981c3dcd94
For readability, and consistency with qbus_realize(). Coccinelle script: @ depends on !(file in "hw/core/qdev.c")@ typedef DeviceState; DeviceState *dev; symbol false, error_abort; @@ - object_property_set_bool(OBJECT(dev), false, "realized", &error_abort); + qdev_unrealize(dev); @ depends on !(file in "hw/core/qdev.c") && !(file in "hw/core/bus.c")@ expression dev; symbol false, error_abort; @@ - object_property_set_bool(OBJECT(dev), false, "realized", &error_abort); + qdev_unrealize(DEVICE(dev)); Signed-off-by: Markus Armbruster <armbru@redhat.com> Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com> Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Message-Id: <20200610053247.1583243-8-armbru@redhat.com>
4992 lines
161 KiB
C
4992 lines
161 KiB
C
/*
|
|
* QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
|
|
*
|
|
* Copyright (c) 2004-2007 Fabrice Bellard
|
|
* Copyright (c) 2007 Jocelyn Mayer
|
|
* Copyright (c) 2010 David Gibson, IBM Corporation.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "qemu-common.h"
|
|
#include "qapi/error.h"
|
|
#include "qapi/visitor.h"
|
|
#include "sysemu/sysemu.h"
|
|
#include "sysemu/hostmem.h"
|
|
#include "sysemu/numa.h"
|
|
#include "sysemu/qtest.h"
|
|
#include "sysemu/reset.h"
|
|
#include "sysemu/runstate.h"
|
|
#include "qemu/log.h"
|
|
#include "hw/fw-path-provider.h"
|
|
#include "elf.h"
|
|
#include "net/net.h"
|
|
#include "sysemu/device_tree.h"
|
|
#include "sysemu/cpus.h"
|
|
#include "sysemu/hw_accel.h"
|
|
#include "kvm_ppc.h"
|
|
#include "migration/misc.h"
|
|
#include "migration/qemu-file-types.h"
|
|
#include "migration/global_state.h"
|
|
#include "migration/register.h"
|
|
#include "migration/blocker.h"
|
|
#include "mmu-hash64.h"
|
|
#include "mmu-book3s-v3.h"
|
|
#include "cpu-models.h"
|
|
#include "hw/core/cpu.h"
|
|
|
|
#include "hw/boards.h"
|
|
#include "hw/ppc/ppc.h"
|
|
#include "hw/loader.h"
|
|
|
|
#include "hw/ppc/fdt.h"
|
|
#include "hw/ppc/spapr.h"
|
|
#include "hw/ppc/spapr_vio.h"
|
|
#include "hw/qdev-properties.h"
|
|
#include "hw/pci-host/spapr.h"
|
|
#include "hw/pci/msi.h"
|
|
|
|
#include "hw/pci/pci.h"
|
|
#include "hw/scsi/scsi.h"
|
|
#include "hw/virtio/virtio-scsi.h"
|
|
#include "hw/virtio/vhost-scsi-common.h"
|
|
|
|
#include "exec/address-spaces.h"
|
|
#include "exec/ram_addr.h"
|
|
#include "hw/usb.h"
|
|
#include "qemu/config-file.h"
|
|
#include "qemu/error-report.h"
|
|
#include "trace.h"
|
|
#include "hw/nmi.h"
|
|
#include "hw/intc/intc.h"
|
|
|
|
#include "hw/ppc/spapr_cpu_core.h"
|
|
#include "hw/mem/memory-device.h"
|
|
#include "hw/ppc/spapr_tpm_proxy.h"
|
|
#include "hw/ppc/spapr_nvdimm.h"
|
|
|
|
#include "monitor/monitor.h"
|
|
|
|
#include <libfdt.h>
|
|
|
|
/* SLOF memory layout:
|
|
*
|
|
* SLOF raw image loaded at 0, copies its romfs right below the flat
|
|
* device-tree, then position SLOF itself 31M below that
|
|
*
|
|
* So we set FW_OVERHEAD to 40MB which should account for all of that
|
|
* and more
|
|
*
|
|
* We load our kernel at 4M, leaving space for SLOF initial image
|
|
*/
|
|
#define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
|
|
#define FW_MAX_SIZE 0x400000
|
|
#define FW_FILE_NAME "slof.bin"
|
|
#define FW_OVERHEAD 0x2800000
|
|
#define KERNEL_LOAD_ADDR FW_MAX_SIZE
|
|
|
|
#define MIN_RMA_SLOF (128 * MiB)
|
|
|
|
#define PHANDLE_INTC 0x00001111
|
|
|
|
/* These two functions implement the VCPU id numbering: one to compute them
|
|
* all and one to identify thread 0 of a VCORE. Any change to the first one
|
|
* is likely to have an impact on the second one, so let's keep them close.
|
|
*/
|
|
static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
|
|
{
|
|
MachineState *ms = MACHINE(spapr);
|
|
unsigned int smp_threads = ms->smp.threads;
|
|
|
|
assert(spapr->vsmt);
|
|
return
|
|
(cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
|
|
}
|
|
static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
|
|
PowerPCCPU *cpu)
|
|
{
|
|
assert(spapr->vsmt);
|
|
return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
|
|
}
|
|
|
|
static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
|
|
{
|
|
/* Dummy entries correspond to unused ICPState objects in older QEMUs,
|
|
* and newer QEMUs don't even have them. In both cases, we don't want
|
|
* to send anything on the wire.
|
|
*/
|
|
return false;
|
|
}
|
|
|
|
static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
|
|
.name = "icp/server",
|
|
.version_id = 1,
|
|
.minimum_version_id = 1,
|
|
.needed = pre_2_10_vmstate_dummy_icp_needed,
|
|
.fields = (VMStateField[]) {
|
|
VMSTATE_UNUSED(4), /* uint32_t xirr */
|
|
VMSTATE_UNUSED(1), /* uint8_t pending_priority */
|
|
VMSTATE_UNUSED(1), /* uint8_t mfrr */
|
|
VMSTATE_END_OF_LIST()
|
|
},
|
|
};
|
|
|
|
static void pre_2_10_vmstate_register_dummy_icp(int i)
|
|
{
|
|
vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
|
|
(void *)(uintptr_t) i);
|
|
}
|
|
|
|
static void pre_2_10_vmstate_unregister_dummy_icp(int i)
|
|
{
|
|
vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
|
|
(void *)(uintptr_t) i);
|
|
}
|
|
|
|
int spapr_max_server_number(SpaprMachineState *spapr)
|
|
{
|
|
MachineState *ms = MACHINE(spapr);
|
|
|
|
assert(spapr->vsmt);
|
|
return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
|
|
}
|
|
|
|
static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
|
|
int smt_threads)
|
|
{
|
|
int i, ret = 0;
|
|
uint32_t servers_prop[smt_threads];
|
|
uint32_t gservers_prop[smt_threads * 2];
|
|
int index = spapr_get_vcpu_id(cpu);
|
|
|
|
if (cpu->compat_pvr) {
|
|
ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
/* Build interrupt servers and gservers properties */
|
|
for (i = 0; i < smt_threads; i++) {
|
|
servers_prop[i] = cpu_to_be32(index + i);
|
|
/* Hack, direct the group queues back to cpu 0 */
|
|
gservers_prop[i*2] = cpu_to_be32(index + i);
|
|
gservers_prop[i*2 + 1] = 0;
|
|
}
|
|
ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
|
|
servers_prop, sizeof(servers_prop));
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
|
|
gservers_prop, sizeof(gservers_prop));
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
|
|
{
|
|
int index = spapr_get_vcpu_id(cpu);
|
|
uint32_t associativity[] = {cpu_to_be32(0x5),
|
|
cpu_to_be32(0x0),
|
|
cpu_to_be32(0x0),
|
|
cpu_to_be32(0x0),
|
|
cpu_to_be32(cpu->node_id),
|
|
cpu_to_be32(index)};
|
|
|
|
/* Advertise NUMA via ibm,associativity */
|
|
return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
|
|
sizeof(associativity));
|
|
}
|
|
|
|
static void spapr_dt_pa_features(SpaprMachineState *spapr,
|
|
PowerPCCPU *cpu,
|
|
void *fdt, int offset)
|
|
{
|
|
uint8_t pa_features_206[] = { 6, 0,
|
|
0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
|
|
uint8_t pa_features_207[] = { 24, 0,
|
|
0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
|
|
0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
|
|
0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
|
|
uint8_t pa_features_300[] = { 66, 0,
|
|
/* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
|
|
/* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
|
|
0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
|
|
/* 6: DS207 */
|
|
0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
|
|
/* 16: Vector */
|
|
0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
|
|
/* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
|
|
0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
|
|
/* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
|
|
0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
|
|
/* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
|
|
0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
|
|
/* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
|
|
0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
|
|
/* 42: PM, 44: PC RA, 46: SC vec'd */
|
|
0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
|
|
/* 48: SIMD, 50: QP BFP, 52: String */
|
|
0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
|
|
/* 54: DecFP, 56: DecI, 58: SHA */
|
|
0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
|
|
/* 60: NM atomic, 62: RNG */
|
|
0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
|
|
};
|
|
uint8_t *pa_features = NULL;
|
|
size_t pa_size;
|
|
|
|
if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
|
|
pa_features = pa_features_206;
|
|
pa_size = sizeof(pa_features_206);
|
|
}
|
|
if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
|
|
pa_features = pa_features_207;
|
|
pa_size = sizeof(pa_features_207);
|
|
}
|
|
if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
|
|
pa_features = pa_features_300;
|
|
pa_size = sizeof(pa_features_300);
|
|
}
|
|
if (!pa_features) {
|
|
return;
|
|
}
|
|
|
|
if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
|
|
/*
|
|
* Note: we keep CI large pages off by default because a 64K capable
|
|
* guest provisioned with large pages might otherwise try to map a qemu
|
|
* framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
|
|
* even if that qemu runs on a 4k host.
|
|
* We dd this bit back here if we are confident this is not an issue
|
|
*/
|
|
pa_features[3] |= 0x20;
|
|
}
|
|
if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
|
|
pa_features[24] |= 0x80; /* Transactional memory support */
|
|
}
|
|
if (spapr->cas_pre_isa3_guest && pa_size > 40) {
|
|
/* Workaround for broken kernels that attempt (guest) radix
|
|
* mode when they can't handle it, if they see the radix bit set
|
|
* in pa-features. So hide it from them. */
|
|
pa_features[40 + 2] &= ~0x80; /* Radix MMU */
|
|
}
|
|
|
|
_FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
|
|
}
|
|
|
|
static hwaddr spapr_node0_size(MachineState *machine)
|
|
{
|
|
if (machine->numa_state->num_nodes) {
|
|
int i;
|
|
for (i = 0; i < machine->numa_state->num_nodes; ++i) {
|
|
if (machine->numa_state->nodes[i].node_mem) {
|
|
return MIN(pow2floor(machine->numa_state->nodes[i].node_mem),
|
|
machine->ram_size);
|
|
}
|
|
}
|
|
}
|
|
return machine->ram_size;
|
|
}
|
|
|
|
static void add_str(GString *s, const gchar *s1)
|
|
{
|
|
g_string_append_len(s, s1, strlen(s1) + 1);
|
|
}
|
|
|
|
static int spapr_dt_memory_node(void *fdt, int nodeid, hwaddr start,
|
|
hwaddr size)
|
|
{
|
|
uint32_t associativity[] = {
|
|
cpu_to_be32(0x4), /* length */
|
|
cpu_to_be32(0x0), cpu_to_be32(0x0),
|
|
cpu_to_be32(0x0), cpu_to_be32(nodeid)
|
|
};
|
|
char mem_name[32];
|
|
uint64_t mem_reg_property[2];
|
|
int off;
|
|
|
|
mem_reg_property[0] = cpu_to_be64(start);
|
|
mem_reg_property[1] = cpu_to_be64(size);
|
|
|
|
sprintf(mem_name, "memory@%" HWADDR_PRIx, start);
|
|
off = fdt_add_subnode(fdt, 0, mem_name);
|
|
_FDT(off);
|
|
_FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
|
|
_FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
|
|
sizeof(mem_reg_property))));
|
|
_FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
|
|
sizeof(associativity))));
|
|
return off;
|
|
}
|
|
|
|
static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
|
|
{
|
|
MemoryDeviceInfoList *info;
|
|
|
|
for (info = list; info; info = info->next) {
|
|
MemoryDeviceInfo *value = info->value;
|
|
|
|
if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
|
|
PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
|
|
|
|
if (addr >= pcdimm_info->addr &&
|
|
addr < (pcdimm_info->addr + pcdimm_info->size)) {
|
|
return pcdimm_info->node;
|
|
}
|
|
}
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
struct sPAPRDrconfCellV2 {
|
|
uint32_t seq_lmbs;
|
|
uint64_t base_addr;
|
|
uint32_t drc_index;
|
|
uint32_t aa_index;
|
|
uint32_t flags;
|
|
} QEMU_PACKED;
|
|
|
|
typedef struct DrconfCellQueue {
|
|
struct sPAPRDrconfCellV2 cell;
|
|
QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
|
|
} DrconfCellQueue;
|
|
|
|
static DrconfCellQueue *
|
|
spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
|
|
uint32_t drc_index, uint32_t aa_index,
|
|
uint32_t flags)
|
|
{
|
|
DrconfCellQueue *elem;
|
|
|
|
elem = g_malloc0(sizeof(*elem));
|
|
elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
|
|
elem->cell.base_addr = cpu_to_be64(base_addr);
|
|
elem->cell.drc_index = cpu_to_be32(drc_index);
|
|
elem->cell.aa_index = cpu_to_be32(aa_index);
|
|
elem->cell.flags = cpu_to_be32(flags);
|
|
|
|
return elem;
|
|
}
|
|
|
|
static int spapr_dt_dynamic_memory_v2(SpaprMachineState *spapr, void *fdt,
|
|
int offset, MemoryDeviceInfoList *dimms)
|
|
{
|
|
MachineState *machine = MACHINE(spapr);
|
|
uint8_t *int_buf, *cur_index;
|
|
int ret;
|
|
uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
|
|
uint64_t addr, cur_addr, size;
|
|
uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
|
|
uint64_t mem_end = machine->device_memory->base +
|
|
memory_region_size(&machine->device_memory->mr);
|
|
uint32_t node, buf_len, nr_entries = 0;
|
|
SpaprDrc *drc;
|
|
DrconfCellQueue *elem, *next;
|
|
MemoryDeviceInfoList *info;
|
|
QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
|
|
= QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
|
|
|
|
/* Entry to cover RAM and the gap area */
|
|
elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
|
|
SPAPR_LMB_FLAGS_RESERVED |
|
|
SPAPR_LMB_FLAGS_DRC_INVALID);
|
|
QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
|
|
nr_entries++;
|
|
|
|
cur_addr = machine->device_memory->base;
|
|
for (info = dimms; info; info = info->next) {
|
|
PCDIMMDeviceInfo *di = info->value->u.dimm.data;
|
|
|
|
addr = di->addr;
|
|
size = di->size;
|
|
node = di->node;
|
|
|
|
/*
|
|
* The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The
|
|
* area is marked hotpluggable in the next iteration for the bigger
|
|
* chunk including the NVDIMM occupied area.
