desc)); \
}
DO_DOT(gvec_sdot_b, int32_t, int8_t, int8_t)
DO_DOT(gvec_udot_b, uint32_t, uint8_t, uint8_t)
DO_DOT(gvec_usdot_b, uint32_t, uint8_t, int8_t)
DO_DOT(gvec_sdot_h, int64_t, int16_t, int16_t)
DO_DOT(gvec_udot_h, uint64_t, uint16_t, uint16_t)
#define DO_DOT_IDX(NAME, TYPED, TYPEN, TYPEM, HD) \
void HELPER(NAME)(void *vd, void *vn, void *vm, void *va, uint32_t desc) \
{ \
intptr_t i = 0, opr_sz = simd_oprsz(desc); \
intptr_t opr_sz_n = opr_sz / sizeof(TYPED); \
intptr_t segend = MIN(16 / sizeof(TYPED), opr_sz_n); \
intptr_t index = simd_data(desc); \
TYPED *d = vd, *a = va; \
TYPEN *n = vn; \
TYPEM *m_indexed = (TYPEM *)vm + HD(index) * 4; \
do { \
TYPED m0 = m_indexed[i * 4 + 0]; \
TYPED m1 = m_indexed[i * 4 + 1]; \
TYPED m2 = m_indexed[i * 4 + 2]; \
TYPED m3 = m_indexed[i * 4 + 3]; \
do { \
d[i] = (a[i] + \
n[i * 4 + 0] * m0 + \
n[i * 4 + 1] * m1 + \
n[i * 4 + 2] * m2 + \
n[i * 4 + 3] * m3); \
} while (++i < segend); \
segend = i + 4; \
} while (i < opr_sz_n); \
clear_tail(d, opr_sz, simd_maxsz(desc)); \
}
DO_DOT_IDX(gvec_sdot_idx_b, int32_t, int8_t, int8_t, H4)
DO_DOT_IDX(gvec_udot_idx_b, uint32_t, uint8_t, uint8_t, H4)
DO_DOT_IDX(gvec_sudot_idx_b, int32_t, int8_t, uint8_t, H4)
DO_DOT_IDX(gvec_usdot_idx_b, int32_t, uint8_t, int8_t, H4)
DO_DOT_IDX(gvec_sdot_idx_h, int64_t, int16_t, int16_t, )
DO_DOT_IDX(gvec_udot_idx_h, uint64_t, uint16_t, uint16_t, )
void HELPER(gvec_fcaddh)(void *vd, void *vn, void *vm,
void *vfpst, uint32_t desc)
{
uintptr_t opr_sz = simd_oprsz(desc);
float16 *d = vd;
float16 *n = vn;
float16 *m = vm;
float_status *fpst = vfpst;
uint32_t neg_real = extract32(desc, SIMD_DATA_SHIFT, 1);
uint32_t neg_imag = neg_real ^ 1;
uintptr_t i;
/* Shift boolean to the sign bit so we can xor to negate. */
neg_real <<= 15;
neg_imag <<= 15;
for (i = 0; i < opr_sz / 2; i += 2) {
float16 e0 = n[H2(i)];
float16 e1 = m[H2(i + 1)] ^ neg_imag;
float16 e2 = n[H2(i + 1)];
float16 e3 = m[H2(i)] ^ neg_real;
d[H2(i)] = float16_add(e0, e1, fpst);
d[H2(i + 1)] = float16_add(e2, e3, fpst);
}
clear_tail(d, opr_sz, simd_maxsz(desc));
}
void HELPER(gvec_fcadds)(void *vd, void *vn, void *vm,
void *vfpst, uint32_t desc)
{
uintptr_t opr_sz = simd_oprsz(desc);
float32 *d = vd;
float32 *n = vn;
float32 *m = vm;
float_status *fpst = vfpst;
uint32_t neg_real = extract32(desc, SIMD_DATA_SHIFT, 1);
uint32_t neg_imag = neg_real ^ 1;
uintptr_t i;
/* Shift boolean to the sign bit so we can xor to negate. */
neg_real <<= 31;
neg_imag <<= 31;
for (i = 0; i < opr_sz / 4; i += 2) {
float32 e0 = n[H4(i)];
float32 e1 = m[H4(i + 1)] ^ neg_imag;
float32 e2 = n[H4(i + 1)];
float32 e3 = m[H4(i)] ^ neg_real;
d[H4(i)] = float32_add(e0, e1, fpst);
d[H4(i + 1)] = float32_add(e2, e3, fpst);
}
clear_tail(d, opr_sz, simd_maxsz(desc));
}
void HELPER(gvec_fcaddd)(void *vd, void *vn, void *vm,
void *vfpst, uint32_t desc)
{
uintptr_t opr_sz = simd_oprsz(desc);
float64 *d = vd;
float64 *n = vn;
float64 *m = vm;
float_status *fpst = vfpst;
uint64_t neg_real = extract64(desc, SIMD_DATA_SHIFT, 1);
uint64_t neg_imag = neg_real ^ 1;
uintptr_t i;
/* Shift boolean to the sign bit so we can xor to negate. */
neg_real <<= 63;
neg_imag <<= 63;
for (i = 0; i < opr_sz / 8; i += 2) {
float64 e0 = n[i];
float64 e1 = m[i + 1] ^ neg_imag;
float64 e2 = n[i + 1];
float64 e3 = m[i] ^ neg_real;
d[i] = float64_add(e0, e1, fpst);
d[i + 1] = float64_add(e2, e3, fpst);
}
clear_tail(d, opr_sz, simd_maxsz(desc));
}
void HELPER(gvec_fcmlah)(void *vd, void *vn, void *vm, void *va,
void *vfpst, uint32_t desc)
{
uintptr_t opr_sz = simd_oprsz(desc);
float16 *d = vd, *n = vn, *m = vm, *a = va;
float_status *fpst = vfpst;
intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
uint32_t neg_real = flip ^ neg_imag;
uintptr_t i;
/* Shift boolean to the sign bit so we can xor to negate. */
neg_real <<= 15;
neg_imag <<= 15;
for (i = 0; i < opr_sz / 2; i += 2) {
float16 e2 = n[H2(i + flip)];
float16 e1 = m[H2(i + flip)] ^ neg_real;
float16 e4 = e2;
float16 e3 = m[H2(i + 1 - flip)] ^ neg_imag;
d[H2(i)] = float16_muladd(e2, e1, a[H2(i)], 0, fpst);
d[H2(i + 1)] = float16_muladd(e4, e3, a[H2(i + 1)], 0, fpst);
}
clear_tail(d, opr_sz, simd_maxsz(desc));
}
void HELPER(gvec_fcmlah_idx)(void *vd, void *vn, void *vm, void *va,
void *vfpst, uint32_t desc)
{
uintptr_t opr_sz = simd_oprsz(desc);
float16 *d = vd, *n = vn, *m = vm, *a = va;
float_status *fpst = vfpst;
intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
intptr_t index = extract32(desc, SIMD_DATA_SHIFT + 2, 2);
uint32_t neg_real = flip ^ neg_imag;
intptr_t elements = opr_sz / sizeof(float16);
intptr_t eltspersegment = 16 / sizeof(float16);
intptr_t i, j;
/* Shift boolean to the sign bit so we can xor to negate. */
neg_real <<= 15;
neg_imag <<= 15;
for (i = 0; i < elements; i += eltspersegment) {
float16 mr = m[H2(i + 2 * index + 0)];
float16 mi = m[H2(i + 2 * index + 1)];
float16 e1 = neg_real ^ (flip ? mi : mr);
float16 e3 = neg_imag ^ (flip ? mr : mi);
for (j = i; j < i + eltspersegment; j += 2) {
float16 e2 = n[H2(j + flip)];
float16 e4 = e2;
d[H2(j)] = float16_muladd(e2, e1, a[H2(j)], 0, fpst);
d[H2(j + 1)] = float16_muladd(e4, e3, a[H2(j + 1)], 0, fpst);
}
}
clear_tail(d, opr_sz, simd_maxsz(desc));
}
void HELPER(gvec_fcmlas)(void *vd, void *vn, void *vm, void *va,
void *vfpst, uint32_t desc)
{
uintptr_t opr_sz = simd_oprsz(desc);
float32 *d = vd, *n = vn, *m = vm, *a = va;
float_status *fpst = vfpst;
intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
uint32_t neg_real = flip ^ neg_imag;
uintptr_t i;
/* Shift boolean to the sign bit so we can xor to negate. */
neg_real <<= 31;
neg_imag <<= 31;
for (i = 0; i < opr_sz / 4; i += 2) {
float32 e2 = n[H4(i + flip)];
float32 e1 = m[H4(i + flip)] ^ neg_real;
float32 e4 = e2;
float32 e3 = m[H4(i + 1 - flip)] ^ neg_imag;
d[H4(i)] = float32_muladd(e2, e1, a[H4(i)], 0, fpst);
d[H4(i + 1)] = float32_muladd(e4, e3, a[H4(i + 1)], 0, fpst);
}
clear_tail(d, opr_sz, simd_maxsz(desc));
}
void HELPER(gvec_fcmlas_idx)(void *vd, void *vn, void *vm, void *va,
void *vfpst, uint32_t desc)
{
uintptr_t opr_sz = simd_oprsz(desc);
float32 *d = vd, *n = vn, *m = vm, *a = va;
float_status *fpst = vfpst;
intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
intptr_t index = extract32(desc, SIMD_DATA_SHIFT + 2, 2);
uint32_t neg_real = flip ^ neg_imag;
intptr_t elements = opr_sz / sizeof(float32);
intptr_t eltspersegment = 16 / sizeof(float32);
intptr_t i, j;
/* Shift boolean to the sign bit so we can xor to negate. */
neg_real <<= 31;
neg_imag <<= 31;
for (i = 0; i < elements; i += eltspersegment) {
float32 mr = m[H4(i + 2 * index + 0)];
float32 mi = m[H4(i + 2 * index + 1)];
float32 e1 = neg_real ^ (flip ? mi : mr);
float32 e3 = neg_imag ^ (flip ? mr : mi);
for (j = i; j < i + eltspersegment; j += 2) {
float32 e2 = n[H4(j + flip)];
float32 e4 = e2;
d[H4(j)] = float32_muladd(e2, e1, a[H4(j)], 0, fpst);
d[H4(j + 1)] = float32_muladd(e4, e3, a[H4(j + 1)], 0, fpst);
}
}
clear_tail(d, opr_sz, simd_maxsz(desc));
}
void HELPER(gvec_fcmlad)(void *vd, void *vn, void *vm, void *va,
void *vfpst, uint32_t desc)
{
uintptr_t opr_sz = simd_oprsz(desc);
float64 *d = vd, *n = vn, *m = vm, *a = va;
float_status *fpst = vfpst;
intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1);
uint64_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
uint64_t neg_real = flip ^ neg_imag;
uintptr_t i;
/* Shift boolean to the sign bit so we can xor to negate. */
neg_real <<= 63;
neg_imag <<= 63;
for (i = 0; i < opr_sz / 8; i += 2) {
float64 e2 = n[i + flip];
float64 e1 = m[i + flip] ^ neg_real;
float64 e4 = e2;
float64 e3 = m[i + 1 - flip] ^ neg_imag;
d[i] = float64_muladd(e2, e1, a[i], 0, fpst);
d[i + 1] = float64_muladd(e4, e3, a[i + 1], 0, fpst);
}
clear_tail(d, opr_sz, simd_maxsz(desc));
}
/*
* Floating point comparisons producing an integer result (all 1s or all 0s).
