qemu/pc-bios/s390-ccw/bootmap.h
Thomas Huth 9a848adf45 pc-bios/s390-ccw/net: Use diag308 to reset machine before jumping to the OS
The netboot firmware so far simply jumped directly into the OS kernel
after the download has been completed. This, however, bears the risk
that the virtio-net device still might be active in the background and
incoming packets are still placed into the buffers - which could destroy
memory of the now-running Linux kernel in case it did not take over the
device fast enough. Also the SCLP console is not put into a well-defined
state here. We should hand over the system in a clean state when jumping
into the kernel, so let's use the same mechanism as it's done in the
main s390-ccw firmware and reset the machine with diag308 into a clean
state before jumping into the OS kernel code. To be able to share the
code with the main s390-ccw firmware, the related functions are now
extracted from bootmap.c into a new file called jump2ipl.c.

Since we now also set the boot device schid at address 184 for the network
boot device, this patch also slightly changes the way how we detect the
entry points for non-ELF binary images: The code now looks for the "S390EP"
magic first and then jumps to 0x10000 in case it has been found. This is
necessary for booting from network devices, since the normal kernel code
(where the PSW at ddress 0 points to) tries to do a block load from the
boot device. This of course fails for a virtio-net device and causes the
kernel to abort with a panic-PSW silently.

Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Thomas Huth <thuth@redhat.com>
2018-05-02 11:27:14 +02:00

492 lines
14 KiB
C

/*
* QEMU S390 bootmap interpreter -- declarations
*
* Copyright 2014 IBM Corp.
* Author(s): Eugene (jno) Dvurechenski <jno@linux.vnet.ibm.com>
*
* This work is licensed under the terms of the GNU GPL, version 2 or (at
* your option) any later version. See the COPYING file in the top-level
* directory.
*/
#ifndef _PC_BIOS_S390_CCW_BOOTMAP_H
#define _PC_BIOS_S390_CCW_BOOTMAP_H
#include "s390-ccw.h"
#include "virtio.h"
typedef uint64_t block_number_t;
#define NULL_BLOCK_NR 0xffffffffffffffffULL
#define FREE_SPACE_FILLER '\xAA'
typedef struct ScsiBlockPtr {
uint64_t blockno;
uint16_t size;
uint16_t blockct;
uint8_t reserved[4];
} __attribute__ ((packed)) ScsiBlockPtr;
typedef struct FbaBlockPtr {
uint32_t blockno;
uint16_t size;
uint16_t blockct;
} __attribute__ ((packed)) FbaBlockPtr;
typedef struct EckdCHS {
uint16_t cylinder;
uint16_t head;
uint8_t sector;
} __attribute__ ((packed)) EckdCHS;
typedef struct EckdBlockPtr {
EckdCHS chs; /* cylinder/head/sector is an address of the block */
uint16_t size;
uint8_t count; /* (size_in_blocks-1);
* it's 0 for TablePtr, ScriptPtr, and SectionPtr */
} __attribute__ ((packed)) EckdBlockPtr;
typedef struct ExtEckdBlockPtr {
EckdBlockPtr bptr;
uint8_t reserved[8];
} __attribute__ ((packed)) ExtEckdBlockPtr;
typedef union BootMapPointer {
ScsiBlockPtr scsi;
FbaBlockPtr fba;
EckdBlockPtr eckd;
ExtEckdBlockPtr xeckd;
} __attribute__ ((packed)) BootMapPointer;
/* aka Program Table */
typedef struct BootMapTable {
uint8_t magic[4];
uint8_t reserved[12];
BootMapPointer entry[];
} __attribute__ ((packed)) BootMapTable;
typedef struct ComponentEntry {
ScsiBlockPtr data;
uint8_t pad[7];
uint8_t component_type;
uint64_t load_address;
} __attribute((packed)) ComponentEntry;