|
|
*/
|
|
if (info->value->type == MEMORY_DEVICE_INFO_KIND_NVDIMM)
|
|
continue;
|
|
|
|
/* Entry for hot-pluggable area */
|
|
if (cur_addr < addr) {
|
|
drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
|
|
g_assert(drc);
|
|
elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
|
|
cur_addr, spapr_drc_index(drc), -1, 0);
|
|
QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
|
|
nr_entries++;
|
|
}
|
|
|
|
/* Entry for DIMM */
|
|
drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
|
|
g_assert(drc);
|
|
elem = spapr_get_drconf_cell(size / lmb_size, addr,
|
|
spapr_drc_index(drc), node,
|
|
(SPAPR_LMB_FLAGS_ASSIGNED |
|
|
SPAPR_LMB_FLAGS_HOTREMOVABLE));
|
|
QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
|
|
nr_entries++;
|
|
cur_addr = addr + size;
|
|
}
|
|
|
|
/* Entry for remaining hotpluggable area */
|
|
if (cur_addr < mem_end) {
|
|
drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
|
|
g_assert(drc);
|
|
elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
|
|
cur_addr, spapr_drc_index(drc), -1, 0);
|
|
QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
|
|
nr_entries++;
|
|
}
|
|
|
|
buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
|
|
int_buf = cur_index = g_malloc0(buf_len);
|
|
*(uint32_t *)int_buf = cpu_to_be32(nr_entries);
|
|
cur_index += sizeof(nr_entries);
|
|
|
|
QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
|
|
memcpy(cur_index, &elem->cell, sizeof(elem->cell));
|
|
cur_index += sizeof(elem->cell);
|
|
QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
|
|
g_free(elem);
|
|
}
|
|
|
|
ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
|
|
g_free(int_buf);
|
|
if (ret < 0) {
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int spapr_dt_dynamic_memory(SpaprMachineState *spapr, void *fdt,
|
|
int offset, MemoryDeviceInfoList *dimms)
|
|
{
|
|
MachineState *machine = MACHINE(spapr);
|
|
int i, ret;
|
|
uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
|
|
uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
|
|
uint32_t nr_lmbs = (machine->device_memory->base +
|
|
memory_region_size(&machine->device_memory->mr)) /
|
|
lmb_size;
|
|
uint32_t *int_buf, *cur_index, buf_len;
|
|
|
|
/*
|
|
* Allocate enough buffer size to fit in ibm,dynamic-memory
|
|
*/
|
|
buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
|
|
cur_index = int_buf = g_malloc0(buf_len);
|
|
int_buf[0] = cpu_to_be32(nr_lmbs);
|
|
cur_index++;
|
|
for (i = 0; i < nr_lmbs; i++) {
|
|
uint64_t addr = i * lmb_size;
|
|
uint32_t *dynamic_memory = cur_index;
|
|
|
|
if (i >= device_lmb_start) {
|
|
SpaprDrc *drc;
|
|
|
|
drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
|
|
g_assert(drc);
|
|
|
|
dynamic_memory[0] = cpu_to_be32(addr >> 32);
|
|
dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
|
|
dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
|
|
dynamic_memory[3] = cpu_to_be32(0); /* reserved */
|
|
dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
|
|
if (memory_region_present(get_system_memory(), addr)) {
|
|
dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
|
|
} else {
|
|
dynamic_memory[5] = cpu_to_be32(0);
|
|
}
|
|
} else {
|
|
/*
|
|
* LMB information for RMA, boot time RAM and gap b/n RAM and
|
|
* device memory region -- all these are marked as reserved
|
|
* and as having no valid DRC.
|
|
*/
|
|
dynamic_memory[0] = cpu_to_be32(addr >> 32);
|
|
dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
|
|
dynamic_memory[2] = cpu_to_be32(0);
|
|
dynamic_memory[3] = cpu_to_be32(0); /* reserved */
|
|
dynamic_memory[4] = cpu_to_be32(-1);
|
|
dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
|
|
SPAPR_LMB_FLAGS_DRC_INVALID);
|
|
}
|
|
|
|
cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
|
|
}
|
|
ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
|
|
g_free(int_buf);
|
|
if (ret < 0) {
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Adds ibm,dynamic-reconfiguration-memory node.
|
|
* Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
|
|
* of this device tree node.
|
|
*/
|
|
static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState *spapr,
|
|
void *fdt)
|
|
{
|
|
MachineState *machine = MACHINE(spapr);
|
|
int nb_numa_nodes = machine->numa_state->num_nodes;
|
|
int ret, i, offset;
|
|
uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
|
|
uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
|
|
uint32_t *int_buf, *cur_index, buf_len;
|
|
int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
|
|
MemoryDeviceInfoList *dimms = NULL;
|
|
|
|
/*
|
|
* Don't create the node if there is no device memory
|
|
*/
|
|
if (machine->ram_size == machine->maxram_size) {
|
|
return 0;
|
|
}
|
|
|
|
offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
|
|
|
|
ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
|
|
sizeof(prop_lmb_size));
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
|
|
ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
|
|
ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
|
|
/* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
|
|
dimms = qmp_memory_device_list();
|
|
if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
|
|
ret = spapr_dt_dynamic_memory_v2(spapr, fdt, offset, dimms);
|
|
} else {
|
|
ret = spapr_dt_dynamic_memory(spapr, fdt, offset, dimms);
|
|
}
|
|
qapi_free_MemoryDeviceInfoList(dimms);
|
|
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
|
|
/* ibm,associativity-lookup-arrays */
|
|
buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t);
|
|
cur_index = int_buf = g_malloc0(buf_len);
|
|
int_buf[0] = cpu_to_be32(nr_nodes);
|
|
int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
|
|
cur_index += 2;
|
|
for (i = 0; i < nr_nodes; i++) {
|
|
uint32_t associativity[] = {
|
|
cpu_to_be32(0x0),
|
|
cpu_to_be32(0x0),
|
|
cpu_to_be32(0x0),
|
|
cpu_to_be32(i)
|
|
};
|
|
memcpy(cur_index, associativity, sizeof(associativity));
|
|
cur_index += 4;
|
|
}
|
|
ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
|
|
(cur_index - int_buf) * sizeof(uint32_t));
|
|
g_free(int_buf);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int spapr_dt_memory(SpaprMachineState *spapr, void *fdt)
|
|
{
|
|
MachineState *machine = MACHINE(spapr);
|
|
SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
|
|
hwaddr mem_start, node_size;
|
|
int i, nb_nodes = machine->numa_state->num_nodes;
|
|
NodeInfo *nodes = machine->numa_state->nodes;
|
|
|
|
for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
|
|
if (!nodes[i].node_mem) {
|
|
continue;
|
|
}
|
|
if (mem_start >= machine->ram_size) {
|
|
node_size = 0;
|
|
} else {
|
|
node_size = nodes[i].node_mem;
|
|
if (node_size > machine->ram_size - mem_start) {
|
|
node_size = machine->ram_size - mem_start;
|
|
}
|
|
}
|
|
if (!mem_start) {
|
|
/* spapr_machine_init() checks for rma_size <= node0_size
|
|
* already */
|
|
spapr_dt_memory_node(fdt, i, 0, spapr->rma_size);
|
|
mem_start += spapr->rma_size;
|
|
node_size -= spapr->rma_size;
|
|
}
|
|
for ( ; node_size; ) {
|
|
hwaddr sizetmp = pow2floor(node_size);
|
|
|
|
/* mem_start != 0 here */
|
|
if (ctzl(mem_start) < ctzl(sizetmp)) {
|
|
sizetmp = 1ULL << ctzl(mem_start);
|
|
}
|
|
|
|
spapr_dt_memory_node(fdt, i, mem_start, sizetmp);
|
|
node_size -= sizetmp;
|
|
mem_start += sizetmp;
|
|
}
|
|
}
|
|
|
|
/* Generate ibm,dynamic-reconfiguration-memory node if required */
|
|
if (spapr_ovec_test(spapr->ov5_cas, OV5_DRCONF_MEMORY)) {
|
|
int ret;
|
|
|
|
g_assert(smc->dr_lmb_enabled);
|
|
ret = spapr_dt_dynamic_reconfiguration_memory(spapr, fdt);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void spapr_dt_cpu(CPUState *cs, void *fdt, int offset,
|
|
SpaprMachineState *spapr)
|
|
{
|
|
MachineState *ms = MACHINE(spapr);
|
|
PowerPCCPU *cpu = POWERPC_CPU(cs);
|
|
CPUPPCState *env = &cpu->env;
|
|
PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
|
|
int index = spapr_get_vcpu_id(cpu);
|
|
uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
|
|
0xffffffff, 0xffffffff};
|
|
uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
|
|
: SPAPR_TIMEBASE_FREQ;
|
|
uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
|
|
uint32_t page_sizes_prop[64];
|
|
size_t page_sizes_prop_size;
|
|
unsigned int smp_threads = ms->smp.threads;
|
|
uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
|
|
uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
|
|
int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
|
|
SpaprDrc *drc;
|
|
int drc_index;
|
|
uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
|
|
int i;
|
|
|
|
drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
|
|
if (drc) {
|
|
drc_index = spapr_drc_index(drc);
|
|
_FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
|
|
}
|
|
|
|
_FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
|
|
_FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
|
|
|
|
_FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
|
|
_FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
|
|
env->dcache_line_size)));
|
|
_FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
|
|
env->dcache_line_size)));
|
|
_FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
|
|
env->icache_line_size)));
|
|
_FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
|
|
env->icache_line_size)));
|
|
|
|
if (pcc->l1_dcache_size) {
|
|
_FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
|
|
pcc->l1_dcache_size)));
|
|
} else {
|
|
warn_report("Unknown L1 dcache size for cpu");
|
|
}
|
|
if (pcc->l1_icache_size) {
|
|
_FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
|
|
pcc->l1_icache_size)));
|
|
} else {
|
|
warn_report("Unknown L1 icache size for cpu");
|
|
}
|
|
|
|
_FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
|
|
_FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
|
|
_FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
|
|
_FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
|
|
_FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
|
|
_FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
|
|
|
|
if (env->spr_cb[SPR_PURR].oea_read) {
|
|
_FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
|
|
}
|
|
if (env->spr_cb[SPR_SPURR].oea_read) {
|
|
_FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
|
|
}
|
|
|
|
if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
|
|
_FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
|
|
segs, sizeof(segs))));
|
|
}
|
|
|
|
/* Advertise VSX (vector extensions) if available
|
|
* 1 == VMX / Altivec available
|
|
* 2 == VSX available
|
|
*
|
|
* Only CPUs for which we create core types in spapr_cpu_core.c
|
|
* are possible, and all of those have VMX */
|
|
if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
|
|
_FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
|
|
} else {
|
|
_FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
|
|
}
|
|
|
|
/* Advertise DFP (Decimal Floating Point) if available
|
|
* 0 / no property == no DFP
|
|
* 1 == DFP available */
|
|
if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
|
|
_FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
|
|
}
|
|
|
|
page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
|
|
sizeof(page_sizes_prop));
|
|
if (page_sizes_prop_size) {
|
|
_FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
|
|
page_sizes_prop, page_sizes_prop_size)));
|
|
}
|
|
|
|
spapr_dt_pa_features(spapr, cpu, fdt, offset);
|
|
|
|
_FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
|
|
cs->cpu_index / vcpus_per_socket)));
|
|
|
|
_FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
|
|
pft_size_prop, sizeof(pft_size_prop))));
|
|
|
|
if (ms->numa_state->num_nodes > 1) {
|
|
_FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
|
|
}
|
|
|
|
_FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
|
|
|
|
if (pcc->radix_page_info) {
|
|
for (i = 0; i < pcc->radix_page_info->count; i++) {
|
|
radix_AP_encodings[i] =
|
|
cpu_to_be32(pcc->radix_page_info->entries[i]);
|
|
}
|
|
_FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
|
|
radix_AP_encodings,
|
|
pcc->radix_page_info->count *
|
|
sizeof(radix_AP_encodings[0]))));
|
|
}
|
|
|
|
/*
|
|
* We set this property to let the guest know that it can use the large
|
|
* decrementer and its width in bits.
|
|
*/
|
|
if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
|
|
_FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
|
|
pcc->lrg_decr_bits)));
|
|
}
|
|
|
|
static void spapr_dt_cpus(void *fdt, SpaprMachineState *spapr)
|
|
{
|
|
CPUState **rev;
|
|
CPUState *cs;
|
|
int n_cpus;
|
|
int cpus_offset;
|
|
char *nodename;
|
|
int i;
|
|
|
|
cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
|
|
_FDT(cpus_offset);
|
|
_FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
|
|
_FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
|
|
|
|
/*
|
|
* We walk the CPUs in reverse order to ensure that CPU DT nodes
|
|
* created by fdt_add_subnode() end up in the right order in FDT
|
|
* for the guest kernel the enumerate the CPUs correctly.
|
|
*
|
|
* The CPU list cannot be traversed in reverse order, so we need
|
|
* to do extra work.
|
|
*/
|
|
n_cpus = 0;
|
|
rev = NULL;
|
|
CPU_FOREACH(cs) {
|
|
rev = g_renew(CPUState *, rev, n_cpus + 1);
|
|
rev[n_cpus++] = cs;
|
|
}
|
|
|
|
for (i = n_cpus - 1; i >= 0; i--) {
|
|
CPUState *cs = rev[i];
|
|
PowerPCCPU *cpu = POWERPC_CPU(cs);
|
|
int index = spapr_get_vcpu_id(cpu);
|
|
DeviceClass *dc = DEVICE_GET_CLASS(cs);
|
|
int offset;
|
|
|
|
if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
|
|
continue;
|
|
}
|
|
|
|
nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
|
|
offset = fdt_add_subnode(fdt, cpus_offset, nodename);
|
|
g_free(nodename);
|
|
_FDT(offset);
|
|
spapr_dt_cpu(cs, fdt, offset, spapr);
|
|
}
|
|
|
|
g_free(rev);
|
|
}
|
|
|
|
static int spapr_dt_rng(void *fdt)
|
|
{
|
|
int node;
|
|
int ret;
|
|
|
|
node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
|
|
if (node <= 0) {
|
|
return -1;
|
|
}
|
|
ret = fdt_setprop_string(fdt, node, "device_type",
|
|
"ibm,platform-facilities");
|
|
ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
|
|
ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
|
|
|
|
node = fdt_add_subnode(fdt, node, "ibm,random-v1");
|
|
if (node <= 0) {
|
|
return -1;
|
|
}
|
|
ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
|
|
|
|
return ret ? -1 : 0;
|
|
}
|
|
|
|
static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
|
|
{
|
|
MachineState *ms = MACHINE(spapr);
|
|
int rtas;
|
|
GString *hypertas = g_string_sized_new(256);
|
|
GString *qemu_hypertas = g_string_sized_new(256);
|
|
uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
|
|
uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
|
|
memory_region_size(&MACHINE(spapr)->device_memory->mr);
|
|
uint32_t lrdr_capacity[] = {
|
|
cpu_to_be32(max_device_addr >> 32),
|
|
cpu_to_be32(max_device_addr & 0xffffffff),
|
|
0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
|
|
cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
|
|
};
|
|
uint32_t maxdomain = cpu_to_be32(spapr->gpu_numa_id > 1 ? 1 : 0);
|
|
uint32_t maxdomains[] = {
|
|
cpu_to_be32(4),
|
|
maxdomain,
|
|
maxdomain,
|
|
maxdomain,
|
|
cpu_to_be32(spapr->gpu_numa_id),
|
|
};
|
|
|
|
_FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
|
|
|
|
/* hypertas */
|
|
add_str(hypertas, "hcall-pft");
|
|
add_str(hypertas, "hcall-term");
|
|
add_str(hypertas, "hcall-dabr");
|
|
add_str(hypertas, "hcall-interrupt");
|
|
add_str(hypertas, "hcall-tce");
|
|
add_str(hypertas, "hcall-vio");
|
|
add_str(hypertas, "hcall-splpar");
|
|
add_str(hypertas, "hcall-join");
|
|
add_str(hypertas, "hcall-bulk");
|
|
add_str(hypertas, "hcall-set-mode");
|
|
add_str(hypertas, "hcall-sprg0");
|
|
add_str(hypertas, "hcall-copy");
|
|
add_str(hypertas, "hcall-debug");
|
|
add_str(hypertas, "hcall-vphn");
|
|
add_str(qemu_hypertas, "hcall-memop1");
|
|
|
|
if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
|
|
add_str(hypertas, "hcall-multi-tce");
|
|
}
|
|
|
|
if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
|
|
add_str(hypertas, "hcall-hpt-resize");
|
|
}
|
|
|
|
_FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
|
|
hypertas->str, hypertas->len));
|
|
g_string_free(hypertas, TRUE);
|
|
_FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
|
|
qemu_hypertas->str, qemu_hypertas->len));
|
|
g_string_free(qemu_hypertas, TRUE);
|
|
|
|
_FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
|
|
refpoints, sizeof(refpoints)));
|
|
|
|
_FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
|
|
maxdomains, sizeof(maxdomains)));
|
|
|
|
/*
|
|
* FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log,
|
|
* and 16 bytes per CPU for system reset error log plus an extra 8 bytes.
|
|
*
|
|
* The system reset requirements are driven by existing Linux and PowerVM
|
|
* implementation which (contrary to PAPR) saves r3 in the error log
|
|
* structure like machine check, so Linux expects to find the saved r3
|
|
* value at the address in r3 upon FWNMI-enabled sreset interrupt (and
|
|
* does not look at the error value).
|
|
*
|
|
* System reset interrupts are not subject to interlock like machine
|
|
* check, so this memory area could be corrupted if the sreset is
|
|
* interrupted by a machine check (or vice versa) if it was shared. To
|
|
* prevent this, system reset uses per-CPU areas for the sreset save
|
|
* area. A system reset that interrupts a system reset handler could
|
|
* still overwrite this area, but Linux doesn't try to recover in that
|
|
* case anyway.