* Note that EQ doesn't signal InvalidOp for QNaNs but GE and GT do.
* Softfloat routines return 0/1, which we convert to the 0/-1 Neon requires.
*/
static uint16_t float16_ceq(float16 op1, float16 op2, float_status *stat)
{
return -float16_eq_quiet(op1, op2, stat);
}
static uint32_t float32_ceq(float32 op1, float32 op2, float_status *stat)
{
return -float32_eq_quiet(op1, op2, stat);
}
static uint16_t float16_cge(float16 op1, float16 op2, float_status *stat)
{
return -float16_le(op2, op1, stat);
}
static uint32_t float32_cge(float32 op1, float32 op2, float_status *stat)
{
return -float32_le(op2, op1, stat);
}
static uint16_t float16_cgt(float16 op1, float16 op2, float_status *stat)
{
return -float16_lt(op2, op1, stat);
}
static uint32_t float32_cgt(float32 op1, float32 op2, float_status *stat)
{
return -float32_lt(op2, op1, stat);
}
static uint16_t float16_acge(float16 op1, float16 op2, float_status *stat)
{
return -float16_le(float16_abs(op2), float16_abs(op1), stat);
}
static uint32_t float32_acge(float32 op1, float32 op2, float_status *stat)
{
return -float32_le(float32_abs(op2), float32_abs(op1), stat);
}
static uint16_t float16_acgt(float16 op1, float16 op2, float_status *stat)
{
return -float16_lt(float16_abs(op2), float16_abs(op1), stat);
}
static uint32_t float32_acgt(float32 op1, float32 op2, float_status *stat)
{
return -float32_lt(float32_abs(op2), float32_abs(op1), stat);
}
static int16_t vfp_tosszh(float16 x, void *fpstp)
{
float_status *fpst = fpstp;
if (float16_is_any_nan(x)) {
float_raise(float_flag_invalid, fpst);
return 0;
}
return float16_to_int16_round_to_zero(x, fpst);
}
static uint16_t vfp_touszh(float16 x, void *fpstp)
{
float_status *fpst = fpstp;
if (float16_is_any_nan(x)) {
float_raise(float_flag_invalid, fpst);
return 0;
}
return float16_to_uint16_round_to_zero(x, fpst);
}
#define DO_2OP(NAME, FUNC, TYPE) \
void HELPER(NAME)(void *vd, void *vn, void *stat, uint32_t desc) \
{ \
intptr_t i, oprsz = simd_oprsz(desc); \
TYPE *d = vd, *n = vn; \
for (i = 0; i < oprsz / sizeof(TYPE); i++) { \
d[i] = FUNC(n[i], stat); \
} \
clear_tail(d, oprsz, simd_maxsz(desc)); \
}
DO_2OP(gvec_frecpe_h, helper_recpe_f16, float16)
DO_2OP(gvec_frecpe_s, helper_recpe_f32, float32)
DO_2OP(gvec_frecpe_d, helper_recpe_f64, float64)
DO_2OP(gvec_frsqrte_h, helper_rsqrte_f16, float16)
DO_2OP(gvec_frsqrte_s, helper_rsqrte_f32, float32)
DO_2OP(gvec_frsqrte_d, helper_rsqrte_f64, float64)
DO_2OP(gvec_vrintx_h, float16_round_to_int, float16)
DO_2OP(gvec_vrintx_s, float32_round_to_int, float32)
DO_2OP(gvec_sitos, helper_vfp_sitos, int32_t)
DO_2OP(gvec_uitos, helper_vfp_uitos, uint32_t)
DO_2OP(gvec_tosizs, helper_vfp_tosizs, float32)
DO_2OP(gvec_touizs, helper_vfp_touizs, float32)
DO_2OP(gvec_sstoh, int16_to_float16, int16_t)
DO_2OP(gvec_ustoh, uint16_to_float16, uint16_t)
DO_2OP(gvec_tosszh, vfp_tosszh, float16)
DO_2OP(gvec_touszh, vfp_touszh, float16)
#define WRAP_CMP0_FWD(FN, CMPOP, TYPE) \
static TYPE TYPE##_##FN##0(TYPE op, float_status *stat) \
{ \
return TYPE##_##CMPOP(op, TYPE##_zero, stat); \
}
#define WRAP_CMP0_REV(FN, CMPOP, TYPE) \
static TYPE TYPE##_##FN##0(TYPE op, float_status *stat) \
{ \
return TYPE##_##CMPOP(TYPE##_zero, op, stat); \
}
#define DO_2OP_CMP0(FN, CMPOP, DIRN) \
WRAP_CMP0_##DIRN(FN, CMPOP, float16) \
WRAP_CMP0_##DIRN(FN, CMPOP, float32) \
DO_2OP(gvec_f##FN##0_h, float16_##FN##0, float16) \
DO_2OP(gvec_f##FN##0_s, float32_##FN##0, float32)
DO_2OP_CMP0(cgt, cgt, FWD)
DO_2OP_CMP0(cge, cge, FWD)
DO_2OP_CMP0(ceq, ceq, FWD)
DO_2OP_CMP0(clt, cgt, REV)
DO_2OP_CMP0(cle, cge, REV)
#undef DO_2OP
#undef DO_2OP_CMP0
/* Floating-point trigonometric starting value.
* See the ARM ARM pseudocode function FPTrigSMul.
*/
static float16 float16_ftsmul(float16 op1, uint16_t op2, float_status *stat)
{
float16 result = float16_mul(op1, op1, stat);
if (!float16_is_any_nan(result)) {
result = float16_set_sign(result, op2 & 1);
}
return result;
}
static float32 float32_ftsmul(float32 op1, uint32_t op2, float_status *stat)
{
float32 result = float32_mul(op1, op1, stat);
if (!float32_is_any_nan(result)) {
result = float32_set_sign(result, op2 & 1);
}
return result;
}
static float64 float64_ftsmul(float64 op1, uint64_t op2, float_status *stat)
{
float64 result = float64_mul(op1, op1, stat);
if (!float64_is_any_nan(result)) {
result = float64_set_sign(result, op2 & 1);
}
return result;
}
static float16 float16_abd(float16 op1, float16 op2, float_status *stat)
{
return float16_abs(float16_sub(op1, op2, stat));
}
static float32 float32_abd(float32 op1, float32 op2, float_status *stat)
{
return float32_abs(float32_sub(op1, op2, stat));
}
/*
* Reciprocal step. These are the AArch32 version which uses a
* non-fused multiply-and-subtract.