typedef struct ComponentHeader {
uint8_t magic[4]; /* == "zIPL" */
uint8_t type; /* == ZIPL_COMP_HEADER_* */
uint8_t reserved[27];
} __attribute((packed)) ComponentHeader;
typedef struct ScsiMbr {
uint8_t magic[4];
uint32_t version_id;
uint8_t reserved[8];
ScsiBlockPtr pt; /* block pointer to program table */
} __attribute__ ((packed)) ScsiMbr;
#define ZIPL_MAGIC "zIPL"
#define ZIPL_MAGIC_EBCDIC "\xa9\xc9\xd7\xd3"
#define IPL1_MAGIC "\xc9\xd7\xd3\xf1" /* == "IPL1" in EBCDIC */
#define IPL2_MAGIC "\xc9\xd7\xd3\xf2" /* == "IPL2" in EBCDIC */
#define VOL1_MAGIC "\xe5\xd6\xd3\xf1" /* == "VOL1" in EBCDIC */
#define LNX1_MAGIC "\xd3\xd5\xe7\xf1" /* == "LNX1" in EBCDIC */
#define CMS1_MAGIC "\xc3\xd4\xe2\xf1" /* == "CMS1" in EBCDIC */
#define LDL1_VERSION '\x40' /* == ' ' in EBCDIC */
#define LDL2_VERSION '\xf2' /* == '2' in EBCDIC */
#define ZIPL_COMP_HEADER_IPL 0x00
#define ZIPL_COMP_HEADER_DUMP 0x01
#define ZIPL_COMP_ENTRY_LOAD 0x02
#define ZIPL_COMP_ENTRY_EXEC 0x01
typedef struct XEckdMbr {
uint8_t magic[4]; /* == "xIPL" */
uint8_t version;
uint8_t bp_type;
uint8_t dev_type; /* == DEV_TYPE_* */
#define DEV_TYPE_ECKD 0x00
#define DEV_TYPE_FBA 0x01
uint8_t flags;
BootMapPointer blockptr;
uint8_t reserved[8];
} __attribute__ ((packed)) XEckdMbr; /* see also BootInfo */
typedef struct BootMapScriptEntry {
BootMapPointer blkptr;
uint8_t pad[7];
uint8_t type; /* == BOOT_SCRIPT_* */
#define BOOT_SCRIPT_EXEC 0x01
#define BOOT_SCRIPT_LOAD 0x02
union {
uint64_t load_address;
uint64_t load_psw;
} address;
} __attribute__ ((packed)) BootMapScriptEntry;
typedef struct BootMapScriptHeader {
uint32_t magic;
uint8_t type;
#define BOOT_SCRIPT_HDR_IPL 0x00
uint8_t reserved[27];
} __attribute__ ((packed)) BootMapScriptHeader;
typedef struct BootMapScript {
BootMapScriptHeader header;
BootMapScriptEntry entry[0];
} __attribute__ ((packed)) BootMapScript;
/*
* These aren't real VTOCs, but referred to this way in some docs.
* They are "volume labels" actually.
*
* Some structures looks similar to described above, but left
* separate as there is no indication that they are the same.
* So, the value definitions are left separate too.
*/
typedef struct LDL_VTOC { /* @ rec.3 cyl.0 trk.0 for ECKD */
char magic[4]; /* "LNX1", EBCDIC */
char volser[6]; /* volser, EBCDIC */
uint8_t reserved[69]; /* reserved, 0x40 */
uint8_t LDL_version; /* 0x40 or 0xF2 */
uint64_t formatted_blocks; /* if LDL_version >= 0xF2 */
} __attribute__ ((packed)) LDL_VTOC;
typedef struct format_date {
uint8_t YY;
uint8_t MM;
uint8_t DD;
uint8_t hh;
uint8_t mm;
uint8_t ss;
} __attribute__ ((packed)) format_date_t;
typedef struct CMS_VTOC { /* @ rec.3 cyl.0 trk.0 for ECKD */
/* @ blk.1 (zero based) for FBA */
char magic[4]; /* 'CMS1', EBCDIC */
char volser[6]; /* volser, EBCDIC */
uint16_t version; /* = 0 */
uint32_t block_size; /* = 512, 1024, 2048, or 4096 */
uint32_t disk_origin; /* = 4 or 5 */
uint32_t blocks; /* Number of usable cyls/blocks */
uint32_t formatted; /* Max number of fmtd cyls/blks */
uint32_t CMS_blocks; /* disk size in CMS blocks */
uint32_t CMS_used; /* Number of CMS blocks in use */
uint32_t FST_size; /* = 64, bytes */
uint32_t FST_per_CMS_blk; /* */
format_date_t format_date; /* YYMMDDhhmmss as 6 bytes */
uint8_t reserved1[2]; /* = 0 */
uint32_t offset; /* disk offset when reserved */
uint32_t next_hole; /* block nr */
uint32_t HBLK_hole_offset; /* >> HBLK data of next hole */