|
|
*
|
|
* The extra 8 bytes is required because Linux's FWNMI error log check
|
|
* is off-by-one.
|
|
*/
|
|
_FDT(fdt_setprop_cell(fdt, rtas, "rtas-size", RTAS_ERROR_LOG_MAX +
|
|
ms->smp.max_cpus * sizeof(uint64_t)*2 + sizeof(uint64_t)));
|
|
_FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
|
|
RTAS_ERROR_LOG_MAX));
|
|
_FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
|
|
RTAS_EVENT_SCAN_RATE));
|
|
|
|
g_assert(msi_nonbroken);
|
|
_FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
|
|
|
|
/*
|
|
* According to PAPR, rtas ibm,os-term does not guarantee a return
|
|
* back to the guest cpu.
|
|
*
|
|
* While an additional ibm,extended-os-term property indicates
|
|
* that rtas call return will always occur. Set this property.
|
|
*/
|
|
_FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
|
|
|
|
_FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
|
|
lrdr_capacity, sizeof(lrdr_capacity)));
|
|
|
|
spapr_dt_rtas_tokens(fdt, rtas);
|
|
}
|
|
|
|
/*
|
|
* Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
|
|
* and the XIVE features that the guest may request and thus the valid
|
|
* values for bytes 23..26 of option vector 5:
|
|
*/
|
|
static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
|
|
int chosen)
|
|
{
|
|
PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
|
|
|
|
char val[2 * 4] = {
|
|
23, 0x00, /* XICS / XIVE mode */
|
|
24, 0x00, /* Hash/Radix, filled in below. */
|
|
25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
|
|
26, 0x40, /* Radix options: GTSE == yes. */
|
|
};
|
|
|
|
if (spapr->irq->xics && spapr->irq->xive) {
|
|
val[1] = SPAPR_OV5_XIVE_BOTH;
|
|
} else if (spapr->irq->xive) {
|
|
val[1] = SPAPR_OV5_XIVE_EXPLOIT;
|
|
} else {
|
|
assert(spapr->irq->xics);
|
|
val[1] = SPAPR_OV5_XIVE_LEGACY;
|
|
}
|
|
|
|
if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
|
|
first_ppc_cpu->compat_pvr)) {
|
|
/*
|
|
* If we're in a pre POWER9 compat mode then the guest should
|
|
* do hash and use the legacy interrupt mode
|
|
*/
|
|
val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */
|
|
val[3] = 0x00; /* Hash */
|
|
} else if (kvm_enabled()) {
|
|
if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
|
|
val[3] = 0x80; /* OV5_MMU_BOTH */
|
|
} else if (kvmppc_has_cap_mmu_radix()) {
|
|
val[3] = 0x40; /* OV5_MMU_RADIX_300 */
|
|
} else {
|
|
val[3] = 0x00; /* Hash */
|
|
}
|
|
} else {
|
|
/* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
|
|
val[3] = 0xC0;
|
|
}
|
|
_FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
|
|
val, sizeof(val)));
|
|
}
|
|
|
|
static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt, bool reset)
|
|
{
|
|
MachineState *machine = MACHINE(spapr);
|
|
SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
|
|
int chosen;
|
|
|
|
_FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
|
|
|
|
if (reset) {
|
|
const char *boot_device = machine->boot_order;
|
|
char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
|
|
size_t cb = 0;
|
|
char *bootlist = get_boot_devices_list(&cb);
|
|
|
|
if (machine->kernel_cmdline && machine->kernel_cmdline[0]) {
|
|
_FDT(fdt_setprop_string(fdt, chosen, "bootargs",
|
|
machine->kernel_cmdline));
|
|
}
|
|
|
|
if (spapr->initrd_size) {
|
|
_FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
|
|
spapr->initrd_base));
|
|
_FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
|
|
spapr->initrd_base + spapr->initrd_size));
|
|
}
|
|
|
|
if (spapr->kernel_size) {
|
|
uint64_t kprop[2] = { cpu_to_be64(spapr->kernel_addr),
|
|
cpu_to_be64(spapr->kernel_size) };
|
|
|
|
_FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
|
|
&kprop, sizeof(kprop)));
|
|
if (spapr->kernel_le) {
|
|
_FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
|
|
}
|
|
}
|
|
if (boot_menu) {
|
|
_FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
|
|
}
|
|
_FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
|
|
_FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
|
|
_FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
|
|
|
|
if (cb && bootlist) {
|
|
int i;
|
|
|
|
for (i = 0; i < cb; i++) {
|
|
if (bootlist[i] == '\n') {
|
|
bootlist[i] = ' ';
|
|
}
|
|
}
|
|
_FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
|
|
}
|
|
|
|
if (boot_device && strlen(boot_device)) {
|
|
_FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
|
|
}
|
|
|
|
if (!spapr->has_graphics && stdout_path) {
|
|
/*
|
|
* "linux,stdout-path" and "stdout" properties are
|
|
* deprecated by linux kernel. New platforms should only
|
|
* use the "stdout-path" property. Set the new property
|
|
* and continue using older property to remain compatible
|
|
* with the existing firmware.
|
|
*/
|
|
_FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
|
|
_FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
|
|
}
|
|
|
|
/*
|
|
* We can deal with BAR reallocation just fine, advertise it
|
|
* to the guest
|
|
*/
|
|
if (smc->linux_pci_probe) {
|
|
_FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0));
|
|
}
|
|
|
|
spapr_dt_ov5_platform_support(spapr, fdt, chosen);
|
|
|
|
g_free(stdout_path);
|
|
g_free(bootlist);
|
|
}
|
|
|
|
_FDT(spapr_dt_ovec(fdt, chosen, spapr->ov5_cas, "ibm,architecture-vec-5"));
|
|
}
|
|
|
|
static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
|
|
{
|
|
/* The /hypervisor node isn't in PAPR - this is a hack to allow PR
|
|
* KVM to work under pHyp with some guest co-operation */
|
|
int hypervisor;
|
|
uint8_t hypercall[16];
|
|
|
|
_FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
|
|
/* indicate KVM hypercall interface */
|
|
_FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
|
|
if (kvmppc_has_cap_fixup_hcalls()) {
|
|
/*
|
|
* Older KVM versions with older guest kernels were broken
|
|
* with the magic page, don't allow the guest to map it.
|
|
*/
|
|
if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
|
|
sizeof(hypercall))) {
|
|
_FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
|
|
hypercall, sizeof(hypercall)));
|
|
}
|
|
}
|
|
}
|
|
|
|
void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space)
|
|
{
|
|
MachineState *machine = MACHINE(spapr);
|
|
MachineClass *mc = MACHINE_GET_CLASS(machine);
|
|
SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
|
|
int ret;
|
|
void *fdt;
|
|
SpaprPhbState *phb;
|
|
char *buf;
|
|
|
|
fdt = g_malloc0(space);
|
|
_FDT((fdt_create_empty_tree(fdt, space)));
|
|
|
|
/* Root node */
|
|
_FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
|
|
_FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
|
|
_FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
|
|
|
|
/* Guest UUID & Name*/
|
|
buf = qemu_uuid_unparse_strdup(&qemu_uuid);
|
|
_FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
|
|
if (qemu_uuid_set) {
|
|
_FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
|
|
}
|
|
g_free(buf);
|
|
|
|
if (qemu_get_vm_name()) {
|
|
_FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
|
|
qemu_get_vm_name()));
|
|
}
|
|
|
|
/* Host Model & Serial Number */
|
|
if (spapr->host_model) {
|
|
_FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
|
|
} else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
|
|
_FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
|
|
g_free(buf);
|
|
}
|
|
|
|
if (spapr->host_serial) {
|
|
_FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
|
|
} else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
|
|
_FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
|
|
g_free(buf);
|
|
}
|
|
|
|
_FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
|
|
_FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
|
|
|
|
/* /interrupt controller */
|
|
spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC);
|
|
|
|
ret = spapr_dt_memory(spapr, fdt);
|
|
if (ret < 0) {
|
|
error_report("couldn't setup memory nodes in fdt");
|
|
exit(1);
|
|
}
|
|
|
|
/* /vdevice */
|
|
spapr_dt_vdevice(spapr->vio_bus, fdt);
|
|
|
|
if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
|
|
ret = spapr_dt_rng(fdt);
|
|
if (ret < 0) {
|
|
error_report("could not set up rng device in the fdt");
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
QLIST_FOREACH(phb, &spapr->phbs, list) {
|
|
ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL);
|
|
if (ret < 0) {
|
|
error_report("couldn't setup PCI devices in fdt");
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
spapr_dt_cpus(fdt, spapr);
|
|
|
|
if (smc->dr_lmb_enabled) {
|
|
_FDT(spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
|
|
}
|
|
|
|
if (mc->has_hotpluggable_cpus) {
|
|
int offset = fdt_path_offset(fdt, "/cpus");
|
|
ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
|
|
if (ret < 0) {
|
|
error_report("Couldn't set up CPU DR device tree properties");
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
/* /event-sources */
|
|
spapr_dt_events(spapr, fdt);
|
|
|
|
/* /rtas */
|
|
spapr_dt_rtas(spapr, fdt);
|
|
|
|
/* /chosen */
|
|
spapr_dt_chosen(spapr, fdt, reset);
|
|
|
|
/* /hypervisor */
|
|
if (kvm_enabled()) {
|
|
spapr_dt_hypervisor(spapr, fdt);
|
|
}
|
|
|
|
/* Build memory reserve map */
|
|
if (reset) {
|
|
if (spapr->kernel_size) {
|
|
_FDT((fdt_add_mem_rsv(fdt, spapr->kernel_addr,
|
|
spapr->kernel_size)));
|
|
}
|
|
if (spapr->initrd_size) {
|
|
_FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base,
|
|
spapr->initrd_size)));
|
|
}
|
|
}
|
|
|
|
if (smc->dr_phb_enabled) {
|
|
ret = spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_PHB);
|
|
if (ret < 0) {
|
|
error_report("Couldn't set up PHB DR device tree properties");
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
/* NVDIMM devices */
|
|
if (mc->nvdimm_supported) {
|
|
spapr_dt_persistent_memory(fdt);
|
|
}
|
|
|
|
return fdt;
|
|
}
|
|
|
|
static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
|
|
{
|
|
SpaprMachineState *spapr = opaque;
|
|
|
|
return (addr & 0x0fffffff) + spapr->kernel_addr;
|
|
}
|
|
|
|
static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
|
|
PowerPCCPU *cpu)
|
|
{
|
|
CPUPPCState *env = &cpu->env;
|
|
|
|
/* The TCG path should also be holding the BQL at this point */
|
|
g_assert(qemu_mutex_iothread_locked());
|
|
|
|
if (msr_pr) {
|
|
hcall_dprintf("Hypercall made with MSR[PR]=1\n");
|
|
env->gpr[3] = H_PRIVILEGE;
|
|
} else {
|
|
env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
|
|
}
|
|
}
|
|
|
|
struct LPCRSyncState {
|
|
target_ulong value;
|
|
target_ulong mask;
|
|
};
|
|
|
|
static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
|
|
{
|
|
struct LPCRSyncState *s = arg.host_ptr;
|
|
PowerPCCPU *cpu = POWERPC_CPU(cs);
|
|
CPUPPCState *env = &cpu->env;
|
|
target_ulong lpcr;
|
|
|
|
cpu_synchronize_state(cs);
|
|
lpcr = env->spr[SPR_LPCR];
|
|
lpcr &= ~s->mask;
|
|
lpcr |= s->value;
|
|
ppc_store_lpcr(cpu, lpcr);
|
|
}
|
|
|
|
void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
|
|
{
|
|
CPUState *cs;
|
|
struct LPCRSyncState s = {
|
|
.value = value,
|
|
.mask = mask
|
|
};
|
|
CPU_FOREACH(cs) {
|
|
run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
|
|
}
|
|
}
|
|
|
|
static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry)
|
|
{
|
|
SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
|
|
|
|
/* Copy PATE1:GR into PATE0:HR */
|
|
entry->dw0 = spapr->patb_entry & PATE0_HR;
|
|
entry->dw1 = spapr->patb_entry;
|
|
}
|
|
|
|
#define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
|
|
#define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
|
|
#define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
|
|
#define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
|
|
#define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
|
|
|
|
/*
|
|
* Get the fd to access the kernel htab, re-opening it if necessary
|
|
*/
|
|
static int get_htab_fd(SpaprMachineState *spapr)
|
|
{
|
|
Error *local_err = NULL;
|
|
|
|
if (spapr->htab_fd >= 0) {
|
|
return spapr->htab_fd;
|
|
}
|
|
|
|
spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
|
|
if (spapr->htab_fd < 0) {
|
|
error_report_err(local_err);
|
|
}
|
|
|
|
return spapr->htab_fd;
|
|
}
|
|
|
|
void close_htab_fd(SpaprMachineState *spapr)
|
|
{
|
|
if (spapr->htab_fd >= 0) {
|
|
close(spapr->htab_fd);
|
|
}
|
|
spapr->htab_fd = -1;
|
|
}
|
|
|
|
static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
|
|
{
|
|
SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
|
|
|
|
return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
|
|
}
|
|
|
|
static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
|
|
{
|
|
SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
|
|
|
|
assert(kvm_enabled());
|
|
|
|
if (!spapr->htab) {
|
|
return 0;
|
|
}
|
|
|
|
return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
|
|
}
|
|
|
|
static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
|
|
hwaddr ptex, int n)
|
|
{
|
|
SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
|
|
hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
|
|
|
|
if (!spapr->htab) {
|
|
/*
|
|
* HTAB is controlled by KVM. Fetch into temporary buffer
|
|
*/
|
|
ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
|
|
kvmppc_read_hptes(hptes, ptex, n);
|
|
return hptes;
|
|
}
|
|
|
|
/*
|
|
* HTAB is controlled by QEMU. Just point to the internally
|
|
* accessible PTEG.