*/
static float16 float16_recps_nf(float16 op1, float16 op2, float_status *stat)
{
op1 = float16_squash_input_denormal(op1, stat);
op2 = float16_squash_input_denormal(op2, stat);
if ((float16_is_infinity(op1) && float16_is_zero(op2)) ||
(float16_is_infinity(op2) && float16_is_zero(op1))) {
return float16_two;
}
return float16_sub(float16_two, float16_mul(op1, op2, stat), stat);
}
static float32 float32_recps_nf(float32 op1, float32 op2, float_status *stat)
{
op1 = float32_squash_input_denormal(op1, stat);
op2 = float32_squash_input_denormal(op2, stat);
if ((float32_is_infinity(op1) && float32_is_zero(op2)) ||
(float32_is_infinity(op2) && float32_is_zero(op1))) {
return float32_two;
}
return float32_sub(float32_two, float32_mul(op1, op2, stat), stat);
}
/* Reciprocal square-root step. AArch32 non-fused semantics. */
static float16 float16_rsqrts_nf(float16 op1, float16 op2, float_status *stat)
{
op1 = float16_squash_input_denormal(op1, stat);
op2 = float16_squash_input_denormal(op2, stat);
if ((float16_is_infinity(op1) && float16_is_zero(op2)) ||
(float16_is_infinity(op2) && float16_is_zero(op1))) {
return float16_one_point_five;
}
op1 = float16_sub(float16_three, float16_mul(op1, op2, stat), stat);
return float16_div(op1, float16_two, stat);
}
static float32 float32_rsqrts_nf(float32 op1, float32 op2, float_status *stat)
{
op1 = float32_squash_input_denormal(op1, stat);
op2 = float32_squash_input_denormal(op2, stat);
if ((float32_is_infinity(op1) && float32_is_zero(op2)) ||
(float32_is_infinity(op2) && float32_is_zero(op1))) {
return float32_one_point_five;
}
op1 = float32_sub(float32_three, float32_mul(op1, op2, stat), stat);
return float32_div(op1, float32_two, stat);
}
#define DO_3OP(NAME, FUNC, TYPE) \
void HELPER(NAME)(void *vd, void *vn, void *vm, void *stat, uint32_t desc) \
{ \
intptr_t i, oprsz = simd_oprsz(desc); \
TYPE *d = vd, *n = vn, *m = vm; \
for (i = 0; i < oprsz / sizeof(TYPE); i++) { \
d[i] = FUNC(n[i], m[i], stat); \
} \
clear_tail(d, oprsz, simd_maxsz(desc)); \
}
DO_3OP(gvec_fadd_h, float16_add, float16)
DO_3OP(gvec_fadd_s, float32_add, float32)
DO_3OP(gvec_fadd_d, float64_add, float64)
DO_3OP(gvec_fsub_h, float16_sub, float16)
DO_3OP(gvec_fsub_s, float32_sub, float32)
DO_3OP(gvec_fsub_d, float64_sub, float64)
DO_3OP(gvec_fmul_h, float16_mul, float16)
DO_3OP(gvec_fmul_s, float32_mul, float32)
DO_3OP(gvec_fmul_d, float64_mul, float64)
DO_3OP(gvec_ftsmul_h, float16_ftsmul, float16)
DO_3OP(gvec_ftsmul_s, float32_ftsmul, float32)
DO_3OP(gvec_ftsmul_d, float64_ftsmul, float64)
DO_3OP(gvec_fabd_h, float16_abd, float16)
DO_3OP(gvec_fabd_s, float32_abd, float32)
DO_3OP(gvec_fceq_h, float16_ceq, float16)
DO_3OP(gvec_fceq_s, float32_ceq, float32)
DO_3OP(gvec_fcge_h, float16_cge, float16)
DO_3OP(gvec_fcge_s, float32_cge, float32)
DO_3OP(gvec_fcgt_h, float16_cgt, float16)
DO_3OP(gvec_fcgt_s, float32_cgt, float32)
DO_3OP(gvec_facge_h, float16_acge, float16)
DO_3OP(gvec_facge_s, float32_acge, float32)
DO_3OP(gvec_facgt_h, float16_acgt, float16)
DO_3OP(gvec_facgt_s, float32_acgt, float32)
DO_3OP(gvec_fmax_h, float16_max, float16)
DO_3OP(gvec_fmax_s, float32_max, float32)
DO_3OP(gvec_fmin_h, float16_min, float16)
DO_3OP(gvec_fmin_s, float32_min, float32)
DO_3OP(gvec_fmaxnum_h, float16_maxnum, float16)
DO_3OP(gvec_fmaxnum_s, float32_maxnum, float32)
DO_3OP(gvec_fminnum_h, float16_minnum, float16)
DO_3OP(gvec_fminnum_s, float32_minnum, float32)
DO_3OP(gvec_recps_nf_h, float16_recps_nf, float16)
DO_3OP(gvec_recps_nf_s, float32_recps_nf, float32)
DO_3OP(gvec_rsqrts_nf_h, float16_rsqrts_nf, float16)
DO_3OP(gvec_rsqrts_nf_s, float32_rsqrts_nf, float32)
#ifdef TARGET_AARCH64
DO_3OP(gvec_recps_h, helper_recpsf_f16, float16)
DO_3OP(gvec_recps_s, helper_recpsf_f32, float32)
DO_3OP(gvec_recps_d, helper_recpsf_f64, float64)
DO_3OP(gvec_rsqrts_h, helper_rsqrtsf_f16, float16)
DO_3OP(gvec_rsqrts_s, helper_rsqrtsf_f32, float32)
DO_3OP(gvec_rsqrts_d, helper_rsqrtsf_f64, float64)
#endif
#undef DO_3OP
/* Non-fused multiply-add (unlike float16_muladd etc, which are fused) */
static float16 float16_muladd_nf(float16 dest, float16 op1, float16 op2,
float_status *stat)
{
return float16_add(dest, float16_mul(op1, op2, stat), stat);
}
static float32 float32_muladd_nf(float32 dest, float32 op1, float32 op2,
float_status *stat)
{
return float32_add(dest, float32_mul(op1, op2, stat), stat);
}
static float16 float16_mulsub_nf(float16 dest, float16 op1, float16 op2,
float_status *stat)
{
return float16_sub(dest, float16_mul(op1, op2, stat), stat);
}
static float32 float32_mulsub_nf(float32 dest, float32 op1, float32 op2,
float_status *stat)
{
return float32_sub(dest, float32_mul(op1, op2, stat), stat);
}
/* Fused versions; these have the semantics Neon VFMA/VFMS want */
static float16 float16_muladd_f(float16 dest, float16 op1, float16 op2,
float_status *stat)
{
return float16_muladd(op1, op2, dest, 0, stat);
}
static float32 float32_muladd_f(float32 dest, float32 op1, float32 op2,
float_status *stat)
{
return float32_muladd(op1, op2, dest, 0, stat);
}
static float16 float16_mulsub_f(float16 dest, float16 op1, float16 op2,
float_status *stat)
{
return float16_muladd(float16_chs(op1), op2, dest, 0, stat);
}
static float32 float32_mulsub_f(float32 dest, float32 op1, float32 op2,
float_status *stat)
{
return float32_muladd(float32_chs(op1), op2, dest, 0, stat);
}
#define DO_MULADD(NAME, FUNC, TYPE) \
void HELPER(NAME)(void *vd, void *vn, void *vm, void *stat, uint32_t desc) \
{ \
intptr_t i, oprsz = simd_oprsz(desc); \
TYPE *d = vd, *n = vn, *m = vm; \
for (i = 0; i < oprsz / sizeof(TYPE); i++) { \
d[i] = FUNC(d[i], n[i], m[i], stat); \
} \
clear_tail(d, oprsz, simd_maxsz(desc)); \
}
DO_MULADD(gvec_fmla_h, float16_muladd_nf, float16)
DO_MULADD(gvec_fmla_s, float32_muladd_nf, float32)
DO_MULADD(gvec_fmls_h, float16_mulsub_nf, float16)
DO_MULADD(gvec_fmls_s, float32_mulsub_nf, float32)
DO_MULADD(gvec_vfma_h, float16_muladd_f, float16)
DO_MULADD(gvec_vfma_s, float32_muladd_f, float32)
DO_MULADD(gvec_vfms_h, float16_mulsub_f, float16)
DO_MULADD(gvec_vfms_s, float32_mulsub_f, float32)
/* For the indexed ops, SVE applies the index per 128-bit vector segment.
* For AdvSIMD, there is of course only one such vector segment.
*/
#define DO_MUL_IDX(NAME, TYPE, H) \
void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \
{ \
intptr_t i, j, oprsz = simd_oprsz(desc); \
intptr_t segment = MIN(16, oprsz) / sizeof(TYPE); \
intptr_t idx = simd_data(desc); \
TYPE *d = vd, *n = vn, *m = vm; \
for (i = 0; i < oprsz / sizeof(TYPE); i += segment) { \
TYPE mm = m[H(i + idx)]; \
for (j = 0; j < segment; j++) { \
d[i + j] = n[i + j] * mm; \
} \
} \
clear_tail(d, oprsz, simd_maxsz(desc)); \
}
DO_MUL_IDX(gvec_mul_idx_h, uint16_t, H2)
DO_MUL_IDX(gvec_mul_idx_s, uint32_t, H4)
DO_MUL_IDX(gvec_mul_idx_d, uint64_t, )
#undef DO_MUL_IDX
#define DO_MLA_IDX(NAME, TYPE, OP, H) \
void HELPER(NAME)(void *vd, void *vn, void *vm, void *va, uint32_t desc) \
{ \
intptr_t i, j, oprsz = simd_oprsz(desc); \
intptr_t segment = MIN(16, oprsz) / sizeof(TYPE); \
intptr_t idx = simd_data(desc); \
TYPE *d = vd, *n = vn, *m = vm, *a = va; \
for (i = 0; i < oprsz / sizeof(TYPE); i += segment) { \
TYPE mm = m[H(i + idx)]; \
for (j = 0; j < segment; j++) { \
d[i + j] = a[i + j] OP n[i + j] * mm; \
} \
} \
clear_tail(d, oprsz, simd_maxsz(desc)); \
}
DO_MLA_IDX(gvec_mla_idx_h, uint16_t, +, H2)
DO_MLA_IDX(gvec_mla_idx_s, uint32_t, +, H4)
DO_MLA_IDX(gvec_mla_idx_d, uint64_t, +, )
DO_MLA_IDX(gvec_mls_idx_h, uint16_t, -, H2)
DO_MLA_IDX(gvec_mls_idx_s, uint32_t, -, H4)
DO_MLA_IDX(gvec_mls_idx_d, uint64_t, -, )
#undef DO_MLA_IDX
#define DO_FMUL_IDX(NAME, ADD, TYPE, H) \
void HELPER(NAME)(void *vd, void *vn, void *vm, void *stat, uint32_t desc) \
{ \
intptr_t i, j, oprsz = simd_oprsz(desc); \
intptr_t segment = MIN(16, oprsz) / sizeof(TYPE); \
intptr_t idx = simd_data(desc); \
TYPE *d = vd, *n = vn, *m = vm; \
for (i = 0; i < oprsz / sizeof(TYPE); i += segment) { \
TYPE mm = m[H(i + idx)]; \
for (j = 0; j < segment; j++) { \
d[i + j] = TYPE##_##ADD(d[i + j], \
TYPE##_mul(n[i + j], mm, stat), stat); \
} \
} \
clear_tail(d, oprsz, simd_maxsz(desc)); \
}
#define float16_nop(N, M, S) (M)
#define float32_nop(N, M, S) (M)
#define float64_nop(N, M, S) (M)
DO_FMUL_IDX(gvec_fmul_idx_h, nop, float16, H2)
DO_FMUL_IDX(gvec_fmul_idx_s, nop, float32, H4)
DO_FMUL_IDX(gvec_fmul_idx_d, nop, float64, )
/*
* Non-fused multiply-accumulate operations, for Neon. NB that unlike
* the fused ops below they assume accumulate both from and into Vd.