uint32_t alloc_map_usr_off; /* >> user part of Alloc map */
uint8_t reserved2[4]; /* = 0 */
char shared_seg_name[8]; /* */
} __attribute__ ((packed)) CMS_VTOC;
/* from zipl/include/boot.h */
typedef struct BootInfoBpIpl {
union {
ExtEckdBlockPtr eckd;
ScsiBlockPtr linr;
} bm_ptr;
uint8_t unused[16];
} __attribute__ ((packed)) BootInfoBpIpl;
typedef struct EckdDumpParam {
uint32_t start_blk;
uint32_t end_blk;
uint16_t blocksize;
uint8_t num_heads;
uint8_t bpt;
char reserved[4];
} __attribute((packed, may_alias)) EckdDumpParam;
typedef struct FbaDumpParam {
uint64_t start_blk;
uint64_t blockct;
} __attribute((packed)) FbaDumpParam;
typedef struct BootInfoBpDump {
union {
EckdDumpParam eckd;
FbaDumpParam fba;
} param;
uint8_t unused[16];
} __attribute__ ((packed)) BootInfoBpDump;
typedef struct BootInfo { /* @ 0x70, record #0 */
unsigned char magic[4]; /* = 'zIPL', ASCII */
uint8_t version; /* = 1 */
#define BOOT_INFO_VERSION 1
uint8_t bp_type; /* = 0 */
#define BOOT_INFO_BP_TYPE_IPL 0x00
#define BOOT_INFO_BP_TYPE_DUMP 0x01
uint8_t dev_type; /* = 0 */
#define BOOT_INFO_DEV_TYPE_ECKD 0x00
#define BOOT_INFO_DEV_TYPE_FBA 0x01
uint8_t flags; /* = 1 */
#ifdef __s390x__
#define BOOT_INFO_FLAGS_ARCH 0x01
#else
#define BOOT_INFO_FLAGS_ARCH 0x00
#endif
union {
BootInfoBpDump dump;
BootInfoBpIpl ipl;
} bp;
} __attribute__ ((packed)) BootInfo; /* see also XEckdMbr */
/*
* Structs for IPL
*/
#define STAGE2_BLK_CNT_MAX 24 /* Stage 1b can load up to 24 blocks */
typedef struct EckdCdlIpl1 {
uint8_t key[4]; /* == "IPL1" */
uint8_t data[24];
} __attribute__((packed)) EckdCdlIpl1;
typedef struct EckdSeekArg {
uint16_t pad;
EckdCHS chs;
uint8_t pad2;
} __attribute__ ((packed)) EckdSeekArg;
typedef struct EckdStage1b {
uint8_t reserved[32 * STAGE2_BLK_CNT_MAX];
struct EckdSeekArg seek[STAGE2_BLK_CNT_MAX];
uint8_t unused[64];
} __attribute__ ((packed)) EckdStage1b;
typedef struct EckdStage1 {
uint8_t reserved[72];
struct EckdSeekArg seek[2];
} __attribute__ ((packed)) EckdStage1;
typedef struct EckdCdlIpl2 {
uint8_t key[4]; /* == "IPL2" */
struct EckdStage1 stage1;
XEckdMbr mbr;
uint8_t reserved[24];
} __attribute__((packed)) EckdCdlIpl2;
typedef struct EckdLdlIpl1 {
uint8_t reserved[24];
struct EckdStage1 stage1;
BootInfo bip; /* BootInfo is MBR for LDL */
} __attribute__((packed)) EckdLdlIpl1;
typedef struct IplVolumeLabel {
unsigned char key[4]; /* == "VOL1" */
union {
unsigned char data[80];
struct {
unsigned char key[4]; /* == "VOL1" */
unsigned char volser[6];
unsigned char reserved[6];
} f;
};
} __attribute__((packed)) IplVolumeLabel;
typedef enum {
ECKD_NO_IPL,
ECKD_CMS,
ECKD_LDL,
ECKD_LDL_UNLABELED,
} ECKD_IPL_mode_t;
/* utility code below */
static inline void print_volser(const void *volser)
{
char ascii[8];
ebcdic_to_ascii((char *)volser, ascii, 6);
ascii[6] = '\0';
sclp_print("VOLSER=[");
sclp_print(ascii);
sclp_print("]\n");
}
static inline bool unused_space(const void *p, size_t size)
{
size_t i;
const unsigned char *m = p;
for (i = 0; i < size; i++) {
if (m[i] != FREE_SPACE_FILLER) {
return false;
}
}
return true;
}
static inline bool is_null_block_number(block_number_t x)
{
return x == NULL_BLOCK_NR;
}
static inline void read_block(block_number_t blockno,
void *buffer,
const char *errmsg)
{
IPL_assert(virtio_read(blockno, buffer) == 0, errmsg);
}
static inline bool block_size_ok(uint32_t block_size)
{
return block_size == virtio_get_block_size();
}