|
|
*/
|
|
return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
|
|
}
|
|
|
|
static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
|
|
const ppc_hash_pte64_t *hptes,
|
|
hwaddr ptex, int n)
|
|
{
|
|
SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
|
|
|
|
if (!spapr->htab) {
|
|
g_free((void *)hptes);
|
|
}
|
|
|
|
/* Nothing to do for qemu managed HPT */
|
|
}
|
|
|
|
void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
|
|
uint64_t pte0, uint64_t pte1)
|
|
{
|
|
SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
|
|
hwaddr offset = ptex * HASH_PTE_SIZE_64;
|
|
|
|
if (!spapr->htab) {
|
|
kvmppc_write_hpte(ptex, pte0, pte1);
|
|
} else {
|
|
if (pte0 & HPTE64_V_VALID) {
|
|
stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
|
|
/*
|
|
* When setting valid, we write PTE1 first. This ensures
|
|
* proper synchronization with the reading code in
|
|
* ppc_hash64_pteg_search()
|
|
*/
|
|
smp_wmb();
|
|
stq_p(spapr->htab + offset, pte0);
|
|
} else {
|
|
stq_p(spapr->htab + offset, pte0);
|
|
/*
|
|
* When clearing it we set PTE0 first. This ensures proper
|
|
* synchronization with the reading code in
|
|
* ppc_hash64_pteg_search()
|
|
*/
|
|
smp_wmb();
|
|
stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
|
|
uint64_t pte1)
|
|
{
|
|
hwaddr offset = ptex * HASH_PTE_SIZE_64 + 15;
|
|
SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
|
|
|
|
if (!spapr->htab) {
|
|
/* There should always be a hash table when this is called */
|
|
error_report("spapr_hpte_set_c called with no hash table !");
|
|
return;
|
|
}
|
|
|
|
/* The HW performs a non-atomic byte update */
|
|
stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
|
|
}
|
|
|
|
static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
|
|
uint64_t pte1)
|
|
{
|
|
hwaddr offset = ptex * HASH_PTE_SIZE_64 + 14;
|
|
SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
|
|
|
|
if (!spapr->htab) {
|
|
/* There should always be a hash table when this is called */
|
|
error_report("spapr_hpte_set_r called with no hash table !");
|
|
return;
|
|
}
|
|
|
|
/* The HW performs a non-atomic byte update */
|
|
stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
|
|
}
|
|
|
|
int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
|
|
{
|
|
int shift;
|
|
|
|
/* We aim for a hash table of size 1/128 the size of RAM (rounded
|
|
* up). The PAPR recommendation is actually 1/64 of RAM size, but
|
|
* that's much more than is needed for Linux guests */
|
|
shift = ctz64(pow2ceil(ramsize)) - 7;
|
|
shift = MAX(shift, 18); /* Minimum architected size */
|
|
shift = MIN(shift, 46); /* Maximum architected size */
|
|
return shift;
|
|
}
|
|
|
|
void spapr_free_hpt(SpaprMachineState *spapr)
|
|
{
|
|
g_free(spapr->htab);
|
|
spapr->htab = NULL;
|
|
spapr->htab_shift = 0;
|
|
close_htab_fd(spapr);
|
|
}
|
|
|
|
void spapr_reallocate_hpt(SpaprMachineState *spapr, int shift,
|
|
Error **errp)
|
|
{
|
|
long rc;
|
|
|
|
/* Clean up any HPT info from a previous boot */
|
|
spapr_free_hpt(spapr);
|
|
|
|
rc = kvmppc_reset_htab(shift);
|
|
if (rc < 0) {
|
|
/* kernel-side HPT needed, but couldn't allocate one */
|
|
error_setg_errno(errp, errno,
|
|
"Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
|
|
shift);
|
|
/* This is almost certainly fatal, but if the caller really
|
|
* wants to carry on with shift == 0, it's welcome to try */
|
|
} else if (rc > 0) {
|
|
/* kernel-side HPT allocated */
|
|
if (rc != shift) {
|
|
error_setg(errp,
|
|
"Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
|
|
shift, rc);
|
|
}
|
|
|
|
spapr->htab_shift = shift;
|
|
spapr->htab = NULL;
|
|
} else {
|
|
/* kernel-side HPT not needed, allocate in userspace instead */
|
|
size_t size = 1ULL << shift;
|
|
int i;
|
|
|
|
spapr->htab = qemu_memalign(size, size);
|
|
if (!spapr->htab) {
|
|
error_setg_errno(errp, errno,
|
|
"Could not allocate HPT of order %d", shift);
|
|
return;
|
|
}
|
|
|
|
memset(spapr->htab, 0, size);
|
|
spapr->htab_shift = shift;
|
|
|
|
for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
|
|
DIRTY_HPTE(HPTE(spapr->htab, i));
|
|
}
|
|
}
|
|
/* We're setting up a hash table, so that means we're not radix */
|
|
spapr->patb_entry = 0;
|
|
spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
|
|
}
|
|
|
|
void spapr_setup_hpt(SpaprMachineState *spapr)
|
|
{
|
|
int hpt_shift;
|
|
|
|
if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
|
|
hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
|
|
} else {
|
|
uint64_t current_ram_size;
|
|
|
|
current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
|
|
hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
|
|
}
|
|
spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
|
|
|
|
if (kvm_enabled()) {
|
|
hwaddr vrma_limit = kvmppc_vrma_limit(spapr->htab_shift);
|
|
|
|
/* Check our RMA fits in the possible VRMA */
|
|
if (vrma_limit < spapr->rma_size) {
|
|
error_report("Unable to create %" HWADDR_PRIu
|
|
"MiB RMA (VRMA only allows %" HWADDR_PRIu "MiB",
|
|
spapr->rma_size / MiB, vrma_limit / MiB);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int spapr_reset_drcs(Object *child, void *opaque)
|
|
{
|
|
SpaprDrc *drc =
|
|
(SpaprDrc *) object_dynamic_cast(child,
|
|
TYPE_SPAPR_DR_CONNECTOR);
|
|
|
|
if (drc) {
|
|
spapr_drc_reset(drc);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void spapr_machine_reset(MachineState *machine)
|
|
{
|
|
SpaprMachineState *spapr = SPAPR_MACHINE(machine);
|
|
PowerPCCPU *first_ppc_cpu;
|
|
hwaddr fdt_addr;
|
|
void *fdt;
|
|
int rc;
|
|
|
|
kvmppc_svm_off(&error_fatal);
|
|
spapr_caps_apply(spapr);
|
|
|
|
first_ppc_cpu = POWERPC_CPU(first_cpu);
|
|
if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
|
|
ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
|
|
spapr->max_compat_pvr)) {
|
|
/*
|
|
* If using KVM with radix mode available, VCPUs can be started
|
|
* without a HPT because KVM will start them in radix mode.
|
|
* Set the GR bit in PATE so that we know there is no HPT.
|
|
*/
|
|
spapr->patb_entry = PATE1_GR;
|
|
spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
|
|
} else {
|
|
spapr_setup_hpt(spapr);
|
|
}
|
|
|
|
qemu_devices_reset();
|
|
|
|
spapr_ovec_cleanup(spapr->ov5_cas);
|
|
spapr->ov5_cas = spapr_ovec_new();
|
|
|
|
ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal);
|
|
|
|
/*
|
|
* This is fixing some of the default configuration of the XIVE
|
|
* devices. To be called after the reset of the machine devices.
|
|
*/
|
|
spapr_irq_reset(spapr, &error_fatal);
|
|
|
|
/*
|
|
* There is no CAS under qtest. Simulate one to please the code that
|
|
* depends on spapr->ov5_cas. This is especially needed to test device
|
|
* unplug, so we do that before resetting the DRCs.
|
|
*/
|
|
if (qtest_enabled()) {
|
|
spapr_ovec_cleanup(spapr->ov5_cas);
|
|
spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
|
|
}
|
|
|
|
/* DRC reset may cause a device to be unplugged. This will cause troubles
|
|
* if this device is used by another device (eg, a running vhost backend
|
|
* will crash QEMU if the DIMM holding the vring goes away). To avoid such
|
|
* situations, we reset DRCs after all devices have been reset.
|
|
*/
|
|
object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
|
|
|
|
spapr_clear_pending_events(spapr);
|
|
|
|
/*
|
|
* We place the device tree and RTAS just below either the top of the RMA,
|
|
* or just below 2GB, whichever is lower, so that it can be
|
|
* processed with 32-bit real mode code if necessary
|
|
*/
|
|
fdt_addr = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FDT_MAX_SIZE;
|
|
|
|
fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE);
|
|
|
|
rc = fdt_pack(fdt);
|
|
|
|
/* Should only fail if we've built a corrupted tree */
|
|
assert(rc == 0);
|
|
|
|
/* Load the fdt */
|
|
qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
|
|
cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
|
|
g_free(spapr->fdt_blob);
|
|
spapr->fdt_size = fdt_totalsize(fdt);
|
|
spapr->fdt_initial_size = spapr->fdt_size;
|
|
spapr->fdt_blob = fdt;
|
|
|
|
/* Set up the entry state */
|
|
spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, 0, fdt_addr, 0);
|
|
first_ppc_cpu->env.gpr[5] = 0;
|
|
|
|
spapr->fwnmi_system_reset_addr = -1;
|
|
spapr->fwnmi_machine_check_addr = -1;
|
|
spapr->fwnmi_machine_check_interlock = -1;
|
|
|
|
/* Signal all vCPUs waiting on this condition */
|
|
qemu_cond_broadcast(&spapr->fwnmi_machine_check_interlock_cond);
|
|
|
|
migrate_del_blocker(spapr->fwnmi_migration_blocker);
|
|
}
|
|
|
|
static void spapr_create_nvram(SpaprMachineState *spapr)
|
|
{
|
|
DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
|
|
DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
|
|
|
|
if (dinfo) {
|
|
qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
|
|
&error_fatal);
|
|
}
|
|
|
|
qdev_init_nofail(dev);
|
|
|
|
spapr->nvram = (struct SpaprNvram *)dev;
|
|
}
|
|
|
|
static void spapr_rtc_create(SpaprMachineState *spapr)
|
|
{
|
|
object_initialize_child(OBJECT(spapr), "rtc",
|
|
&spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC,
|
|
&error_fatal, NULL);
|
|
object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
|
|
&error_fatal);
|
|
object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
|
|
"date");
|
|
}
|
|
|
|
/* Returns whether we want to use VGA or not */
|
|
static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
|
|
{
|
|
switch (vga_interface_type) {
|
|
case VGA_NONE:
|
|
return false;
|
|
case VGA_DEVICE:
|
|
return true;
|
|
case VGA_STD:
|
|
case VGA_VIRTIO:
|
|
case VGA_CIRRUS:
|
|
return pci_vga_init(pci_bus) != NULL;
|
|
default:
|
|
error_setg(errp,
|
|
"Unsupported VGA mode, only -vga std or -vga virtio is supported");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static int spapr_pre_load(void *opaque)
|
|
{
|
|
int rc;
|
|
|
|
rc = spapr_caps_pre_load(opaque);
|
|
if (rc) {
|
|
return rc;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int spapr_post_load(void *opaque, int version_id)
|
|
{
|
|
SpaprMachineState *spapr = (SpaprMachineState *)opaque;
|
|
int err = 0;
|
|
|
|
err = spapr_caps_post_migration(spapr);
|
|
if (err) {
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* In earlier versions, there was no separate qdev for the PAPR
|
|
* RTC, so the RTC offset was stored directly in sPAPREnvironment.
|
|
* So when migrating from those versions, poke the incoming offset
|
|
* value into the RTC device
|
|
*/
|
|
if (version_id < 3) {
|
|
err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
|
|
if (err) {
|
|
return err;
|
|
}
|
|
}
|
|
|
|
if (kvm_enabled() && spapr->patb_entry) {
|
|
PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
|
|
bool radix = !!(spapr->patb_entry & PATE1_GR);
|
|
bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
|
|
|
|
/*
|
|
* Update LPCR:HR and UPRT as they may not be set properly in
|
|
* the stream
|
|
*/
|
|
spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
|
|
LPCR_HR | LPCR_UPRT);
|
|
|
|
err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
|
|
if (err) {
|
|
error_report("Process table config unsupported by the host");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
err = spapr_irq_post_load(spapr, version_id);
|
|
if (err) {
|
|
return err;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static int spapr_pre_save(void *opaque)
|
|
{
|
|
int rc;
|
|
|
|
rc = spapr_caps_pre_save(opaque);
|
|
if (rc) {
|
|
return rc;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool version_before_3(void *opaque, int version_id)
|
|
{
|
|
return version_id < 3;
|
|
}
|
|
|
|
static bool spapr_pending_events_needed(void *opaque)
|
|
{
|
|
SpaprMachineState *spapr = (SpaprMachineState *)opaque;
|
|
return !QTAILQ_EMPTY(&spapr->pending_events);
|
|
}
|
|
|
|
static const VMStateDescription vmstate_spapr_event_entry = {
|
|
.name = "spapr_event_log_entry",
|
|
.version_id = 1,
|
|
.minimum_version_id = 1,
|
|
.fields = (VMStateField[]) {
|
|
VMSTATE_UINT32(summary, SpaprEventLogEntry),
|
|
VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
|
|
VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
|
|
NULL, extended_length),
|
|
VMSTATE_END_OF_LIST()
|
|
},
|
|
};
|
|
|
|
static const VMStateDescription vmstate_spapr_pending_events = {
|
|
.name = "spapr_pending_events",
|
|
.version_id = 1,
|
|
.minimum_version_id = 1,
|
|
.needed = spapr_pending_events_needed,
|
|
.fields = (VMStateField[]) {
|
|
VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
|
|
vmstate_spapr_event_entry, SpaprEventLogEntry, next),
|
|
VMSTATE_END_OF_LIST()
|
|
},
|
|
};
|
|
|
|
static bool spapr_ov5_cas_needed(void *opaque)
|
|
{
|
|
SpaprMachineState *spapr = opaque;
|
|
SpaprOptionVector *ov5_mask = spapr_ovec_new();
|
|
bool cas_needed;
|
|
|
|
/* Prior to the introduction of SpaprOptionVector, we had two option
|
|
* vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
|
|
* Both of these options encode machine topology into the device-tree
|
|
* in such a way that the now-booted OS should still be able to interact
|
|
* appropriately with QEMU regardless of what options were actually
|
|
* negotiatied on the source side.
|
|
*
|
|
* As such, we can avoid migrating the CAS-negotiated options if these
|
|
* are the only options available on the current machine/platform.
|
|
* Since these are the only options available for pseries-2.7 and
|
|
* earlier, this allows us to maintain old->new/new->old migration
|
|
* compatibility.
|
|
*
|
|
* For QEMU 2.8+, there are additional CAS-negotiatable options available
|
|
* via default pseries-2.8 machines and explicit command-line parameters.
|
|
* Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
|
|
* of the actual CAS-negotiated values to continue working properly. For
|
|
* example, availability of memory unplug depends on knowing whether
|
|
* OV5_HP_EVT was negotiated via CAS.
|
|
*
|
|
* Thus, for any cases where the set of available CAS-negotiatable
|
|
* options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
|
|
* include the CAS-negotiated options in the migration stream, unless
|
|
* if they affect boot time behaviour only.
|
|
*/
|
|
spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
|
|
spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
|
|
spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
|
|
|
|
/* We need extra information if we have any bits outside the mask
|
|
* defined above */
|
|
cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask);
|
|
|
|
spapr_ovec_cleanup(ov5_mask);
|
|
|
|
return cas_needed;
|
|
}
|
|
|
|
static const VMStateDescription vmstate_spapr_ov5_cas = {
|
|
.name = "spapr_option_vector_ov5_cas",
|
|
.version_id = 1,
|
|
.minimum_version_id = 1,
|
|
.needed = spapr_ov5_cas_needed,
|
|
.fields = (VMStateField[]) {
|
|
VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
|
|
vmstate_spapr_ovec, SpaprOptionVector),
|
|
VMSTATE_END_OF_LIST()
|
|
},
|
|
};
|
|
|
|
static bool spapr_patb_entry_needed(void *opaque)
|
|
{
|
|
SpaprMachineState *spapr = opaque;
|
|
|
|
return !!spapr->patb_entry;
|
|
}
|
|
|
|
static const VMStateDescription vmstate_spapr_patb_entry = {
|
|
.name = "spapr_patb_entry",
|
|
.version_id = 1,
|
|
.minimum_version_id = 1,
|
|
.needed = spapr_patb_entry_needed,
|
|
.fields = (VMStateField[]) {
|
|
VMSTATE_UINT64(patb_entry, SpaprMachineState),
|
|
VMSTATE_END_OF_LIST()
|
|
},
|
|
};
|
|
|
|
static bool spapr_irq_map_needed(void *opaque)
|
|
{
|
|
SpaprMachineState *spapr = opaque;
|
|
|
|
return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
|
|
}
|
|
|
|
static const VMStateDescription vmstate_spapr_irq_map = {
|
|
.name = "spapr_irq_map",
|
|
.version_id = 1,
|
|
.minimum_version_id = 1,
|
|
.needed = spapr_irq_map_needed,
|
|
.fields = (VMStateField[]) {
|
|
VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
|
|
VMSTATE_END_OF_LIST()
|
|
},
|
|
};
|
|
|
|
static bool spapr_dtb_needed(void *opaque)
|
|
{
|
|
SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
|
|
|
|
return smc->update_dt_enabled;
|
|
}
|
|
|
|
static int spapr_dtb_pre_load(void *opaque)
|
|
{
|
|
SpaprMachineState *spapr = (SpaprMachineState *)opaque;
|
|
|
|
g_free(spapr->fdt_blob);
|
|
spapr->fdt_blob = NULL;
|
|
spapr->fdt_size = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const VMStateDescription vmstate_spapr_dtb = {
|
|
.name = "spapr_dtb",
|
|
.version_id = 1,
|
|
.minimum_version_id = 1,
|
|
.needed = spapr_dtb_needed,
|
|
.pre_load = spapr_dtb_pre_load,
|
|
.fields = (VMStateField[]) {
|
|
VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
|
|
VMSTATE_UINT32(fdt_size, SpaprMachineState),
|
|
VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
|
|
fdt_size),
|
|
VMSTATE_END_OF_LIST()
|
|
},
|
|
};
|
|
|
|
static bool spapr_fwnmi_needed(void *opaque)
|
|
{
|
|
SpaprMachineState *spapr = (SpaprMachineState *)opaque;
|
|
|
|
return spapr->fwnmi_machine_check_addr != -1;
|
|
}
|
|
|
|
static int spapr_fwnmi_pre_save(void *opaque)
|
|
{
|
|
SpaprMachineState *spapr = (SpaprMachineState *)opaque;
|
|
|
|
/*
|
|
* Check if machine check handling is in progress and print a
|
|
* warning message.