*/
DO_FMUL_IDX(gvec_fmla_nf_idx_h, add, float16, H2)
DO_FMUL_IDX(gvec_fmla_nf_idx_s, add, float32, H4)
DO_FMUL_IDX(gvec_fmls_nf_idx_h, sub, float16, H2)
DO_FMUL_IDX(gvec_fmls_nf_idx_s, sub, float32, H4)
#undef float16_nop
#undef float32_nop
#undef float64_nop
#undef DO_FMUL_IDX
#define DO_FMLA_IDX(NAME, TYPE, H) \
void HELPER(NAME)(void *vd, void *vn, void *vm, void *va, \
void *stat, uint32_t desc) \
{ \
intptr_t i, j, oprsz = simd_oprsz(desc); \
intptr_t segment = MIN(16, oprsz) / sizeof(TYPE); \
TYPE op1_neg = extract32(desc, SIMD_DATA_SHIFT, 1); \
intptr_t idx = desc >> (SIMD_DATA_SHIFT + 1); \
TYPE *d = vd, *n = vn, *m = vm, *a = va; \
op1_neg <<= (8 * sizeof(TYPE) - 1); \
for (i = 0; i < oprsz / sizeof(TYPE); i += segment) { \
TYPE mm = m[H(i + idx)]; \
for (j = 0; j < segment; j++) { \
d[i + j] = TYPE##_muladd(n[i + j] ^ op1_neg, \
mm, a[i + j], 0, stat); \
} \
} \
clear_tail(d, oprsz, simd_maxsz(desc)); \
}
DO_FMLA_IDX(gvec_fmla_idx_h, float16, H2)
DO_FMLA_IDX(gvec_fmla_idx_s, float32, H4)
DO_FMLA_IDX(gvec_fmla_idx_d, float64, )
#undef DO_FMLA_IDX
#define DO_SAT(NAME, WTYPE, TYPEN, TYPEM, OP, MIN, MAX) \
void HELPER(NAME)(void *vd, void *vq, void *vn, void *vm, uint32_t desc) \
{ \
intptr_t i, oprsz = simd_oprsz(desc); \
TYPEN *d = vd, *n = vn; TYPEM *m = vm; \
bool q = false; \
for (i = 0; i < oprsz / sizeof(TYPEN); i++) { \
WTYPE dd = (WTYPE)n[i] OP m[i]; \
if (dd < MIN) { \
dd = MIN; \
q = true; \
} else if (dd > MAX) { \
dd = MAX; \
q = true; \
} \
d[i] = dd; \
} \
if (q) { \
uint32_t *qc = vq; \
qc[0] = 1; \
} \
clear_tail(d, oprsz, simd_maxsz(desc)); \
}
DO_SAT(gvec_uqadd_b, int, uint8_t, uint8_t, +, 0, UINT8_MAX)
DO_SAT(gvec_uqadd_h, int, uint16_t, uint16_t, +, 0, UINT16_MAX)
DO_SAT(gvec_uqadd_s, int64_t, uint32_t, uint32_t, +, 0, UINT32_MAX)
DO_SAT(gvec_sqadd_b, int, int8_t, int8_t, +, INT8_MIN, INT8_MAX)
DO_SAT(gvec_sqadd_h, int, int16_t, int16_t, +, INT16_MIN, INT16_MAX)
DO_SAT(gvec_sqadd_s, int64_t, int32_t, int32_t, +, INT32_MIN, INT32_MAX)
DO_SAT(gvec_uqsub_b, int, uint8_t, uint8_t, -, 0, UINT8_MAX)
DO_SAT(gvec_uqsub_h, int, uint16_t, uint16_t, -, 0, UINT16_MAX)
DO_SAT(gvec_uqsub_s, int64_t, uint32_t, uint32_t, -, 0, UINT32_MAX)
DO_SAT(gvec_sqsub_b, int, int8_t, int8_t, -, INT8_MIN, INT8_MAX)
DO_SAT(gvec_sqsub_h, int, int16_t, int16_t, -, INT16_MIN, INT16_MAX)
DO_SAT(gvec_sqsub_s, int64_t, int32_t, int32_t, -, INT32_MIN, INT32_MAX)
#undef DO_SAT
void HELPER(gvec_uqadd_d)(void *vd, void *vq, void *vn,
void *vm, uint32_t desc)
{
intptr_t i, oprsz = simd_oprsz(desc);
uint64_t *d = vd, *n = vn, *m = vm;
bool q = false;
for (i = 0; i < oprsz / 8; i++) {
uint64_t nn = n[i], mm = m[i], dd = nn + mm;
if (dd < nn) {
dd = UINT64_MAX;
q = true;
}
d[i] = dd;
}
if (q) {
uint32_t *qc = vq;
qc[0] = 1;
}
clear_tail(d, oprsz, simd_maxsz(desc));
}
void HELPER(gvec_uqsub_d)(void *vd, void *vq, void *vn,
void *vm, uint32_t desc)
{
intptr_t i, oprsz = simd_oprsz(desc);
uint64_t *d = vd, *n = vn, *m = vm;
bool q = false;
for (i = 0; i < oprsz / 8; i++) {
uint64_t nn = n[i], mm = m[i], dd = nn - mm;
if (nn < mm) {
dd = 0;
q = true;
}
d[i] = dd;
}
if (q) {
uint32_t *qc = vq;
qc[0] = 1;
}
clear_tail(d, oprsz, simd_maxsz(desc));
}
void HELPER(gvec_sqadd_d)(void *vd, void *vq, void *vn,
void *vm, uint32_t desc)
{
intptr_t i, oprsz = simd_oprsz(desc);
int64_t *d = vd, *n = vn, *m = vm;
bool q = false;
for (i = 0; i < oprsz / 8; i++) {
int64_t nn = n[i], mm = m[i], dd = nn + mm;
if (((dd ^ nn) & ~(nn ^ mm)) & INT64_MIN) {
dd = (nn >> 63) ^ ~INT64_MIN;
q = true;
}
d[i] = dd;
}
if (q) {
uint32_t *qc = vq;
qc[0] = 1;
}
clear_tail(d, oprsz, simd_maxsz(desc));
}
void HELPER(gvec_sqsub_d)(void *vd, void *vq, void *vn,
void *vm, uint32_t desc)
{
intptr_t i, oprsz = simd_oprsz(desc);
int64_t *d = vd, *n = vn, *m = vm;
bool q = false;
for (i = 0; i < oprsz / 8; i++) {
int64_t nn = n[i], mm = m[i], dd = nn - mm;
if (((dd ^ nn) & (nn ^ mm)) & INT64_MIN) {
dd = (nn >> 63) ^ ~INT64_MIN;
q = true;
}
d[i] = dd;
}
if (q) {
uint32_t *qc = vq;
qc[0] = 1;
}
clear_tail(d, oprsz, simd_maxsz(desc));
}
#define DO_SRA(NAME, TYPE) \
void HELPER(NAME)(void *vd, void *vn, uint32_t desc) \
{ \
intptr_t i, oprsz = simd_oprsz(desc); \
int shift = simd_data(desc); \
TYPE *d = vd, *n = vn; \
for (i = 0; i < oprsz / sizeof(TYPE); i++) { \
d[i] += n[i] >> shift; \
} \
clear_tail(d, oprsz, simd_maxsz(desc)); \
}
DO_SRA(gvec_ssra_b, int8_t)
DO_SRA(gvec_ssra_h, int16_t)
DO_SRA(gvec_ssra_s, int32_t)
DO_SRA(gvec_ssra_d, int64_t)
DO_SRA(gvec_usra_b, uint8_t)
DO_SRA(gvec_usra_h, uint16_t)
DO_SRA(gvec_usra_s, uint32_t)
DO_SRA(gvec_usra_d, uint64_t)
#undef DO_SRA
#define DO_RSHR(NAME, TYPE) \
void HELPER(NAME)(void *vd, void *vn, uint32_t desc) \
{ \
intptr_t i, oprsz = simd_oprsz(desc); \
int shift = simd_data(desc); \
TYPE *d = vd, *n = vn; \
for (i = 0; i < oprsz / sizeof(TYPE); i++) { \
TYPE tmp = n[i] >> (shift - 1); \
d[i] = (tmp >> 1) + (tmp & 1); \
} \
clear_tail(d, oprsz, simd_maxsz(desc)); \
}
DO_RSHR(gvec_srshr_b, int8_t)
DO_RSHR(gvec_srshr_h, int16_t)
DO_RSHR(gvec_srshr_s, int32_t)
DO_RSHR(gvec_srshr_d, int64_t)
DO_RSHR(gvec_urshr_b, uint8_t)
DO_RSHR(gvec_urshr_h, uint16_t)
DO_RSHR(gvec_urshr_s, uint32_t)
DO_RSHR(gvec_urshr_d, uint64_t)
#undef DO_RSHR
#define DO_RSRA(NAME, TYPE) \
void HELPER(NAME)(void *vd, void *vn, uint32_t desc) \
{ \
intptr_t i, oprsz = simd_oprsz(desc); \
int shift = simd_data(desc); \
TYPE *d = vd, *n = vn; \
for (i = 0; i < oprsz / sizeof(TYPE); i++) { \
TYPE tmp = n[i] >> (shift - 1); \
d[i] += (tmp >> 1) + (tmp & 1); \
} \
clear_tail(d, oprsz, simd_maxsz(desc)); \
}
DO_RSRA(gvec_srsra_b, int8_t)
DO_RSRA(gvec_srsra_h, int16_t)
DO_RSRA(gvec_srsra_s, int32_t)
DO_RSRA(gvec_srsra_d, int64_t)
DO_RSRA(gvec_ursra_b, uint8_t)
DO_RSRA(gvec_ursra_h, uint16_t)
DO_RSRA(gvec_ursra_s, uint32_t)
DO_RSRA(gvec_ursra_d, uint64_t)
#undef DO_RSRA
#define DO_SRI(NAME, TYPE) \
void HELPER(NAME)(void *vd, void *vn, uint32_t desc) \
{ \
intptr_t i, oprsz = simd_oprsz(desc); \
int shift = simd_data(desc); \
TYPE *d = vd, *n = vn; \
for (i = 0; i < oprsz / sizeof(TYPE); i++) { \
d[i] = deposit64(d[i], 0, sizeof(TYPE) * 8 - shift, n[i] >> shift); \
} \
clear_tail(d, oprsz, simd_maxsz(desc)); \
}
DO_SRI(gvec_sri_b, uint8_t)
DO_SRI(gvec_sri_h, uint16_t)
DO_SRI(gvec_sri_s, uint32_t)
DO_SRI(gvec_sri_d, uint64_t)
#undef DO_SRI
#define DO_SLI(NAME, TYPE) \
void HELPER(NAME)(void *vd, void *vn, uint32_t desc) \
{ \
intptr_t i, oprsz = simd_oprsz(desc); \
int shift = simd_data(desc); \
TYPE *d = vd, *n = vn; \
for (i = 0; i < oprsz / sizeof(TYPE); i++) { \
d[i] = deposit64(d[i], shift, sizeof(TYPE) * 8 - shift, n[i]); \
} \
clear_tail(d, oprsz, simd_maxsz(desc)); \
}
DO_SLI(gvec_sli_b, uint8_t)
DO_SLI(gvec_sli_h, uint16_t)
DO_SLI(gvec_sli_s, uint32_t)
DO_SLI(gvec_sli_d, uint64_t)
#undef DO_SLI
/*
* Convert float16 to float32, raising no exceptions and
* preserving exceptional values, including SNaN.