static inline bool magic_match(const void *data, const void *magic)
{
return *((uint32_t *)data) == *((uint32_t *)magic);
}
static inline uint32_t iso_733_to_u32(uint64_t x)
{
return (uint32_t)x;
}
#define ISO_SECTOR_SIZE 2048
/* El Torito specifies boot image size in 512 byte blocks */
#define ET_SECTOR_SHIFT 2
#define ISO_PRIMARY_VD_SECTOR 16
static inline void read_iso_sector(uint32_t block_offset, void *buf,
const char *errmsg)
{
IPL_assert(virtio_read_many(block_offset, buf, 1) == 0, errmsg);
}
static inline void read_iso_boot_image(uint32_t block_offset, void *load_addr,
uint32_t blks_to_load)
{
IPL_assert(virtio_read_many(block_offset, load_addr, blks_to_load) == 0,
"Failed to read boot image!");
}
#define ISO9660_MAX_DIR_DEPTH 8
typedef struct IsoDirHdr {
uint8_t dr_len;
uint8_t ear_len;
uint64_t ext_loc;
uint64_t data_len;
uint8_t recording_datetime[7];
uint8_t file_flags;
uint8_t file_unit_size;
uint8_t gap_size;
uint32_t vol_seqnum;
uint8_t fileid_len;
} __attribute__((packed)) IsoDirHdr;
typedef struct IsoVdElTorito {
uint8_t el_torito[32]; /* must contain el_torito_magic value */
uint8_t unused0[32];
uint32_t bc_offset;
uint8_t unused1[1974];
} __attribute__((packed)) IsoVdElTorito;
typedef struct IsoVdPrimary {
uint8_t unused1;
uint8_t sys_id[32];
uint8_t vol_id[32];
uint8_t unused2[8];
uint64_t vol_space_size;
uint8_t unused3[32];
uint32_t vol_set_size;
uint32_t vol_seqnum;
uint32_t log_block_size;
uint64_t path_table_size;
uint32_t l_path_table;
uint32_t opt_l_path_table;
uint32_t m_path_table;
uint32_t opt_m_path_table;
IsoDirHdr rootdir;
uint8_t root_null;
uint8_t reserved2[1858];
} __attribute__((packed)) IsoVdPrimary;
typedef struct IsoVolDesc {
uint8_t type;
uint8_t ident[5];
uint8_t version;
union {
IsoVdElTorito boot;
IsoVdPrimary primary;
} vd;
} __attribute__((packed)) IsoVolDesc;
#define VOL_DESC_TYPE_BOOT 0
#define VOL_DESC_TYPE_PRIMARY 1
#define VOL_DESC_TYPE_SUPPLEMENT 2
#define VOL_DESC_TYPE_PARTITION 3
#define VOL_DESC_TERMINATOR 255
typedef struct IsoBcValid {
uint8_t platform_id;
uint16_t reserved;
uint8_t id[24];
uint16_t checksum;
uint8_t key[2];
} __attribute__((packed)) IsoBcValid;
typedef struct IsoBcSection {
uint8_t boot_type;
uint16_t load_segment;
uint8_t sys_type;
uint8_t unused;
uint16_t sector_count;
uint32_t load_rba;
uint8_t selection[20];
} __attribute__((packed)) IsoBcSection;
typedef struct IsoBcHdr {
uint8_t platform_id;
uint16_t sect_num;
uint8_t id[28];
} __attribute__((packed)) IsoBcHdr;
typedef struct IsoBcEntry {
uint8_t id;
union {
IsoBcValid valid; /* id == 0x01 */
IsoBcSection sect; /* id == 0x88 || id == 0x0 */
IsoBcHdr hdr; /* id == 0x90 || id == 0x91 */
} body;
} __attribute__((packed)) IsoBcEntry;
#define ISO_BC_ENTRY_PER_SECTOR (ISO_SECTOR_SIZE / sizeof(IsoBcEntry))
#define ISO_BC_HDR_VALIDATION 0x01
#define ISO_BC_BOOTABLE_SECTION 0x88
#define ISO_BC_MAGIC_55 0x55
#define ISO_BC_MAGIC_AA 0xaa
#define ISO_BC_PLATFORM_X86 0x0
#define ISO_BC_PLATFORM_PPC 0x1
#define ISO_BC_PLATFORM_MAC 0x2
static inline bool is_iso_bc_valid(IsoBcEntry *e)
{
IsoBcValid *v = &e->body.valid;
if (e->id != ISO_BC_HDR_VALIDATION) {
return false;
}
if (v->platform_id != ISO_BC_PLATFORM_X86 &&
v->platform_id != ISO_BC_PLATFORM_PPC &&
v->platform_id != ISO_BC_PLATFORM_MAC) {
return false;
}
return v->key[0] == ISO_BC_MAGIC_55 &&
v->key[1] == ISO_BC_MAGIC_AA &&
v->reserved == 0x0;
}
#endif /* _PC_BIOS_S390_CCW_BOOTMAP_H */