|
|
*/
|
|
if (spapr->fwnmi_machine_check_interlock != -1) {
|
|
warn_report("A machine check is being handled during migration. The"
|
|
"handler may run and log hardware error on the destination");
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const VMStateDescription vmstate_spapr_fwnmi = {
|
|
.name = "spapr_fwnmi",
|
|
.version_id = 1,
|
|
.minimum_version_id = 1,
|
|
.needed = spapr_fwnmi_needed,
|
|
.pre_save = spapr_fwnmi_pre_save,
|
|
.fields = (VMStateField[]) {
|
|
VMSTATE_UINT64(fwnmi_system_reset_addr, SpaprMachineState),
|
|
VMSTATE_UINT64(fwnmi_machine_check_addr, SpaprMachineState),
|
|
VMSTATE_INT32(fwnmi_machine_check_interlock, SpaprMachineState),
|
|
VMSTATE_END_OF_LIST()
|
|
},
|
|
};
|
|
|
|
static const VMStateDescription vmstate_spapr = {
|
|
.name = "spapr",
|
|
.version_id = 3,
|
|
.minimum_version_id = 1,
|
|
.pre_load = spapr_pre_load,
|
|
.post_load = spapr_post_load,
|
|
.pre_save = spapr_pre_save,
|
|
.fields = (VMStateField[]) {
|
|
/* used to be @next_irq */
|
|
VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
|
|
|
|
/* RTC offset */
|
|
VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
|
|
|
|
VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
|
|
VMSTATE_END_OF_LIST()
|
|
},
|
|
.subsections = (const VMStateDescription*[]) {
|
|
&vmstate_spapr_ov5_cas,
|
|
&vmstate_spapr_patb_entry,
|
|
&vmstate_spapr_pending_events,
|
|
&vmstate_spapr_cap_htm,
|
|
&vmstate_spapr_cap_vsx,
|
|
&vmstate_spapr_cap_dfp,
|
|
&vmstate_spapr_cap_cfpc,
|
|
&vmstate_spapr_cap_sbbc,
|
|
&vmstate_spapr_cap_ibs,
|
|
&vmstate_spapr_cap_hpt_maxpagesize,
|
|
&vmstate_spapr_irq_map,
|
|
&vmstate_spapr_cap_nested_kvm_hv,
|
|
&vmstate_spapr_dtb,
|
|
&vmstate_spapr_cap_large_decr,
|
|
&vmstate_spapr_cap_ccf_assist,
|
|
&vmstate_spapr_cap_fwnmi,
|
|
&vmstate_spapr_fwnmi,
|
|
NULL
|
|
}
|
|
};
|
|
|
|
static int htab_save_setup(QEMUFile *f, void *opaque)
|
|
{
|
|
SpaprMachineState *spapr = opaque;
|
|
|
|
/* "Iteration" header */
|
|
if (!spapr->htab_shift) {
|
|
qemu_put_be32(f, -1);
|
|
} else {
|
|
qemu_put_be32(f, spapr->htab_shift);
|
|
}
|
|
|
|
if (spapr->htab) {
|
|
spapr->htab_save_index = 0;
|
|
spapr->htab_first_pass = true;
|
|
} else {
|
|
if (spapr->htab_shift) {
|
|
assert(kvm_enabled());
|
|
}
|
|
}
|
|
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
|
|
int chunkstart, int n_valid, int n_invalid)
|
|
{
|
|
qemu_put_be32(f, chunkstart);
|
|
qemu_put_be16(f, n_valid);
|
|
qemu_put_be16(f, n_invalid);
|
|
qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
|
|
HASH_PTE_SIZE_64 * n_valid);
|
|
}
|
|
|
|
static void htab_save_end_marker(QEMUFile *f)
|
|
{
|
|
qemu_put_be32(f, 0);
|
|
qemu_put_be16(f, 0);
|
|
qemu_put_be16(f, 0);
|
|
}
|
|
|
|
static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
|
|
int64_t max_ns)
|
|
{
|
|
bool has_timeout = max_ns != -1;
|
|
int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
|
|
int index = spapr->htab_save_index;
|
|
int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
|
|
|
|
assert(spapr->htab_first_pass);
|
|
|
|
do {
|
|
int chunkstart;
|
|
|
|
/* Consume invalid HPTEs */
|
|
while ((index < htabslots)
|
|
&& !HPTE_VALID(HPTE(spapr->htab, index))) {
|
|
CLEAN_HPTE(HPTE(spapr->htab, index));
|
|
index++;
|
|
}
|
|
|
|
/* Consume valid HPTEs */
|
|
chunkstart = index;
|
|
while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
|
|
&& HPTE_VALID(HPTE(spapr->htab, index))) {
|
|
CLEAN_HPTE(HPTE(spapr->htab, index));
|
|
index++;
|
|
}
|
|
|
|
if (index > chunkstart) {
|
|
int n_valid = index - chunkstart;
|
|
|
|
htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
|
|
|
|
if (has_timeout &&
|
|
(qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
|
|
break;
|
|
}
|
|
}
|
|
} while ((index < htabslots) && !qemu_file_rate_limit(f));
|
|
|
|
if (index >= htabslots) {
|
|
assert(index == htabslots);
|
|
index = 0;
|
|
spapr->htab_first_pass = false;
|
|
}
|
|
spapr->htab_save_index = index;
|
|
}
|
|
|
|
static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
|
|
int64_t max_ns)
|
|
{
|
|
bool final = max_ns < 0;
|
|
int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
|
|
int examined = 0, sent = 0;
|
|
int index = spapr->htab_save_index;
|
|
int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
|
|
|
|
assert(!spapr->htab_first_pass);
|
|
|
|
do {
|
|
int chunkstart, invalidstart;
|
|
|
|
/* Consume non-dirty HPTEs */
|
|
while ((index < htabslots)
|
|
&& !HPTE_DIRTY(HPTE(spapr->htab, index))) {
|
|
index++;
|
|
examined++;
|
|
}
|
|
|
|
chunkstart = index;
|
|
/* Consume valid dirty HPTEs */
|
|
while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
|
|
&& HPTE_DIRTY(HPTE(spapr->htab, index))
|
|
&& HPTE_VALID(HPTE(spapr->htab, index))) {
|
|
CLEAN_HPTE(HPTE(spapr->htab, index));
|
|
index++;
|
|
examined++;
|
|
}
|
|
|
|
invalidstart = index;
|
|
/* Consume invalid dirty HPTEs */
|
|
while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
|
|
&& HPTE_DIRTY(HPTE(spapr->htab, index))
|
|
&& !HPTE_VALID(HPTE(spapr->htab, index))) {
|
|
CLEAN_HPTE(HPTE(spapr->htab, index));
|
|
index++;
|
|
examined++;
|
|
}
|
|
|
|
if (index > chunkstart) {
|
|
int n_valid = invalidstart - chunkstart;
|
|
int n_invalid = index - invalidstart;
|
|
|
|
htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
|
|
sent += index - chunkstart;
|
|
|
|
if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (examined >= htabslots) {
|
|
break;
|
|
}
|
|
|
|
if (index >= htabslots) {
|
|
assert(index == htabslots);
|
|
index = 0;
|
|
}
|
|
} while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
|
|
|
|
if (index >= htabslots) {
|
|
assert(index == htabslots);
|
|
index = 0;
|
|
}
|
|
|
|
spapr->htab_save_index = index;
|
|
|
|
return (examined >= htabslots) && (sent == 0) ? 1 : 0;
|
|
}
|
|
|
|
#define MAX_ITERATION_NS 5000000 /* 5 ms */
|
|
#define MAX_KVM_BUF_SIZE 2048
|
|
|
|
static int htab_save_iterate(QEMUFile *f, void *opaque)
|
|
{
|
|
SpaprMachineState *spapr = opaque;
|
|
int fd;
|
|
int rc = 0;
|
|
|
|
/* Iteration header */
|
|
if (!spapr->htab_shift) {
|
|
qemu_put_be32(f, -1);
|
|
return 1;
|
|
} else {
|
|
qemu_put_be32(f, 0);
|
|
}
|
|
|
|
if (!spapr->htab) {
|
|
assert(kvm_enabled());
|
|
|
|
fd = get_htab_fd(spapr);
|
|
if (fd < 0) {
|
|
return fd;
|
|
}
|
|
|
|
rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
|
|
if (rc < 0) {
|
|
return rc;
|
|
}
|
|
} else if (spapr->htab_first_pass) {
|
|
htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
|
|
} else {
|
|
rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
|
|
}
|
|
|
|
htab_save_end_marker(f);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int htab_save_complete(QEMUFile *f, void *opaque)
|
|
{
|
|
SpaprMachineState *spapr = opaque;
|
|
int fd;
|
|
|
|
/* Iteration header */
|
|
if (!spapr->htab_shift) {
|
|
qemu_put_be32(f, -1);
|
|
return 0;
|
|
} else {
|
|
qemu_put_be32(f, 0);
|
|
}
|
|
|
|
if (!spapr->htab) {
|
|
int rc;
|
|
|
|
assert(kvm_enabled());
|
|
|
|
fd = get_htab_fd(spapr);
|
|
if (fd < 0) {
|
|
return fd;
|
|
}
|
|
|
|
rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
|
|
if (rc < 0) {
|
|
return rc;
|
|
}
|
|
} else {
|
|
if (spapr->htab_first_pass) {
|
|
htab_save_first_pass(f, spapr, -1);
|
|
}
|
|
htab_save_later_pass(f, spapr, -1);
|
|
}
|
|
|
|
/* End marker */
|
|
htab_save_end_marker(f);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int htab_load(QEMUFile *f, void *opaque, int version_id)
|
|
{
|
|
SpaprMachineState *spapr = opaque;
|
|
uint32_t section_hdr;
|
|
int fd = -1;
|
|
Error *local_err = NULL;
|
|
|
|
if (version_id < 1 || version_id > 1) {
|
|
error_report("htab_load() bad version");
|
|
return -EINVAL;
|
|
}
|
|
|
|
section_hdr = qemu_get_be32(f);
|
|
|
|
if (section_hdr == -1) {
|
|
spapr_free_hpt(spapr);
|
|
return 0;
|
|
}
|
|
|
|
if (section_hdr) {
|
|
/* First section gives the htab size */
|
|
spapr_reallocate_hpt(spapr, section_hdr, &local_err);
|
|
if (local_err) {
|
|
error_report_err(local_err);
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
if (!spapr->htab) {
|
|
assert(kvm_enabled());
|
|
|
|
fd = kvmppc_get_htab_fd(true, 0, &local_err);
|
|
if (fd < 0) {
|
|
error_report_err(local_err);
|
|
return fd;
|
|
}
|
|
}
|
|
|
|
while (true) {
|
|
uint32_t index;
|
|
uint16_t n_valid, n_invalid;
|
|
|
|
index = qemu_get_be32(f);
|
|
n_valid = qemu_get_be16(f);
|
|
n_invalid = qemu_get_be16(f);
|
|
|
|
if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
|
|
/* End of Stream */
|
|
break;
|
|
}
|
|
|
|
if ((index + n_valid + n_invalid) >
|
|
(HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
|
|
/* Bad index in stream */
|
|
error_report(
|
|
"htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
|
|
index, n_valid, n_invalid, spapr->htab_shift);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (spapr->htab) {
|
|
if (n_valid) {
|
|
qemu_get_buffer(f, HPTE(spapr->htab, index),
|
|
HASH_PTE_SIZE_64 * n_valid);
|
|
}
|
|
if (n_invalid) {
|
|
memset(HPTE(spapr->htab, index + n_valid), 0,
|
|
HASH_PTE_SIZE_64 * n_invalid);
|
|
}
|
|
} else {
|
|
int rc;
|
|
|
|
assert(fd >= 0);
|
|
|
|
rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
|
|
if (rc < 0) {
|
|
return rc;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!spapr->htab) {
|
|
assert(fd >= 0);
|
|
close(fd);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void htab_save_cleanup(void *opaque)
|
|
{
|
|
SpaprMachineState *spapr = opaque;
|
|
|
|
close_htab_fd(spapr);
|
|
}
|
|
|
|
static SaveVMHandlers savevm_htab_handlers = {
|
|
.save_setup = htab_save_setup,
|
|
.save_live_iterate = htab_save_iterate,
|
|
.save_live_complete_precopy = htab_save_complete,
|
|
.save_cleanup = htab_save_cleanup,
|
|
.load_state = htab_load,
|
|
};
|
|
|
|
static void spapr_boot_set(void *opaque, const char *boot_device,
|
|
Error **errp)
|
|
{
|
|
MachineState *machine = MACHINE(opaque);
|
|
machine->boot_order = g_strdup(boot_device);
|
|
}
|
|
|
|
static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
|
|
{
|
|
MachineState *machine = MACHINE(spapr);
|
|
uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
|
|
uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
|
|
int i;
|
|
|
|
for (i = 0; i < nr_lmbs; i++) {
|
|
uint64_t addr;
|
|
|
|
addr = i * lmb_size + machine->device_memory->base;
|
|
spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
|
|
addr / lmb_size);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If RAM size, maxmem size and individual node mem sizes aren't aligned
|
|
* to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
|
|
* since we can't support such unaligned sizes with DRCONF_MEMORY.
|
|
*/
|
|
static void spapr_validate_node_memory(MachineState *machine, Error **errp)
|
|
{
|
|
int i;
|
|
|
|
if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
|
|
error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
|
|
" is not aligned to %" PRIu64 " MiB",
|
|
machine->ram_size,
|
|
SPAPR_MEMORY_BLOCK_SIZE / MiB);
|
|
return;
|
|
}
|
|
|
|
if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
|
|
error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
|
|
" is not aligned to %" PRIu64 " MiB",
|
|
machine->ram_size,
|
|
SPAPR_MEMORY_BLOCK_SIZE / MiB);
|
|
return;
|
|
}
|
|
|
|
for (i = 0; i < machine->numa_state->num_nodes; i++) {
|
|
if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
|
|
error_setg(errp,
|
|
"Node %d memory size 0x%" PRIx64
|
|
" is not aligned to %" PRIu64 " MiB",
|
|
i, machine->numa_state->nodes[i].node_mem,
|
|
SPAPR_MEMORY_BLOCK_SIZE / MiB);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* find cpu slot in machine->possible_cpus by core_id */
|
|
static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
|
|
{
|
|
int index = id / ms->smp.threads;
|
|
|
|
if (index >= ms->possible_cpus->len) {
|
|
return NULL;
|
|
}
|
|
if (idx) {
|
|
*idx = index;
|
|
}
|
|
return &ms->possible_cpus->cpus[index];
|
|
}
|
|
|
|
static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
|
|
{
|
|
MachineState *ms = MACHINE(spapr);
|
|
SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
|
|
Error *local_err = NULL;
|
|
bool vsmt_user = !!spapr->vsmt;
|
|
int kvm_smt = kvmppc_smt_threads();
|
|
int ret;
|
|
unsigned int smp_threads = ms->smp.threads;
|
|
|
|
if (!kvm_enabled() && (smp_threads > 1)) {
|
|
error_setg(&local_err, "TCG cannot support more than 1 thread/core "
|
|
"on a pseries machine");
|
|
goto out;
|
|
}
|
|
if (!is_power_of_2(smp_threads)) {
|
|
error_setg(&local_err, "Cannot support %d threads/core on a pseries "
|
|
"machine because it must be a power of 2", smp_threads);
|
|
goto out;
|
|
}
|
|
|
|
/* Detemine the VSMT mode to use: */
|
|
if (vsmt_user) {
|
|
if (spapr->vsmt < smp_threads) {
|
|
error_setg(&local_err, "Cannot support VSMT mode %d"
|
|
" because it must be >= threads/core (%d)",
|
|
spapr->vsmt, smp_threads);
|
|
goto out;
|
|
}
|
|
/* In this case, spapr->vsmt has been set by the command line */
|
|
} else if (!smc->smp_threads_vsmt) {
|
|
/*
|
|
* Default VSMT value is tricky, because we need it to be as
|
|
* consistent as possible (for migration), but this requires
|
|
* changing it for at least some existing cases. We pick 8 as
|
|
* the value that we'd get with KVM on POWER8, the
|
|
* overwhelmingly common case in production systems.