* This is effectively an unpack+repack operation.
*/
static float32 float16_to_float32_by_bits(uint32_t f16, bool fz16)
{
const int f16_bias = 15;
const int f32_bias = 127;
uint32_t sign = extract32(f16, 15, 1);
uint32_t exp = extract32(f16, 10, 5);
uint32_t frac = extract32(f16, 0, 10);
if (exp == 0x1f) {
/* Inf or NaN */
exp = 0xff;
} else if (exp == 0) {
/* Zero or denormal. */
if (frac != 0) {
if (fz16) {
frac = 0;
} else {
/*
* Denormal; these are all normal float32.
* Shift the fraction so that the msb is at bit 11,
* then remove bit 11 as the implicit bit of the
* normalized float32. Note that we still go through
* the shift for normal numbers below, to put the
* float32 fraction at the right place.
*/
int shift = clz32(frac) - 21;
frac = (frac << shift) & 0x3ff;
exp = f32_bias - f16_bias - shift + 1;
}
}
} else {
/* Normal number; adjust the bias. */
exp += f32_bias - f16_bias;
}
sign <<= 31;
exp <<= 23;
frac <<= 23 - 10;
return sign | exp | frac;
}
static uint64_t load4_f16(uint64_t *ptr, int is_q, int is_2)
{
/*
* Branchless load of u32[0], u64[0], u32[1], or u64[1].
* Load the 2nd qword iff is_q & is_2.
* Shift to the 2nd dword iff !is_q & is_2.
* For !is_q & !is_2, the upper bits of the result are garbage.
*/
return ptr[is_q & is_2] >> ((is_2 & ~is_q) << 5);
}
/*
* Note that FMLAL requires oprsz == 8 or oprsz == 16,
* as there is not yet SVE versions that might use blocking.
*/
static void do_fmlal(float32 *d, void *vn, void *vm, float_status *fpst,
uint32_t desc, bool fz16)
{
intptr_t i, oprsz = simd_oprsz(desc);
int is_s = extract32(desc, SIMD_DATA_SHIFT, 1);
int is_2 = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
int is_q = oprsz == 16;
uint64_t n_4, m_4;
/* Pre-load all of the f16 data, avoiding overlap issues. */
n_4 = load4_f16(vn, is_q, is_2);
m_4 = load4_f16(vm, is_q, is_2);
/* Negate all inputs for FMLSL at once. */
if (is_s) {
n_4 ^= 0x8000800080008000ull;
}
for (i = 0; i < oprsz / 4; i++) {
float32 n_1 = float16_to_float32_by_bits(n_4 >> (i * 16), fz16);
float32 m_1 = float16_to_float32_by_bits(m_4 >> (i * 16), fz16);
d[H4(i)] = float32_muladd(n_1, m_1, d[H4(i)], 0, fpst);
}
clear_tail(d, oprsz, simd_maxsz(desc));
}
void HELPER(gvec_fmlal_a32)(void *vd, void *vn, void *vm,
void *venv, uint32_t desc)
{
CPUARMState *env = venv;
do_fmlal(vd, vn, vm, &env->vfp.standard_fp_status, desc,
get_flush_inputs_to_zero(&env->vfp.fp_status_f16));
}
void HELPER(gvec_fmlal_a64)(void *vd, void *vn, void *vm,
void *venv, uint32_t desc)
{
CPUARMState *env = venv;
do_fmlal(vd, vn, vm, &env->vfp.fp_status, desc,
get_flush_inputs_to_zero(&env->vfp.fp_status_f16));
}
void HELPER(sve2_fmlal_zzzw_s)(void *vd, void *vn, void *vm, void *va,
void *venv, uint32_t desc)
{
intptr_t i, oprsz = simd_oprsz(desc);
uint16_t negn = extract32(desc, SIMD_DATA_SHIFT, 1) << 15;
intptr_t sel = extract32(desc, SIMD_DATA_SHIFT + 1, 1) * sizeof(float16);
CPUARMState *env = venv;
float_status *status = &env->vfp.fp_status;
bool fz16 = get_flush_inputs_to_zero(&env->vfp.fp_status_f16);
for (i = 0; i < oprsz; i += sizeof(float32)) {
float16 nn_16 = *(float16 *)(vn + H1_2(i + sel)) ^ negn;
float16 mm_16 = *(float16 *)(vm + H1_2(i + sel));
float32 nn = float16_to_float32_by_bits(nn_16, fz16);
float32 mm = float16_to_float32_by_bits(mm_16, fz16);
float32 aa = *(float32 *)(va + H1_4(i));
*(float32 *)(vd + H1_4(i)) = float32_muladd(nn, mm, aa, 0, status);
}
}
static void do_fmlal_idx(float32 *d, void *vn, void *vm, float_status *fpst,
uint32_t desc, bool fz16)
{
intptr_t i, oprsz = simd_oprsz(desc);
int is_s = extract32(desc, SIMD_DATA_SHIFT, 1);
int is_2 = extract32(desc, SIMD_DATA_SHIFT + 1, 1);
int index = extract32(desc, SIMD_DATA_SHIFT + 2, 3);
int is_q = oprsz == 16;
uint64_t n_4;
float32 m_1;
/* Pre-load all of the f16 data, avoiding overlap issues. */
n_4 = load4_f16(vn, is_q, is_2);
/* Negate all inputs for FMLSL at once. */
if (is_s) {
n_4 ^= 0x8000800080008000ull;
}
m_1 = float16_to_float32_by_bits(((float16 *)vm)[H2(index)], fz16);
for (i = 0; i < oprsz / 4; i++) {
float32 n_1 = float16_to_float32_by_bits(n_4 >> (i * 16), fz16);
d[H4(i)] = float32_muladd(n_1, m_1, d[H4(i)], 0, fpst);
}
clear_tail(d, oprsz, simd_maxsz(desc));
}
void HELPER(gvec_fmlal_idx_a32)(void *vd, void *vn, void *vm,
void *venv, uint32_t desc)
{
CPUARMState *env = venv;
do_fmlal_idx(vd, vn, vm, &env->vfp.standard_fp_status, desc,
get_flush_inputs_to_zero(&env->vfp.fp_status_f16));
}
void HELPER(gvec_fmlal_idx_a64)(void *vd, void *vn, void *vm,
void *venv, uint32_t desc)
{
CPUARMState *env = venv;
do_fmlal_idx(vd, vn, vm, &env->vfp.fp_status, desc,
get_flush_inputs_to_zero(&env->vfp.fp_status_f16));
}
void HELPER(sve2_fmlal_zzxw_s)(void *vd, void *vn, void *vm, void *va,
void *venv, uint32_t desc)
{
intptr_t i, j, oprsz = simd_oprsz(desc);
uint16_t negn = extract32(desc, SIMD_DATA_SHIFT, 1) << 15;
intptr_t sel = extract32(desc, SIMD_DATA_SHIFT + 1, 1) * sizeof(float16);
intptr_t idx = extract32(desc, SIMD_DATA_SHIFT + 2, 3) * sizeof(float16);
CPUARMState *env = venv;
float_status *status = &env->vfp.fp_status;
bool fz16 = get_flush_inputs_to_zero(&env->vfp.fp_status_f16);
for (i = 0; i < oprsz; i += 16) {
float16 mm_16 = *(float16 *)(vm + i + idx);
float32 mm = float16_to_float32_by_bits(mm_16, fz16);
for (j = 0; j < 16; j += sizeof(float32)) {
float16 nn_16 = *(float16 *)(vn + H1_2(i + j + sel)) ^ negn;
float32 nn = float16_to_float32_by_bits(nn_16, fz16);
float32 aa = *(float32 *)(va + H1_4(i + j));
*(float32 *)(vd + H1_4(i + j)) =
float32_muladd(nn, mm, aa, 0, status);
}
}
}
void HELPER(gvec_sshl_b)(void *vd, void *vn, void *vm, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc);
int8_t *d = vd, *n = vn, *m = vm;
for (i = 0; i < opr_sz; ++i) {
int8_t mm = m[i];
int8_t nn = n[i];
int8_t res = 0;
if (mm >= 0) {
if (mm < 8) {
res = nn << mm;
}
} else {
res = nn >> (mm > -8 ? -mm : 7);
}
d[i] = res;
}
clear_tail(d, opr_sz, simd_maxsz(desc));
}
void HELPER(gvec_sshl_h)(void *vd, void *vn, void *vm, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc);
int16_t *d = vd, *n = vn, *m = vm;
for (i = 0; i < opr_sz / 2; ++i) {
int8_t mm = m[i]; /* only 8 bits of shift are significant */
int16_t nn = n[i];
int16_t res = 0;
if (mm >= 0) {
if (mm < 16) {
res = nn << mm;
}
} else {
res = nn >> (mm > -16 ? -mm : 15);
}
d[i] = res;
}
clear_tail(d, opr_sz, simd_maxsz(desc));
}
void HELPER(gvec_ushl_b)(void *vd, void *vn, void *vm, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc);
uint8_t *d = vd, *n = vn, *m = vm;
for (i = 0; i < opr_sz; ++i) {
int8_t mm = m[i];
uint8_t nn = n[i];
uint8_t res = 0;
if (mm >= 0) {
if (mm < 8) {
res = nn << mm;
}
} else {
if (mm > -8) {
res = nn >> -mm;
}
}
d[i] = res;
}
clear_tail(d, opr_sz, simd_maxsz(desc));
}
void HELPER(gvec_ushl_h)(void *vd, void *vn, void *vm, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc);
uint16_t *d = vd, *n = vn, *m = vm;
for (i = 0; i < opr_sz / 2; ++i) {
int8_t mm = m[i]; /* only 8 bits of shift are significant */
uint16_t nn = n[i];
uint16_t res = 0;
if (mm >= 0) {
if (mm < 16) {
res = nn << mm;
}
} else {
if (mm > -16) {
res = nn >> -mm;
}
}
d[i] = res;
}
clear_tail(d, opr_sz, simd_maxsz(desc));
}
/*
* 8x8->8 polynomial multiply.
*
* Polynomial multiplication is like integer multiplication except the
* partial products are XORed, not added.
*
* TODO: expose this as a generic vector operation, as it is a common
* crypto building block.
*/
void HELPER(gvec_pmul_b)(void *vd, void *vn, void *vm, uint32_t desc)
{
intptr_t i, j, opr_sz = simd_oprsz(desc);
uint64_t *d = vd, *n = vn, *m = vm;
for (i = 0; i < opr_sz / 8; ++i) {
uint64_t nn = n[i];
uint64_t mm = m[i];
uint64_t rr = 0;
for (j = 0; j < 8; ++j) {
uint64_t mask = (nn & 0x0101010101010101ull) * 0xff;
rr ^= mm & mask;
mm = (mm << 1) & 0xfefefefefefefefeull;
nn >>= 1;
}
d[i] = rr;
}
clear_tail(d, opr_sz, simd_maxsz(desc));
}
/*
* 64x64->128 polynomial multiply.
* Because of the lanes are not accessed in strict columns,
* this probably cannot be turned into a generic helper.
*/
void HELPER(gvec_pmull_q)(void *vd, void *vn, void *vm, uint32_t desc)
{
intptr_t i, j, opr_sz = simd_oprsz(desc);
intptr_t hi = simd_data(desc);
uint64_t *d = vd, *n = vn, *m = vm;
for (i = 0; i < opr_sz / 8; i += 2) {
uint64_t nn = n[i + hi];
uint64_t mm = m[i + hi];
uint64_t rhi = 0;
uint64_t rlo = 0;
/* Bit 0 can only influence the low 64-bit result. */
if (nn & 1) {
rlo = mm;
}
for (j = 1; j < 64; ++j) {
uint64_t mask = -((nn >> j) & 1);
rlo ^= (mm << j) & mask;
rhi ^= (mm >> (64 - j)) & mask;
}
d[i] = rlo;
d[i + 1] = rhi;
}
clear_tail(d, opr_sz, simd_maxsz(desc));
}
/*
* 8x8->16 polynomial multiply.
*
* The byte inputs are expanded to (or extracted from) half-words.
* Note that neon and sve2 get the inputs from different positions.
* This allows 4 bytes to be processed in parallel with uint64_t.
*/
static uint64_t expand_byte_to_half(uint64_t x)
{
return (x & 0x000000ff)
| ((x & 0x0000ff00) << 8)
| ((x & 0x00ff0000) << 16)
| ((x & 0xff000000) << 24);
}
static uint64_t pmull_h(uint64_t op1, uint64_t op2)
{
uint64_t result = 0;
int i;
for (i = 0; i < 8; ++i) {
uint64_t mask = (op1 & 0x0001000100010001ull) * 0xffff;
result ^= op2 & mask;
op1 >>= 1;
op2 <<= 1;
}
return result;
}
void HELPER(neon_pmull_h)(void *vd, void *vn, void *vm, uint32_t desc)
{
int hi = simd_data(desc);
uint64_t *d = vd, *n = vn, *m = vm;
uint64_t nn = n[hi], mm = m[hi];
d[0] = pmull_h(expand_byte_to_half(nn), expand_byte_to_half(mm));
nn >>= 32;
mm >>= 32;
d[1] = pmull_h(expand_byte_to_half(nn), expand_byte_to_half(mm));
clear_tail(d, 16, simd_maxsz(desc));
}
#ifdef TARGET_AARCH64
void HELPER(sve2_pmull_h)(void *vd, void *vn, void *vm, uint32_t desc)
{
int shift = simd_data(desc) * 8;
intptr_t i, opr_sz = simd_oprsz(desc);
uint64_t *d = vd, *n = vn, *m = vm;
for (i = 0; i < opr_sz / 8; ++i) {
uint64_t nn = (n[i] >> shift) & 0x00ff00ff00ff00ffull;
uint64_t mm = (m[i] >> shift) & 0x00ff00ff00ff00ffull;
d[i] = pmull_h(nn, mm);
}
}
static uint64_t pmull_d(uint64_t op1, uint64_t op2)
{
uint64_t result = 0;
int i;
for (i = 0; i < 32; ++i) {
uint64_t mask = -((op1 >> i) & 1);
result ^= (op2 << i) & mask;
}
return result;
}
void HELPER(sve2_pmull_d)(void *vd, void *vn, void *vm, uint32_t desc)
{
intptr_t sel = H4(simd_data(desc));
intptr_t i, opr_sz = simd_oprsz(desc);
uint32_t *n = vn, *m = vm;
uint64_t *d = vd;
for (i = 0; i < opr_sz / 8; ++i) {
d[i] = pmull_d(n[2 * i + sel], m[2 * i + sel]);
}
}
#endif
#define DO_CMP0(NAME, TYPE, OP) \
void HELPER(NAME)(void *vd, void *vn, uint32_t desc) \
{ \
intptr_t i, opr_sz = simd_oprsz(desc); \
for (i = 0; i < opr_sz; i += sizeof(TYPE)) { \
TYPE nn = *(TYPE *)(vn + i); \
*(TYPE *)(vd + i) = -(nn OP 0); \
} \
clear_tail(vd, opr_sz, simd_maxsz(desc)); \
}
DO_CMP0(gvec_ceq0_b, int8_t, ==)
DO_CMP0(gvec_clt0_b, int8_t, <)
DO_CMP0(gvec_cle0_b, int8_t, <=)
DO_CMP0(gvec_cgt0_b, int8_t, >)
DO_CMP0(gvec_cge0_b, int8_t, >=)
DO_CMP0(gvec_ceq0_h, int16_t, ==)
DO_CMP0(gvec_clt0_h, int16_t, <)
DO_CMP0(gvec_cle0_h, int16_t, <=)
DO_CMP0(gvec_cgt0_h, int16_t, >)
DO_CMP0(gvec_cge0_h, int16_t, >=)
#undef DO_CMP0
#define DO_ABD(NAME, TYPE) \
void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \
{ \
intptr_t i, opr_sz = simd_oprsz(desc); \
TYPE *d = vd, *n = vn, *m = vm; \
\
for (i = 0; i < opr_sz / sizeof(TYPE); ++i) { \