|
|
*/
|
|
spapr->vsmt = MAX(8, smp_threads);
|
|
} else {
|
|
spapr->vsmt = smp_threads;
|
|
}
|
|
|
|
/* KVM: If necessary, set the SMT mode: */
|
|
if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
|
|
ret = kvmppc_set_smt_threads(spapr->vsmt);
|
|
if (ret) {
|
|
/* Looks like KVM isn't able to change VSMT mode */
|
|
error_setg(&local_err,
|
|
"Failed to set KVM's VSMT mode to %d (errno %d)",
|
|
spapr->vsmt, ret);
|
|
/* We can live with that if the default one is big enough
|
|
* for the number of threads, and a submultiple of the one
|
|
* we want. In this case we'll waste some vcpu ids, but
|
|
* behaviour will be correct */
|
|
if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
|
|
warn_report_err(local_err);
|
|
local_err = NULL;
|
|
goto out;
|
|
} else {
|
|
if (!vsmt_user) {
|
|
error_append_hint(&local_err,
|
|
"On PPC, a VM with %d threads/core"
|
|
" on a host with %d threads/core"
|
|
" requires the use of VSMT mode %d.\n",
|
|
smp_threads, kvm_smt, spapr->vsmt);
|
|
}
|
|
kvmppc_error_append_smt_possible_hint(&local_err);
|
|
goto out;
|
|
}
|
|
}
|
|
}
|
|
/* else TCG: nothing to do currently */
|
|
out:
|
|
error_propagate(errp, local_err);
|
|
}
|
|
|
|
static void spapr_init_cpus(SpaprMachineState *spapr)
|
|
{
|
|
MachineState *machine = MACHINE(spapr);
|
|
MachineClass *mc = MACHINE_GET_CLASS(machine);
|
|
SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
|
|
const char *type = spapr_get_cpu_core_type(machine->cpu_type);
|
|
const CPUArchIdList *possible_cpus;
|
|
unsigned int smp_cpus = machine->smp.cpus;
|
|
unsigned int smp_threads = machine->smp.threads;
|
|
unsigned int max_cpus = machine->smp.max_cpus;
|
|
int boot_cores_nr = smp_cpus / smp_threads;
|
|
int i;
|
|
|
|
possible_cpus = mc->possible_cpu_arch_ids(machine);
|
|
if (mc->has_hotpluggable_cpus) {
|
|
if (smp_cpus % smp_threads) {
|
|
error_report("smp_cpus (%u) must be multiple of threads (%u)",
|
|
smp_cpus, smp_threads);
|
|
exit(1);
|
|
}
|
|
if (max_cpus % smp_threads) {
|
|
error_report("max_cpus (%u) must be multiple of threads (%u)",
|
|
max_cpus, smp_threads);
|
|
exit(1);
|
|
}
|
|
} else {
|
|
if (max_cpus != smp_cpus) {
|
|
error_report("This machine version does not support CPU hotplug");
|
|
exit(1);
|
|
}
|
|
boot_cores_nr = possible_cpus->len;
|
|
}
|
|
|
|
if (smc->pre_2_10_has_unused_icps) {
|
|
int i;
|
|
|
|
for (i = 0; i < spapr_max_server_number(spapr); i++) {
|
|
/* Dummy entries get deregistered when real ICPState objects
|
|
* are registered during CPU core hotplug.
|
|
*/
|
|
pre_2_10_vmstate_register_dummy_icp(i);
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < possible_cpus->len; i++) {
|
|
int core_id = i * smp_threads;
|
|
|
|
if (mc->has_hotpluggable_cpus) {
|
|
spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
|
|
spapr_vcpu_id(spapr, core_id));
|
|
}
|
|
|
|
if (i < boot_cores_nr) {
|
|
Object *core = object_new(type);
|
|
int nr_threads = smp_threads;
|
|
|
|
/* Handle the partially filled core for older machine types */
|
|
if ((i + 1) * smp_threads >= smp_cpus) {
|
|
nr_threads = smp_cpus - i * smp_threads;
|
|
}
|
|
|
|
object_property_set_int(core, nr_threads, "nr-threads",
|
|
&error_fatal);
|
|
object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
|
|
&error_fatal);
|
|
object_property_set_bool(core, true, "realized", &error_fatal);
|
|
|
|
object_unref(core);
|
|
}
|
|
}
|
|
}
|
|
|
|
static PCIHostState *spapr_create_default_phb(void)
|
|
{
|
|
DeviceState *dev;
|
|
|
|
dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
|
|
qdev_prop_set_uint32(dev, "index", 0);
|
|
qdev_init_nofail(dev);
|
|
|
|
return PCI_HOST_BRIDGE(dev);
|
|
}
|
|
|
|
static hwaddr spapr_rma_size(SpaprMachineState *spapr, Error **errp)
|
|
{
|
|
MachineState *machine = MACHINE(spapr);
|
|
SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
|
|
hwaddr rma_size = machine->ram_size;
|
|
hwaddr node0_size = spapr_node0_size(machine);
|
|
|
|
/* RMA has to fit in the first NUMA node */
|
|
rma_size = MIN(rma_size, node0_size);
|
|
|
|
/*
|
|
* VRMA access is via a special 1TiB SLB mapping, so the RMA can
|
|
* never exceed that
|
|
*/
|
|
rma_size = MIN(rma_size, 1 * TiB);
|
|
|
|
/*
|
|
* Clamp the RMA size based on machine type. This is for
|
|
* migration compatibility with older qemu versions, which limited
|
|
* the RMA size for complicated and mostly bad reasons.
|
|
*/
|
|
if (smc->rma_limit) {
|
|
rma_size = MIN(rma_size, smc->rma_limit);
|
|
}
|
|
|
|
if (rma_size < MIN_RMA_SLOF) {
|
|
error_setg(errp,
|
|
"pSeries SLOF firmware requires >= %" HWADDR_PRIx
|
|
"ldMiB guest RMA (Real Mode Area memory)",
|
|
MIN_RMA_SLOF / MiB);
|
|
return 0;
|
|
}
|
|
|
|
return rma_size;
|
|
}
|
|
|
|
/* pSeries LPAR / sPAPR hardware init */
|
|
static void spapr_machine_init(MachineState *machine)
|
|
{
|
|
SpaprMachineState *spapr = SPAPR_MACHINE(machine);
|
|
SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
|
|
MachineClass *mc = MACHINE_GET_CLASS(machine);
|
|
const char *kernel_filename = machine->kernel_filename;
|
|
const char *initrd_filename = machine->initrd_filename;
|
|
PCIHostState *phb;
|
|
int i;
|
|
MemoryRegion *sysmem = get_system_memory();
|
|
long load_limit, fw_size;
|
|
char *filename;
|
|
Error *resize_hpt_err = NULL;
|
|
|
|
msi_nonbroken = true;
|
|
|
|
QLIST_INIT(&spapr->phbs);
|
|
QTAILQ_INIT(&spapr->pending_dimm_unplugs);
|
|
|
|
/* Determine capabilities to run with */
|
|
spapr_caps_init(spapr);
|
|
|
|
kvmppc_check_papr_resize_hpt(&resize_hpt_err);
|
|
if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
|
|
/*
|
|
* If the user explicitly requested a mode we should either
|
|
* supply it, or fail completely (which we do below). But if
|
|
* it's not set explicitly, we reset our mode to something
|
|
* that works
|
|
*/
|
|
if (resize_hpt_err) {
|
|
spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
|
|
error_free(resize_hpt_err);
|
|
resize_hpt_err = NULL;
|
|
} else {
|
|
spapr->resize_hpt = smc->resize_hpt_default;
|
|
}
|
|
}
|
|
|
|
assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
|
|
|
|
if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
|
|
/*
|
|
* User requested HPT resize, but this host can't supply it. Bail out
|
|
*/
|
|
error_report_err(resize_hpt_err);
|
|
exit(1);
|
|
}
|
|
|
|
spapr->rma_size = spapr_rma_size(spapr, &error_fatal);
|
|
|
|
/* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
|
|
load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
|
|
|
|
/*
|
|
* VSMT must be set in order to be able to compute VCPU ids, ie to
|
|
* call spapr_max_server_number() or spapr_vcpu_id().
|
|
*/
|
|
spapr_set_vsmt_mode(spapr, &error_fatal);
|
|
|
|
/* Set up Interrupt Controller before we create the VCPUs */
|
|
spapr_irq_init(spapr, &error_fatal);
|
|
|
|
/* Set up containers for ibm,client-architecture-support negotiated options
|
|
*/
|
|
spapr->ov5 = spapr_ovec_new();
|
|
spapr->ov5_cas = spapr_ovec_new();
|
|
|
|
if (smc->dr_lmb_enabled) {
|
|
spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
|
|
spapr_validate_node_memory(machine, &error_fatal);
|
|
}
|
|
|
|
spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
|
|
|
|
/* advertise support for dedicated HP event source to guests */
|
|
if (spapr->use_hotplug_event_source) {
|
|
spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
|
|
}
|
|
|
|
/* advertise support for HPT resizing */
|
|
if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
|
|
spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
|
|
}
|
|
|
|
/* advertise support for ibm,dyamic-memory-v2 */
|
|
spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
|
|
|
|
/* advertise XIVE on POWER9 machines */
|
|
if (spapr->irq->xive) {
|
|
spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
|
|
}
|
|
|
|
/* init CPUs */
|
|
spapr_init_cpus(spapr);
|
|
|
|
/*
|
|
* check we don't have a memory-less/cpu-less NUMA node
|
|
* Firmware relies on the existing memory/cpu topology to provide the
|
|
* NUMA topology to the kernel.
|
|
* And the linux kernel needs to know the NUMA topology at start
|
|
* to be able to hotplug CPUs later.
|
|
*/
|
|
if (machine->numa_state->num_nodes) {
|
|
for (i = 0; i < machine->numa_state->num_nodes; ++i) {
|
|
/* check for memory-less node */
|
|
if (machine->numa_state->nodes[i].node_mem == 0) {
|
|
CPUState *cs;
|
|
int found = 0;
|
|
/* check for cpu-less node */
|
|
CPU_FOREACH(cs) {
|
|
PowerPCCPU *cpu = POWERPC_CPU(cs);
|
|
if (cpu->node_id == i) {
|
|
found = 1;
|
|
break;
|
|
}
|
|
}
|
|
/* memory-less and cpu-less node */
|
|
if (!found) {
|
|
error_report(
|
|
"Memory-less/cpu-less nodes are not supported (node %d)",
|
|
i);
|
|
exit(1);
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
/*
|
|
* NVLink2-connected GPU RAM needs to be placed on a separate NUMA node.
|
|
* We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is
|
|
* called from vPHB reset handler so we initialize the counter here.
|
|
* If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM
|
|
* must be equally distant from any other node.
|
|
* The final value of spapr->gpu_numa_id is going to be written to
|
|
* max-associativity-domains in spapr_build_fdt().
|
|
*/
|
|
spapr->gpu_numa_id = MAX(1, machine->numa_state->num_nodes);
|
|
|
|
if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
|
|
ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
|
|
spapr->max_compat_pvr)) {
|
|
spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_300);
|
|
/* KVM and TCG always allow GTSE with radix... */
|
|
spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
|
|
}
|
|
/* ... but not with hash (currently). */
|
|
|
|
if (kvm_enabled()) {
|
|
/* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
|
|
kvmppc_enable_logical_ci_hcalls();
|
|
kvmppc_enable_set_mode_hcall();
|
|
|
|
/* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
|
|
kvmppc_enable_clear_ref_mod_hcalls();
|
|
|
|
/* Enable H_PAGE_INIT */
|
|
kvmppc_enable_h_page_init();
|
|
}
|
|
|
|
/* map RAM */
|
|
memory_region_add_subregion(sysmem, 0, machine->ram);
|
|
|
|
/* always allocate the device memory information */
|
|
machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
|
|
|
|
/* initialize hotplug memory address space */
|
|
if (machine->ram_size < machine->maxram_size) {
|
|
ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
|
|
/*
|
|
* Limit the number of hotpluggable memory slots to half the number
|
|
* slots that KVM supports, leaving the other half for PCI and other
|
|
* devices. However ensure that number of slots doesn't drop below 32.
|
|
*/
|
|
int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
|
|
SPAPR_MAX_RAM_SLOTS;
|
|
|
|
if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
|
|
max_memslots = SPAPR_MAX_RAM_SLOTS;
|
|
}
|
|
if (machine->ram_slots > max_memslots) {
|
|
error_report("Specified number of memory slots %"
|
|
PRIu64" exceeds max supported %d",
|
|
machine->ram_slots, max_memslots);
|
|
exit(1);
|
|
}
|
|
|
|
machine->device_memory->base = ROUND_UP(machine->ram_size,
|
|
SPAPR_DEVICE_MEM_ALIGN);
|
|
memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
|
|
"device-memory", device_mem_size);
|
|
memory_region_add_subregion(sysmem, machine->device_memory->base,
|
|
&machine->device_memory->mr);
|
|
}
|
|
|
|
if (smc->dr_lmb_enabled) {
|
|
spapr_create_lmb_dr_connectors(spapr);
|
|
}
|
|
|
|
if (spapr_get_cap(spapr, SPAPR_CAP_FWNMI) == SPAPR_CAP_ON) {
|
|
/* Create the error string for live migration blocker */
|
|
error_setg(&spapr->fwnmi_migration_blocker,
|
|
"A machine check is being handled during migration. The handler"
|
|
"may run and log hardware error on the destination");
|
|
}
|
|
|
|
if (mc->nvdimm_supported) {
|
|
spapr_create_nvdimm_dr_connectors(spapr);
|
|
}
|
|
|
|
/* Set up RTAS event infrastructure */
|
|
spapr_events_init(spapr);
|
|
|
|
/* Set up the RTC RTAS interfaces */
|
|
spapr_rtc_create(spapr);
|
|
|
|
/* Set up VIO bus */
|
|
spapr->vio_bus = spapr_vio_bus_init();
|
|
|
|
for (i = 0; i < serial_max_hds(); i++) {
|
|
if (serial_hd(i)) {
|
|
spapr_vty_create(spapr->vio_bus, serial_hd(i));
|
|
}
|
|
}
|
|
|
|
/* We always have at least the nvram device on VIO */
|
|
spapr_create_nvram(spapr);
|
|
|
|
/*
|
|
* Setup hotplug / dynamic-reconfiguration connectors. top-level
|
|
* connectors (described in root DT node's "ibm,drc-types" property)
|
|
* are pre-initialized here. additional child connectors (such as
|
|
* connectors for a PHBs PCI slots) are added as needed during their
|
|
* parent's realization.
|
|
*/
|
|
if (smc->dr_phb_enabled) {
|
|
for (i = 0; i < SPAPR_MAX_PHBS; i++) {
|
|
spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
|
|
}
|
|
}
|
|
|
|
/* Set up PCI */
|
|
spapr_pci_rtas_init();
|
|
|
|
phb = spapr_create_default_phb();
|
|
|
|
for (i = 0; i < nb_nics; i++) {
|
|
NICInfo *nd = &nd_table[i];
|
|
|
|
if (!nd->model) {
|
|
nd->model = g_strdup("spapr-vlan");
|
|
}
|
|
|
|
if (g_str_equal(nd->model, "spapr-vlan") ||
|
|
g_str_equal(nd->model, "ibmveth")) {
|
|
spapr_vlan_create(spapr->vio_bus, nd);
|
|
} else {
|
|
pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
|
|
}
|
|
}
|
|
|
|
for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
|
|
spapr_vscsi_create(spapr->vio_bus);
|
|
}
|
|
|
|
/* Graphics */
|
|
if (spapr_vga_init(phb->bus, &error_fatal)) {
|
|
spapr->has_graphics = true;
|
|
machine->usb |= defaults_enabled() && !machine->usb_disabled;
|
|
}
|
|
|
|
if (machine->usb) {
|
|
if (smc->use_ohci_by_default) {
|
|
pci_create_simple(phb->bus, -1, "pci-ohci");
|
|
} else {
|
|
pci_create_simple(phb->bus, -1, "nec-usb-xhci");
|
|
}
|
|
|
|
if (spapr->has_graphics) {
|
|
USBBus *usb_bus = usb_bus_find(-1);
|
|
|
|
usb_create_simple(usb_bus, "usb-kbd");
|
|
usb_create_simple(usb_bus, "usb-mouse");
|
|
}
|
|
}
|
|
|
|
if (kernel_filename) {
|
|
uint64_t lowaddr = 0;
|
|
|
|
spapr->kernel_size = load_elf(kernel_filename, NULL,
|
|
translate_kernel_address, spapr,
|
|
NULL, &lowaddr, NULL, NULL, 1,
|
|
PPC_ELF_MACHINE, 0, 0);
|
|
if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
|
|
spapr->kernel_size = load_elf(kernel_filename, NULL,
|
|
translate_kernel_address, spapr, NULL,
|
|
&lowaddr, NULL, NULL, 0,
|
|
PPC_ELF_MACHINE,
|
|
0, 0);
|
|
spapr->kernel_le = spapr->kernel_size > 0;
|
|
}
|
|
if (spapr->kernel_size < 0) {
|
|
error_report("error loading %s: %s", kernel_filename,
|
|
load_elf_strerror(spapr->kernel_size));
|
|
exit(1);
|
|
}
|
|
|
|
/* load initrd */
|
|
if (initrd_filename) {
|
|
/* Try to locate the initrd in the gap between the kernel
|
|
* and the firmware. Add a bit of space just in case
|
|
*/
|
|
spapr->initrd_base = (spapr->kernel_addr + spapr->kernel_size
|
|
+ 0x1ffff) & ~0xffff;
|
|
spapr->initrd_size = load_image_targphys(initrd_filename,
|
|
spapr->initrd_base,
|
|
load_limit
|
|
- spapr->initrd_base);
|
|
if (spapr->initrd_size < 0) {
|
|
error_report("could not load initial ram disk '%s'",
|
|
initrd_filename);
|
|
exit(1);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (bios_name == NULL) {
|
|
bios_name = FW_FILE_NAME;
|
|
}
|
|
filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
|
|
if (!filename) {
|
|
error_report("Could not find LPAR firmware '%s'", bios_name);
|
|
exit(1);
|
|
}
|
|
fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
|
|
if (fw_size <= 0) {
|
|
error_report("Could not load LPAR firmware '%s'", filename);
|
|
exit(1);
|
|
}
|
|
g_free(filename);
|
|
|
|
/* FIXME: Should register things through the MachineState's qdev
|
|
* interface, this is a legacy from the sPAPREnvironment structure
|
|
* which predated MachineState but had a similar function */
|
|
vmstate_register(NULL, 0, &vmstate_spapr, spapr);
|
|
register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY, 1,
|
|
&savevm_htab_handlers, spapr);
|
|
|
|
qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine),
|
|
&error_fatal);
|
|
|
|
qemu_register_boot_set(spapr_boot_set, spapr);
|
|
|
|
/*
|
|
* Nothing needs to be done to resume a suspended guest because
|
|
* suspending does not change the machine state, so no need for
|
|
* a ->wakeup method.