d[i] = n[i] < m[i] ? m[i] - n[i] : n[i] - m[i]; \
} \
clear_tail(d, opr_sz, simd_maxsz(desc)); \
}
DO_ABD(gvec_sabd_b, int8_t)
DO_ABD(gvec_sabd_h, int16_t)
DO_ABD(gvec_sabd_s, int32_t)
DO_ABD(gvec_sabd_d, int64_t)
DO_ABD(gvec_uabd_b, uint8_t)
DO_ABD(gvec_uabd_h, uint16_t)
DO_ABD(gvec_uabd_s, uint32_t)
DO_ABD(gvec_uabd_d, uint64_t)
#undef DO_ABD
#define DO_ABA(NAME, TYPE) \
void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \
{ \
intptr_t i, opr_sz = simd_oprsz(desc); \
TYPE *d = vd, *n = vn, *m = vm; \
\
for (i = 0; i < opr_sz / sizeof(TYPE); ++i) { \
d[i] += n[i] < m[i] ? m[i] - n[i] : n[i] - m[i]; \
} \
clear_tail(d, opr_sz, simd_maxsz(desc)); \
}
DO_ABA(gvec_saba_b, int8_t)
DO_ABA(gvec_saba_h, int16_t)
DO_ABA(gvec_saba_s, int32_t)
DO_ABA(gvec_saba_d, int64_t)
DO_ABA(gvec_uaba_b, uint8_t)
DO_ABA(gvec_uaba_h, uint16_t)
DO_ABA(gvec_uaba_s, uint32_t)
DO_ABA(gvec_uaba_d, uint64_t)
#undef DO_ABA
#define DO_NEON_PAIRWISE(NAME, OP) \
void HELPER(NAME##s)(void *vd, void *vn, void *vm, \
void *stat, uint32_t oprsz) \
{ \
float_status *fpst = stat; \
float32 *d = vd; \
float32 *n = vn; \
float32 *m = vm; \
float32 r0, r1; \
\
/* Read all inputs before writing outputs in case vm == vd */ \
r0 = float32_##OP(n[H4(0)], n[H4(1)], fpst); \
r1 = float32_##OP(m[H4(0)], m[H4(1)], fpst); \
\
d[H4(0)] = r0; \
d[H4(1)] = r1; \
} \
\
void HELPER(NAME##h)(void *vd, void *vn, void *vm, \
void *stat, uint32_t oprsz) \
{ \
float_status *fpst = stat; \
float16 *d = vd; \
float16 *n = vn; \
float16 *m = vm; \
float16 r0, r1, r2, r3; \
\
/* Read all inputs before writing outputs in case vm == vd */ \
r0 = float16_##OP(n[H2(0)], n[H2(1)], fpst); \
r1 = float16_##OP(n[H2(2)], n[H2(3)], fpst); \
r2 = float16_##OP(m[H2(0)], m[H2(1)], fpst); \
r3 = float16_##OP(m[H2(2)], m[H2(3)], fpst); \
\
d[H2(0)] = r0; \
d[H2(1)] = r1; \
d[H2(2)] = r2; \
d[H2(3)] = r3; \
}
DO_NEON_PAIRWISE(neon_padd, add)
DO_NEON_PAIRWISE(neon_pmax, max)
DO_NEON_PAIRWISE(neon_pmin, min)
#undef DO_NEON_PAIRWISE
#define DO_VCVT_FIXED(NAME, FUNC, TYPE) \
void HELPER(NAME)(void *vd, void *vn, void *stat, uint32_t desc) \
{ \
intptr_t i, oprsz = simd_oprsz(desc); \
int shift = simd_data(desc); \
TYPE *d = vd, *n = vn; \
float_status *fpst = stat; \
for (i = 0; i < oprsz / sizeof(TYPE); i++) { \
d[i] = FUNC(n[i], shift, fpst); \
} \
clear_tail(d, oprsz, simd_maxsz(desc)); \
}
DO_VCVT_FIXED(gvec_vcvt_sf, helper_vfp_sltos, uint32_t)
DO_VCVT_FIXED(gvec_vcvt_uf, helper_vfp_ultos, uint32_t)
DO_VCVT_FIXED(gvec_vcvt_fs, helper_vfp_tosls_round_to_zero, uint32_t)
DO_VCVT_FIXED(gvec_vcvt_fu, helper_vfp_touls_round_to_zero, uint32_t)
DO_VCVT_FIXED(gvec_vcvt_sh, helper_vfp_shtoh, uint16_t)
DO_VCVT_FIXED(gvec_vcvt_uh, helper_vfp_uhtoh, uint16_t)
DO_VCVT_FIXED(gvec_vcvt_hs, helper_vfp_toshh_round_to_zero, uint16_t)
DO_VCVT_FIXED(gvec_vcvt_hu, helper_vfp_touhh_round_to_zero, uint16_t)
#undef DO_VCVT_FIXED
#define DO_VCVT_RMODE(NAME, FUNC, TYPE) \
void HELPER(NAME)(void *vd, void *vn, void *stat, uint32_t desc) \
{ \
float_status *fpst = stat; \
intptr_t i, oprsz = simd_oprsz(desc); \
uint32_t rmode = simd_data(desc); \
uint32_t prev_rmode = get_float_rounding_mode(fpst); \
TYPE *d = vd, *n = vn; \
set_float_rounding_mode(rmode, fpst); \
for (i = 0; i < oprsz / sizeof(TYPE); i++) { \
d[i] = FUNC(n[i], 0, fpst); \
} \
set_float_rounding_mode(prev_rmode, fpst); \
clear_tail(d, oprsz, simd_maxsz(desc)); \
}
DO_VCVT_RMODE(gvec_vcvt_rm_ss, helper_vfp_tosls, uint32_t)
DO_VCVT_RMODE(gvec_vcvt_rm_us, helper_vfp_touls, uint32_t)
DO_VCVT_RMODE(gvec_vcvt_rm_sh, helper_vfp_toshh, uint16_t)
DO_VCVT_RMODE(gvec_vcvt_rm_uh, helper_vfp_touhh, uint16_t)
#undef DO_VCVT_RMODE
#define DO_VRINT_RMODE(NAME, FUNC, TYPE) \
void HELPER(NAME)(void *vd, void *vn, void *stat, uint32_t desc) \
{ \
float_status *fpst = stat; \
intptr_t i, oprsz = simd_oprsz(desc); \
uint32_t rmode = simd_data(desc); \
uint32_t prev_rmode = get_float_rounding_mode(fpst); \
TYPE *d = vd, *n = vn; \
set_float_rounding_mode(rmode, fpst); \
for (i = 0; i < oprsz / sizeof(TYPE); i++) { \
d[i] = FUNC(n[i], fpst); \
} \
set_float_rounding_mode(prev_rmode, fpst); \
clear_tail(d, oprsz, simd_maxsz(desc)); \
}
DO_VRINT_RMODE(gvec_vrint_rm_h, helper_rinth, uint16_t)
DO_VRINT_RMODE(gvec_vrint_rm_s, helper_rints, uint32_t)
#undef DO_VRINT_RMODE
#ifdef TARGET_AARCH64
void HELPER(simd_tblx)(void *vd, void *vm, void *venv, uint32_t desc)
{
const uint8_t *indices = vm;
CPUARMState *env = venv;
size_t oprsz = simd_oprsz(desc);
uint32_t rn = extract32(desc, SIMD_DATA_SHIFT, 5);
bool is_tbx = extract32(desc, SIMD_DATA_SHIFT + 5, 1);
uint32_t table_len = desc >> (SIMD_DATA_SHIFT + 6);
union {
uint8_t b[16];
uint64_t d[2];
} result;
/*
* We must construct the final result in a temp, lest the output
* overlaps the input table. For TBL, begin with zero; for TBX,
* begin with the original register contents. Note that we always
* copy 16 bytes here to avoid an extra branch; clearing the high
* bits of the register for oprsz == 8 is handled below.
*/
if (is_tbx) {
memcpy(&result, vd, 16);
} else {
memset(&result, 0, 16);
}
for (size_t i = 0; i < oprsz; ++i) {
uint32_t index = indices[H1(i)];
if (index < table_len) {
/*
* Convert index (a byte offset into the virtual table
* which is a series of 128-bit vectors concatenated)
* into the correct register element, bearing in mind
* that the table can wrap around from V31 to V0.
*/
const uint8_t *table = (const uint8_t *)
aa64_vfp_qreg(env, (rn + (index >> 4)) % 32);
result.b[H1(i)] = table[H1(index % 16)];
}
}
memcpy(vd, &result, 16);
clear_tail(vd, oprsz, simd_maxsz(desc));
}
#endif
/*
* NxN -> N highpart multiply
*
* TODO: expose this as a generic vector operation.