|
|
*/
|
|
qemu_register_wakeup_support();
|
|
|
|
if (kvm_enabled()) {
|
|
/* to stop and start vmclock */
|
|
qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
|
|
&spapr->tb);
|
|
|
|
kvmppc_spapr_enable_inkernel_multitce();
|
|
}
|
|
|
|
qemu_cond_init(&spapr->fwnmi_machine_check_interlock_cond);
|
|
}
|
|
|
|
static int spapr_kvm_type(MachineState *machine, const char *vm_type)
|
|
{
|
|
if (!vm_type) {
|
|
return 0;
|
|
}
|
|
|
|
if (!strcmp(vm_type, "HV")) {
|
|
return 1;
|
|
}
|
|
|
|
if (!strcmp(vm_type, "PR")) {
|
|
return 2;
|
|
}
|
|
|
|
error_report("Unknown kvm-type specified '%s'", vm_type);
|
|
exit(1);
|
|
}
|
|
|
|
/*
|
|
* Implementation of an interface to adjust firmware path
|
|
* for the bootindex property handling.
|
|
*/
|
|
static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
|
|
DeviceState *dev)
|
|
{
|
|
#define CAST(type, obj, name) \
|
|
((type *)object_dynamic_cast(OBJECT(obj), (name)))
|
|
SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
|
|
SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
|
|
VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
|
|
|
|
if (d) {
|
|
void *spapr = CAST(void, bus->parent, "spapr-vscsi");
|
|
VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
|
|
USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
|
|
|
|
if (spapr) {
|
|
/*
|
|
* Replace "channel@0/disk@0,0" with "disk@8000000000000000":
|
|
* In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
|
|
* 0x8000 | (target << 8) | (bus << 5) | lun
|
|
* (see the "Logical unit addressing format" table in SAM5)
|
|
*/
|
|
unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
|
|
return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
|
|
(uint64_t)id << 48);
|
|
} else if (virtio) {
|
|
/*
|
|
* We use SRP luns of the form 01000000 | (target << 8) | lun
|
|
* in the top 32 bits of the 64-bit LUN
|
|
* Note: the quote above is from SLOF and it is wrong,
|
|
* the actual binding is:
|
|
* swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
|
|
*/
|
|
unsigned id = 0x1000000 | (d->id << 16) | d->lun;
|
|
if (d->lun >= 256) {
|
|
/* Use the LUN "flat space addressing method" */
|
|
id |= 0x4000;
|
|
}
|
|
return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
|
|
(uint64_t)id << 32);
|
|
} else if (usb) {
|
|
/*
|
|
* We use SRP luns of the form 01000000 | (usb-port << 16) | lun
|
|
* in the top 32 bits of the 64-bit LUN
|
|
*/
|
|
unsigned usb_port = atoi(usb->port->path);
|
|
unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
|
|
return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
|
|
(uint64_t)id << 32);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* SLOF probes the USB devices, and if it recognizes that the device is a
|
|
* storage device, it changes its name to "storage" instead of "usb-host",
|
|
* and additionally adds a child node for the SCSI LUN, so the correct
|
|
* boot path in SLOF is something like .../storage@1/disk@xxx" instead.
|
|
*/
|
|
if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
|
|
USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
|
|
if (usb_host_dev_is_scsi_storage(usbdev)) {
|
|
return g_strdup_printf("storage@%s/disk", usbdev->port->path);
|
|
}
|
|
}
|
|
|
|
if (phb) {
|
|
/* Replace "pci" with "pci@800000020000000" */
|
|
return g_strdup_printf("pci@%"PRIX64, phb->buid);
|
|
}
|
|
|
|
if (vsc) {
|
|
/* Same logic as virtio above */
|
|
unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
|
|
return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
|
|
}
|
|
|
|
if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
|
|
/* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
|
|
PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
|
|
return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static char *spapr_get_kvm_type(Object *obj, Error **errp)
|
|
{
|
|
SpaprMachineState *spapr = SPAPR_MACHINE(obj);
|
|
|
|
return g_strdup(spapr->kvm_type);
|
|
}
|
|
|
|
static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
|
|
{
|
|
SpaprMachineState *spapr = SPAPR_MACHINE(obj);
|
|
|
|
g_free(spapr->kvm_type);
|
|
spapr->kvm_type = g_strdup(value);
|
|
}
|
|
|
|
static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
|
|
{
|
|
SpaprMachineState *spapr = SPAPR_MACHINE(obj);
|
|
|
|
return spapr->use_hotplug_event_source;
|
|
}
|
|
|
|
static void spapr_set_modern_hotplug_events(Object *obj, bool value,
|
|
Error **errp)
|
|
{
|
|
SpaprMachineState *spapr = SPAPR_MACHINE(obj);
|
|
|
|
spapr->use_hotplug_event_source = value;
|
|
}
|
|
|
|
static bool spapr_get_msix_emulation(Object *obj, Error **errp)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
static char *spapr_get_resize_hpt(Object *obj, Error **errp)
|
|
{
|
|
SpaprMachineState *spapr = SPAPR_MACHINE(obj);
|
|
|
|
switch (spapr->resize_hpt) {
|
|
case SPAPR_RESIZE_HPT_DEFAULT:
|
|
return g_strdup("default");
|
|
case SPAPR_RESIZE_HPT_DISABLED:
|
|
return g_strdup("disabled");
|
|
case SPAPR_RESIZE_HPT_ENABLED:
|
|
return g_strdup("enabled");
|
|
case SPAPR_RESIZE_HPT_REQUIRED:
|
|
return g_strdup("required");
|
|
}
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
|
|
{
|
|
SpaprMachineState *spapr = SPAPR_MACHINE(obj);
|
|
|
|
if (strcmp(value, "default") == 0) {
|
|
spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
|
|
} else if (strcmp(value, "disabled") == 0) {
|
|
spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
|
|
} else if (strcmp(value, "enabled") == 0) {
|
|
spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
|
|
} else if (strcmp(value, "required") == 0) {
|
|
spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
|
|
} else {
|
|
error_setg(errp, "Bad value for \"resize-hpt\" property");
|
|
}
|
|
}
|
|
|
|
static char *spapr_get_ic_mode(Object *obj, Error **errp)
|
|
{
|
|
SpaprMachineState *spapr = SPAPR_MACHINE(obj);
|
|
|
|
if (spapr->irq == &spapr_irq_xics_legacy) {
|
|
return g_strdup("legacy");
|
|
} else if (spapr->irq == &spapr_irq_xics) {
|
|
return g_strdup("xics");
|
|
} else if (spapr->irq == &spapr_irq_xive) {
|
|
return g_strdup("xive");
|
|
} else if (spapr->irq == &spapr_irq_dual) {
|
|
return g_strdup("dual");
|
|
}
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
|
|
{
|
|
SpaprMachineState *spapr = SPAPR_MACHINE(obj);
|
|
|
|
if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
|
|
error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
|
|
return;
|
|
}
|
|
|
|
/* The legacy IRQ backend can not be set */
|
|
if (strcmp(value, "xics") == 0) {
|
|
spapr->irq = &spapr_irq_xics;
|
|
} else if (strcmp(value, "xive") == 0) {
|
|
spapr->irq = &spapr_irq_xive;
|
|
} else if (strcmp(value, "dual") == 0) {
|
|
spapr->irq = &spapr_irq_dual;
|
|
} else {
|
|
error_setg(errp, "Bad value for \"ic-mode\" property");
|
|
}
|
|
}
|
|
|
|
static char *spapr_get_host_model(Object *obj, Error **errp)
|
|
{
|
|
SpaprMachineState *spapr = SPAPR_MACHINE(obj);
|
|
|
|
return g_strdup(spapr->host_model);
|
|
}
|
|
|
|
static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
|
|
{
|
|
SpaprMachineState *spapr = SPAPR_MACHINE(obj);
|
|
|
|
g_free(spapr->host_model);
|
|
spapr->host_model = g_strdup(value);
|
|
}
|
|
|
|
static char *spapr_get_host_serial(Object *obj, Error **errp)
|
|
{
|
|
SpaprMachineState *spapr = SPAPR_MACHINE(obj);
|
|
|
|
return g_strdup(spapr->host_serial);
|
|
}
|
|
|
|
static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
|
|
{
|
|
SpaprMachineState *spapr = SPAPR_MACHINE(obj);
|
|
|
|
g_free(spapr->host_serial);
|
|
spapr->host_serial = g_strdup(value);
|
|
}
|
|
|
|
static void spapr_instance_init(Object *obj)
|
|
{
|
|
SpaprMachineState *spapr = SPAPR_MACHINE(obj);
|
|
SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
|
|
|
|
spapr->htab_fd = -1;
|
|
spapr->use_hotplug_event_source = true;
|
|
object_property_add_str(obj, "kvm-type",
|
|
spapr_get_kvm_type, spapr_set_kvm_type);
|
|
object_property_set_description(obj, "kvm-type",
|
|
"Specifies the KVM virtualization mode (HV, PR)");
|
|
object_property_add_bool(obj, "modern-hotplug-events",
|
|
spapr_get_modern_hotplug_events,
|
|
spapr_set_modern_hotplug_events);
|
|
object_property_set_description(obj, "modern-hotplug-events",
|
|
"Use dedicated hotplug event mechanism in"
|
|
" place of standard EPOW events when possible"
|
|
" (required for memory hot-unplug support)");
|
|
ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
|
|
"Maximum permitted CPU compatibility mode");
|
|
|
|
object_property_add_str(obj, "resize-hpt",
|
|
spapr_get_resize_hpt, spapr_set_resize_hpt);
|
|
object_property_set_description(obj, "resize-hpt",
|
|
"Resizing of the Hash Page Table (enabled, disabled, required)");
|
|
object_property_add_uint32_ptr(obj, "vsmt",
|
|
&spapr->vsmt, OBJ_PROP_FLAG_READWRITE);
|
|
object_property_set_description(obj, "vsmt",
|
|
"Virtual SMT: KVM behaves as if this were"
|
|
" the host's SMT mode");
|
|
|
|
object_property_add_bool(obj, "vfio-no-msix-emulation",
|
|
spapr_get_msix_emulation, NULL);
|
|
|
|
object_property_add_uint64_ptr(obj, "kernel-addr",
|
|
&spapr->kernel_addr, OBJ_PROP_FLAG_READWRITE);
|
|
object_property_set_description(obj, "kernel-addr",
|
|
stringify(KERNEL_LOAD_ADDR)
|
|
" for -kernel is the default");
|
|
spapr->kernel_addr = KERNEL_LOAD_ADDR;
|
|
/* The machine class defines the default interrupt controller mode */
|
|
spapr->irq = smc->irq;
|
|
object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
|
|
spapr_set_ic_mode);
|
|
object_property_set_description(obj, "ic-mode",
|
|
"Specifies the interrupt controller mode (xics, xive, dual)");
|
|
|
|
object_property_add_str(obj, "host-model",
|
|
spapr_get_host_model, spapr_set_host_model);
|
|
object_property_set_description(obj, "host-model",
|
|
"Host model to advertise in guest device tree");
|
|
object_property_add_str(obj, "host-serial",
|
|
spapr_get_host_serial, spapr_set_host_serial);
|
|
object_property_set_description(obj, "host-serial",
|
|
"Host serial number to advertise in guest device tree");
|
|
}
|
|
|
|
static void spapr_machine_finalizefn(Object *obj)
|
|
{
|
|
SpaprMachineState *spapr = SPAPR_MACHINE(obj);
|
|
|
|
g_free(spapr->kvm_type);
|
|
}
|
|
|
|
void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
|
|
{
|
|
SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
|
|
PowerPCCPU *cpu = POWERPC_CPU(cs);
|
|
CPUPPCState *env = &cpu->env;
|
|
|
|
cpu_synchronize_state(cs);
|
|
/* If FWNMI is inactive, addr will be -1, which will deliver to 0x100 */
|
|
if (spapr->fwnmi_system_reset_addr != -1) {
|
|
uint64_t rtas_addr, addr;
|
|
|
|
/* get rtas addr from fdt */
|
|
rtas_addr = spapr_get_rtas_addr();
|
|
if (!rtas_addr) {
|
|
qemu_system_guest_panicked(NULL);
|
|
return;
|
|
}
|
|
|
|
addr = rtas_addr + RTAS_ERROR_LOG_MAX + cs->cpu_index * sizeof(uint64_t)*2;
|
|
stq_be_phys(&address_space_memory, addr, env->gpr[3]);
|
|
stq_be_phys(&address_space_memory, addr + sizeof(uint64_t), 0);
|
|
env->gpr[3] = addr;
|
|
}
|
|
ppc_cpu_do_system_reset(cs);
|
|
if (spapr->fwnmi_system_reset_addr != -1) {
|
|
env->nip = spapr->fwnmi_system_reset_addr;
|
|
}
|
|
}
|
|
|
|
static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
|
|
{
|
|
CPUState *cs;
|
|
|
|
CPU_FOREACH(cs) {
|
|
async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
|
|
}
|
|
}
|
|
|
|
int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
|
|
void *fdt, int *fdt_start_offset, Error **errp)
|
|
{
|
|
uint64_t addr;
|
|
uint32_t node;
|
|
|
|
addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
|
|
node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
|
|
&error_abort);
|
|
*fdt_start_offset = spapr_dt_memory_node(fdt, node, addr,
|
|
SPAPR_MEMORY_BLOCK_SIZE);
|
|
return 0;
|
|
}
|
|
|
|
static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
|
|
bool dedicated_hp_event_source, Error **errp)
|
|
{
|
|
SpaprDrc *drc;
|
|
uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
|
|
int i;
|
|
uint64_t addr = addr_start;
|
|
bool hotplugged = spapr_drc_hotplugged(dev);
|
|
Error *local_err = NULL;
|
|
|
|
for (i = 0; i < nr_lmbs; i++) {
|
|
drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
|
|
addr / SPAPR_MEMORY_BLOCK_SIZE);
|
|
g_assert(drc);
|
|
|
|
spapr_drc_attach(drc, dev, &local_err);
|
|
if (local_err) {
|
|
while (addr > addr_start) {
|
|
addr -= SPAPR_MEMORY_BLOCK_SIZE;
|
|
drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
|
|
addr / SPAPR_MEMORY_BLOCK_SIZE);
|
|
spapr_drc_detach(drc);
|
|
}
|
|
error_propagate(errp, local_err);
|
|
return;
|
|
}
|
|
if (!hotplugged) {
|
|
spapr_drc_reset(drc);
|
|
}
|
|
addr += SPAPR_MEMORY_BLOCK_SIZE;
|
|
}
|
|
/* send hotplug notification to the
|
|
* guest only in case of hotplugged memory
|
|
*/
|
|
if (hotplugged) {
|
|
if (dedicated_hp_event_source) {
|
|
drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
|
|
addr_start / SPAPR_MEMORY_BLOCK_SIZE);
|
|
spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
|
|
nr_lmbs,
|
|
spapr_drc_index(drc));
|
|
} else {
|
|
spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
|
|
nr_lmbs);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
|
|
Error **errp)
|
|
{
|
|
Error *local_err = NULL;
|
|
SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
|
|
PCDIMMDevice *dimm = PC_DIMM(dev);
|
|
uint64_t size, addr, slot;
|
|
bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
|
|
|
|
size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
|
|
|
|
pc_dimm_plug(dimm, MACHINE(ms), &local_err);
|
|
if (local_err) {
|
|
goto out;
|
|
}
|
|
|
|
if (!is_nvdimm) {
|
|
addr = object_property_get_uint(OBJECT(dimm),
|
|
PC_DIMM_ADDR_PROP, &local_err);
|
|
if (local_err) {
|
|
goto out_unplug;
|
|
}
|
|
spapr_add_lmbs(dev, addr, size,
|
|
spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
|
|
&local_err);
|
|
} else {
|
|
slot = object_property_get_uint(OBJECT(dimm),
|
|
PC_DIMM_SLOT_PROP, &local_err);
|
|
if (local_err) {
|
|
goto out_unplug;
|
|
}
|
|
spapr_add_nvdimm(dev, slot, &local_err);
|
|
}
|
|
|
|
if (local_err) {
|
|
goto out_unplug;
|
|
}
|
|
|
|
return;
|
|
|
|
out_unplug:
|
|
pc_dimm_unplug(dimm, MACHINE(ms));
|
|
out:
|
|
error_propagate(errp, local_err);
|
|
}
|
|
|
|
static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
|
|
Error **errp)
|
|
{
|
|
const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
|
|
SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
|
|
const MachineClass *mc = MACHINE_CLASS(smc);
|
|
bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
|
|
PCDIMMDevice *dimm = PC_DIMM(dev);
|
|
Error *local_err = NULL;
|
|
uint64_t size;
|
|
Object *memdev;
|
|
hwaddr pagesize;
|
|
|
|
if (!smc->dr_lmb_enabled) {
|
|
error_setg(errp, "Memory hotplug not supported for this machine");
|
|
return;
|
|
}
|
|
|
|
if (is_nvdimm && !mc->nvdimm_supported) {
|
|
error_setg(errp, "NVDIMM hotplug not supported for this machine");
|
|
return;
|
|
}
|
|
|
|
size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
|
|
if (local_err) {
|
|
error_propagate(errp, local_err);
|
|
return;
|
|
}
|
|
|
|
if (!is_nvdimm && size % SPAPR_MEMORY_BLOCK_SIZE) {
|
|
error_setg(errp, "Hotplugged memory size must be a multiple of "
|
|
"%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
|
|
return;
|
|
} else if (is_nvdimm) {
|
|
spapr_nvdimm_validate_opts(NVDIMM(dev), size, &local_err);
|
|
if (local_err) {
|
|
error_propagate(errp, local_err);
|
|
return;
|
|
}
|
|
}
|
|
|
|
memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
|
|
&error_abort);
|
|
pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
|
|
spapr_check_pagesize(spapr, pagesize, &local_err);
|
|
if (local_err) {
|
|
error_propagate(errp, local_err);
|
|
return;
|
|
}
|
|
|
|
pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
|
|
}
|
|
|
|
struct SpaprDimmState {
|
|
PCDIMMDevice *dimm;
|
|
uint32_t nr_lmbs;
|
|
QTAILQ_ENTRY(SpaprDimmState) next;
|
|
};
|
|
|
|
static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
|
|
PCDIMMDevice *dimm)
|
|
{
|
|
SpaprDimmState *dimm_state = NULL;
|
|
|
|
QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
|
|
if (dimm_state->dimm == dimm) {
|
|
break;
|
|
}
|
|
}
|
|
return dimm_state;
|
|
}
|
|
|
|
static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
|
|
uint32_t nr_lmbs,
|
|
PCDIMMDevice *dimm)
|
|
{
|
|
SpaprDimmState *ds = NULL;
|
|
|
|
/*
|
|
* If this request is for a DIMM whose removal had failed earlier
|
|
* (due to guest's refusal to remove the LMBs), we would have this
|
|
* dimm already in the pending_dimm_unplugs list. In that
|
|
* case don't add again.