*/
void HELPER(gvec_smulh_b)(void *vd, void *vn, void *vm, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc);
int8_t *d = vd, *n = vn, *m = vm;
for (i = 0; i < opr_sz; ++i) {
d[i] = ((int32_t)n[i] * m[i]) >> 8;
}
clear_tail(d, opr_sz, simd_maxsz(desc));
}
void HELPER(gvec_smulh_h)(void *vd, void *vn, void *vm, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc);
int16_t *d = vd, *n = vn, *m = vm;
for (i = 0; i < opr_sz / 2; ++i) {
d[i] = ((int32_t)n[i] * m[i]) >> 16;
}
clear_tail(d, opr_sz, simd_maxsz(desc));
}
void HELPER(gvec_smulh_s)(void *vd, void *vn, void *vm, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc);
int32_t *d = vd, *n = vn, *m = vm;
for (i = 0; i < opr_sz / 4; ++i) {
d[i] = ((int64_t)n[i] * m[i]) >> 32;
}
clear_tail(d, opr_sz, simd_maxsz(desc));
}
void HELPER(gvec_smulh_d)(void *vd, void *vn, void *vm, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc);
uint64_t *d = vd, *n = vn, *m = vm;
uint64_t discard;
for (i = 0; i < opr_sz / 8; ++i) {
muls64(&discard, &d[i], n[i], m[i]);
}
clear_tail(d, opr_sz, simd_maxsz(desc));
}
void HELPER(gvec_umulh_b)(void *vd, void *vn, void *vm, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc);
uint8_t *d = vd, *n = vn, *m = vm;
for (i = 0; i < opr_sz; ++i) {
d[i] = ((uint32_t)n[i] * m[i]) >> 8;
}
clear_tail(d, opr_sz, simd_maxsz(desc));
}
void HELPER(gvec_umulh_h)(void *vd, void *vn, void *vm, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc);
uint16_t *d = vd, *n = vn, *m = vm;
for (i = 0; i < opr_sz / 2; ++i) {
d[i] = ((uint32_t)n[i] * m[i]) >> 16;
}
clear_tail(d, opr_sz, simd_maxsz(desc));
}
void HELPER(gvec_umulh_s)(void *vd, void *vn, void *vm, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc);
uint32_t *d = vd, *n = vn, *m = vm;
for (i = 0; i < opr_sz / 4; ++i) {
d[i] = ((uint64_t)n[i] * m[i]) >> 32;
}
clear_tail(d, opr_sz, simd_maxsz(desc));
}
void HELPER(gvec_umulh_d)(void *vd, void *vn, void *vm, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc);
uint64_t *d = vd, *n = vn, *m = vm;
uint64_t discard;
for (i = 0; i < opr_sz / 8; ++i) {
mulu64(&discard, &d[i], n[i], m[i]);
}
clear_tail(d, opr_sz, simd_maxsz(desc));
}
void HELPER(gvec_xar_d)(void *vd, void *vn, void *vm, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc) / 8;
int shr = simd_data(desc);
uint64_t *d = vd, *n = vn, *m = vm;
for (i = 0; i < opr_sz; ++i) {
d[i] = ror64(n[i] ^ m[i], shr);
}
clear_tail(d, opr_sz * 8, simd_maxsz(desc));
}
/*
* Integer matrix-multiply accumulate
*/
static uint32_t do_smmla_b(uint32_t sum, void *vn, void *vm)
{
int8_t *n = vn, *m = vm;
for (intptr_t k = 0; k < 8; ++k) {
sum += n[H1(k)] * m[H1(k)];
}
return sum;
}
static uint32_t do_ummla_b(uint32_t sum, void *vn, void *vm)
{
uint8_t *n = vn, *m = vm;
for (intptr_t k = 0; k < 8; ++k) {
sum += n[H1(k)] * m[H1(k)];
}
return sum;
}
static uint32_t do_usmmla_b(uint32_t sum, void *vn, void *vm)
{
uint8_t *n = vn;
int8_t *m = vm;
for (intptr_t k = 0; k < 8; ++k) {
sum += n[H1(k)] * m[H1(k)];
}
return sum;
}
static void do_mmla_b(void *vd, void *vn, void *vm, void *va, uint32_t desc,
uint32_t (*inner_loop)(uint32_t, void *, void *))
{
intptr_t seg, opr_sz = simd_oprsz(desc);
for (seg = 0; seg < opr_sz; seg += 16) {
uint32_t *d = vd + seg;
uint32_t *a = va + seg;
uint32_t sum0, sum1, sum2, sum3;
/*
* Process the entire segment at once, writing back the
* results only after we've consumed all of the inputs.
*
* Key to indices by column:
* i j i j
*/
sum0 = a[H4(0 + 0)];
sum0 = inner_loop(sum0, vn + seg + 0, vm + seg + 0);
sum1 = a[H4(0 + 1)];
sum1 = inner_loop(sum1, vn + seg + 0, vm + seg + 8);
sum2 = a[H4(2 + 0)];
sum2 = inner_loop(sum2, vn + seg + 8, vm + seg + 0);
sum3 = a[H4(2 + 1)];
sum3 = inner_loop(sum3, vn + seg + 8, vm + seg + 8);
d[H4(0)] = sum0;
d[H4(1)] = sum1;
d[H4(2)] = sum2;
d[H4(3)] = sum3;
}
clear_tail(vd, opr_sz, simd_maxsz(desc));
}
#define DO_MMLA_B(NAME, INNER) \
void HELPER(NAME)(void *vd, void *vn, void *vm, void *va, uint32_t desc) \
{ do_mmla_b(vd, vn, vm, va, desc, INNER); }
DO_MMLA_B(gvec_smmla_b, do_smmla_b)
DO_MMLA_B(gvec_ummla_b, do_ummla_b)
DO_MMLA_B(gvec_usmmla_b, do_usmmla_b)
/*
* BFloat16 Dot Product
*/
static float32 bfdotadd(float32 sum, uint32_t e1, uint32_t e2)
{
/* FPCR is ignored for BFDOT and BFMMLA. */
float_status bf_status = {
.tininess_before_rounding = float_tininess_before_rounding,
.float_rounding_mode = float_round_to_odd_inf,
.flush_to_zero = true,
.flush_inputs_to_zero = true,
.default_nan_mode = true,
};
float32 t1, t2;
/*
* Extract each BFloat16 from the element pair, and shift
* them such that they become float32.
*/
t1 = float32_mul(e1 << 16, e2 << 16, &bf_status);
t2 = float32_mul(e1 & 0xffff0000u, e2 & 0xffff0000u, &bf_status);
t1 = float32_add(t1, t2, &bf_status);
t1 = float32_add(sum, t1, &bf_status);
return t1;
}
void HELPER(gvec_bfdot)(void *vd, void *vn, void *vm, void *va, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc);
float32 *d = vd, *a = va;
uint32_t *n = vn, *m = vm;
for (i = 0; i < opr_sz / 4; ++i) {
d[i] = bfdotadd(a[i], n[i], m[i]);
}
clear_tail(d, opr_sz, simd_maxsz(desc));
}
void HELPER(gvec_bfdot_idx)(void *vd, void *vn, void *vm,
void *va, uint32_t desc)
{
intptr_t i, j, opr_sz = simd_oprsz(desc);
intptr_t index = simd_data(desc);
intptr_t elements = opr_sz / 4;
intptr_t eltspersegment = MIN(16 / 4, elements);
float32 *d = vd, *a = va;
uint32_t *n = vn, *m = vm;
for (i = 0; i < elements; i += eltspersegment) {
uint32_t m_idx = m[i + H4(index)];
for (j = i; j < i + eltspersegment; j++) {
d[j] = bfdotadd(a[j], n[j], m_idx);
}
}
clear_tail(d, opr_sz, simd_maxsz(desc));
}
void HELPER(gvec_bfmmla)(void *vd, void *vn, void *vm, void *va, uint32_t desc)
{
intptr_t s, opr_sz = simd_oprsz(desc);
float32 *d = vd, *a = va;
uint32_t *n = vn, *m = vm;
for (s = 0; s < opr_sz / 4; s += 4) {
float32 sum00, sum01, sum10, sum11;
/*
* Process the entire segment at once, writing back the
* results only after we've consumed all of the inputs.
*
* Key to indicies by column:
* i j i k j k
*/
sum00 = a[s + H4(0 + 0)];
sum00 = bfdotadd(sum00, n[s + H4(0 + 0)], m[s + H4(0 + 0)]);
sum00 = bfdotadd(sum00, n[s + H4(0 + 1)], m[s + H4(0 + 1)]);
sum01 = a[s + H4(0 + 1)];
sum01 = bfdotadd(sum01, n[s + H4(0 + 0)], m[s + H4(2 + 0)]);
sum01 = bfdotadd(sum01, n[s + H4(0 + 1)], m[s + H4(2 + 1)]);
sum10 = a[s + H4(2 + 0)];
sum10 = bfdotadd(sum10, n[s + H4(2 + 0)], m[s + H4(0 + 0)]);
sum10 = bfdotadd(sum10, n[s + H4(2 + 1)], m[s + H4(0 + 1)]);
sum11 = a[s + H4(2 + 1)];
sum11 = bfdotadd(sum11, n[s + H4(2 + 0)], m[s + H4(2 + 0)]);
sum11 = bfdotadd(sum11, n[s + H4(2 + 1)], m[s + H4(2 + 1)]);
d[s + H4(0 + 0)] = sum00;
d[s + H4(0 + 1)] = sum01;
d[s + H4(2 + 0)] = sum10;
d[s + H4(2 + 1)] = sum11;
}
clear_tail(d, opr_sz, simd_maxsz(desc));
}
void HELPER(gvec_bfmlal)(void *vd, void *vn, void *vm, void *va,
void *stat, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc);
intptr_t sel = simd_data(desc);
float32 *d = vd, *a = va;
bfloat16 *n = vn, *m = vm;
for (i = 0; i < opr_sz / 4; ++i) {
float32 nn = n[H2(i * 2 + sel)] << 16;
float32 mm = m[H2(i * 2 + sel)] << 16;
d[H4(i)] = float32_muladd(nn, mm, a[H4(i)], 0, stat);
}
clear_tail(d, opr_sz, simd_maxsz(desc));
}
void HELPER(gvec_bfmlal_idx)(void *vd, void *vn, void *vm,
void *va, void *stat, uint32_t desc)
{
intptr_t i, j, opr_sz = simd_oprsz(desc);
intptr_t sel = extract32(desc, SIMD_DATA_SHIFT, 1);
intptr_t index = extract32(desc, SIMD_DATA_SHIFT + 1, 3);
intptr_t elements = opr_sz / 4;
intptr_t eltspersegment = MIN(16 / 4, elements);
float32 *d = vd, *a = va;
bfloat16 *n = vn, *m = vm;
for (i = 0; i < elements; i += eltspersegment) {
float32 m_idx = m[H2(2 * i + index)] << 16;
for (j = i; j < i + eltspersegment; j++) {
float32 n_j = n[H2(2 * j + sel)] << 16;
d[H4(j)] = float32_muladd(n_j, m_idx, a[H4(j)], 0, stat);
}
}
clear_tail(d, opr_sz, simd_maxsz(desc));
}