|
|
*/
|
|
ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
|
|
if (!ds) {
|
|
ds = g_malloc0(sizeof(SpaprDimmState));
|
|
ds->nr_lmbs = nr_lmbs;
|
|
ds->dimm = dimm;
|
|
QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
|
|
}
|
|
return ds;
|
|
}
|
|
|
|
static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
|
|
SpaprDimmState *dimm_state)
|
|
{
|
|
QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
|
|
g_free(dimm_state);
|
|
}
|
|
|
|
static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
|
|
PCDIMMDevice *dimm)
|
|
{
|
|
SpaprDrc *drc;
|
|
uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
|
|
&error_abort);
|
|
uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
|
|
uint32_t avail_lmbs = 0;
|
|
uint64_t addr_start, addr;
|
|
int i;
|
|
|
|
addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
|
|
&error_abort);
|
|
|
|
addr = addr_start;
|
|
for (i = 0; i < nr_lmbs; i++) {
|
|
drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
|
|
addr / SPAPR_MEMORY_BLOCK_SIZE);
|
|
g_assert(drc);
|
|
if (drc->dev) {
|
|
avail_lmbs++;
|
|
}
|
|
addr += SPAPR_MEMORY_BLOCK_SIZE;
|
|
}
|
|
|
|
return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
|
|
}
|
|
|
|
/* Callback to be called during DRC release. */
|
|
void spapr_lmb_release(DeviceState *dev)
|
|
{
|
|
HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
|
|
SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
|
|
SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
|
|
|
|
/* This information will get lost if a migration occurs
|
|
* during the unplug process. In this case recover it. */
|
|
if (ds == NULL) {
|
|
ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
|
|
g_assert(ds);
|
|
/* The DRC being examined by the caller at least must be counted */
|
|
g_assert(ds->nr_lmbs);
|
|
}
|
|
|
|
if (--ds->nr_lmbs) {
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Now that all the LMBs have been removed by the guest, call the
|
|
* unplug handler chain. This can never fail.
|
|
*/
|
|
hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
|
|
object_unparent(OBJECT(dev));
|
|
}
|
|
|
|
static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
|
|
{
|
|
SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
|
|
SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
|
|
|
|
pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
|
|
qdev_unrealize(dev);
|
|
spapr_pending_dimm_unplugs_remove(spapr, ds);
|
|
}
|
|
|
|
static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
|
|
DeviceState *dev, Error **errp)
|
|
{
|
|
SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
|
|
Error *local_err = NULL;
|
|
PCDIMMDevice *dimm = PC_DIMM(dev);
|
|
uint32_t nr_lmbs;
|
|
uint64_t size, addr_start, addr;
|
|
int i;
|
|
SpaprDrc *drc;
|
|
|
|
if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
|
|
error_setg(&local_err,
|
|
"nvdimm device hot unplug is not supported yet.");
|
|
goto out;
|
|
}
|
|
|
|
size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
|
|
nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
|
|
|
|
addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
|
|
&local_err);
|
|
if (local_err) {
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* An existing pending dimm state for this DIMM means that there is an
|
|
* unplug operation in progress, waiting for the spapr_lmb_release
|
|
* callback to complete the job (BQL can't cover that far). In this case,
|
|
* bail out to avoid detaching DRCs that were already released.
|
|
*/
|
|
if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
|
|
error_setg(&local_err,
|
|
"Memory unplug already in progress for device %s",
|
|
dev->id);
|
|
goto out;
|
|
}
|
|
|
|
spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
|
|
|
|
addr = addr_start;
|
|
for (i = 0; i < nr_lmbs; i++) {
|
|
drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
|
|
addr / SPAPR_MEMORY_BLOCK_SIZE);
|
|
g_assert(drc);
|
|
|
|
spapr_drc_detach(drc);
|
|
addr += SPAPR_MEMORY_BLOCK_SIZE;
|
|
}
|
|
|
|
drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
|
|
addr_start / SPAPR_MEMORY_BLOCK_SIZE);
|
|
spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
|
|
nr_lmbs, spapr_drc_index(drc));
|
|
out:
|
|
error_propagate(errp, local_err);
|
|
}
|
|
|
|
/* Callback to be called during DRC release. */
|
|
void spapr_core_release(DeviceState *dev)
|
|
{
|
|
HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
|
|
|
|
/* Call the unplug handler chain. This can never fail. */
|
|
hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
|
|
object_unparent(OBJECT(dev));
|
|
}
|
|
|
|
static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
|
|
{
|
|
MachineState *ms = MACHINE(hotplug_dev);
|
|
SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
|
|
CPUCore *cc = CPU_CORE(dev);
|
|
CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
|
|
|
|
if (smc->pre_2_10_has_unused_icps) {
|
|
SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
|
|
int i;
|
|
|
|
for (i = 0; i < cc->nr_threads; i++) {
|
|
CPUState *cs = CPU(sc->threads[i]);
|
|
|
|
pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
|
|
}
|
|
}
|
|
|
|
assert(core_slot);
|
|
core_slot->cpu = NULL;
|
|
qdev_unrealize(dev);
|
|
}
|
|
|
|
static
|
|
void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
|
|
Error **errp)
|
|
{
|
|
SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
|
|
int index;
|
|
SpaprDrc *drc;
|
|
CPUCore *cc = CPU_CORE(dev);
|
|
|
|
if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
|
|
error_setg(errp, "Unable to find CPU core with core-id: %d",
|
|
cc->core_id);
|
|
return;
|
|
}
|
|
if (index == 0) {
|
|
error_setg(errp, "Boot CPU core may not be unplugged");
|
|
return;
|
|
}
|
|
|
|
drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
|
|
spapr_vcpu_id(spapr, cc->core_id));
|
|
g_assert(drc);
|
|
|
|
if (!spapr_drc_unplug_requested(drc)) {
|
|
spapr_drc_detach(drc);
|
|
spapr_hotplug_req_remove_by_index(drc);
|
|
}
|
|
}
|
|
|
|
int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
|
|
void *fdt, int *fdt_start_offset, Error **errp)
|
|
{
|
|
SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
|
|
CPUState *cs = CPU(core->threads[0]);
|
|
PowerPCCPU *cpu = POWERPC_CPU(cs);
|
|
DeviceClass *dc = DEVICE_GET_CLASS(cs);
|
|
int id = spapr_get_vcpu_id(cpu);
|
|
char *nodename;
|
|
int offset;
|
|
|
|
nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
|
|
offset = fdt_add_subnode(fdt, 0, nodename);
|
|
g_free(nodename);
|
|
|
|
spapr_dt_cpu(cs, fdt, offset, spapr);
|
|
|
|
*fdt_start_offset = offset;
|
|
return 0;
|
|
}
|
|
|
|
static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
|
|
Error **errp)
|
|
{
|
|
SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
|
|
MachineClass *mc = MACHINE_GET_CLASS(spapr);
|
|
SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
|
|
SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
|
|
CPUCore *cc = CPU_CORE(dev);
|
|
CPUState *cs;
|
|
SpaprDrc *drc;
|
|
Error *local_err = NULL;
|
|
CPUArchId *core_slot;
|
|
int index;
|
|
bool hotplugged = spapr_drc_hotplugged(dev);
|
|
int i;
|
|
|
|
core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
|
|
if (!core_slot) {
|
|
error_setg(errp, "Unable to find CPU core with core-id: %d",
|
|
cc->core_id);
|
|
return;
|
|
}
|
|
drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
|
|
spapr_vcpu_id(spapr, cc->core_id));
|
|
|
|
g_assert(drc || !mc->has_hotpluggable_cpus);
|
|
|
|
if (drc) {
|
|
spapr_drc_attach(drc, dev, &local_err);
|
|
if (local_err) {
|
|
error_propagate(errp, local_err);
|
|
return;
|
|
}
|
|
|
|
if (hotplugged) {
|
|
/*
|
|
* Send hotplug notification interrupt to the guest only
|
|
* in case of hotplugged CPUs.
|
|
*/
|
|
spapr_hotplug_req_add_by_index(drc);
|
|
} else {
|
|
spapr_drc_reset(drc);
|
|
}
|
|
}
|
|
|
|
core_slot->cpu = OBJECT(dev);
|
|
|
|
if (smc->pre_2_10_has_unused_icps) {
|
|
for (i = 0; i < cc->nr_threads; i++) {
|
|
cs = CPU(core->threads[i]);
|
|
pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Set compatibility mode to match the boot CPU, which was either set
|
|
* by the machine reset code or by CAS.
|
|
*/
|
|
if (hotplugged) {
|
|
for (i = 0; i < cc->nr_threads; i++) {
|
|
ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr,
|
|
&local_err);
|
|
if (local_err) {
|
|
error_propagate(errp, local_err);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
|
|
Error **errp)
|
|
{
|
|
MachineState *machine = MACHINE(OBJECT(hotplug_dev));
|
|
MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
|
|
Error *local_err = NULL;
|
|
CPUCore *cc = CPU_CORE(dev);
|
|
const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
|
|
const char *type = object_get_typename(OBJECT(dev));
|
|
CPUArchId *core_slot;
|
|
int index;
|
|
unsigned int smp_threads = machine->smp.threads;
|
|
|
|
if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
|
|
error_setg(&local_err, "CPU hotplug not supported for this machine");
|
|
goto out;
|
|
}
|
|
|
|
if (strcmp(base_core_type, type)) {
|
|
error_setg(&local_err, "CPU core type should be %s", base_core_type);
|
|
goto out;
|
|
}
|
|
|
|
if (cc->core_id % smp_threads) {
|
|
error_setg(&local_err, "invalid core id %d", cc->core_id);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* In general we should have homogeneous threads-per-core, but old
|
|
* (pre hotplug support) machine types allow the last core to have
|
|
* reduced threads as a compatibility hack for when we allowed
|
|
* total vcpus not a multiple of threads-per-core.
|
|
*/
|
|
if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
|
|
error_setg(&local_err, "invalid nr-threads %d, must be %d",
|
|
cc->nr_threads, smp_threads);
|
|
goto out;
|
|
}
|
|
|
|
core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
|
|
if (!core_slot) {
|
|
error_setg(&local_err, "core id %d out of range", cc->core_id);
|
|
goto out;
|
|
}
|
|
|
|
if (core_slot->cpu) {
|
|
error_setg(&local_err, "core %d already populated", cc->core_id);
|
|
goto out;
|
|
}
|
|
|
|
numa_cpu_pre_plug(core_slot, dev, &local_err);
|
|
|
|
out:
|
|
error_propagate(errp, local_err);
|
|
}
|
|
|
|
int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
|
|
void *fdt, int *fdt_start_offset, Error **errp)
|
|
{
|
|
SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
|
|
int intc_phandle;
|
|
|
|
intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
|
|
if (intc_phandle <= 0) {
|
|
return -1;
|
|
}
|
|
|
|
if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) {
|
|
error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
|
|
return -1;
|
|
}
|
|
|
|
/* generally SLOF creates these, for hotplug it's up to QEMU */
|
|
_FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
|
|
Error **errp)
|
|
{
|
|
SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
|
|
SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
|
|
SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
|
|
const unsigned windows_supported = spapr_phb_windows_supported(sphb);
|
|
|
|
if (dev->hotplugged && !smc->dr_phb_enabled) {
|
|
error_setg(errp, "PHB hotplug not supported for this machine");
|
|
return;
|
|
}
|
|
|
|
if (sphb->index == (uint32_t)-1) {
|
|
error_setg(errp, "\"index\" for PAPR PHB is mandatory");
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* This will check that sphb->index doesn't exceed the maximum number of
|
|
* PHBs for the current machine type.
|
|
*/
|
|
smc->phb_placement(spapr, sphb->index,
|
|
&sphb->buid, &sphb->io_win_addr,
|
|
&sphb->mem_win_addr, &sphb->mem64_win_addr,
|
|
windows_supported, sphb->dma_liobn,
|
|
&sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr,
|
|
errp);
|
|
}
|
|
|
|
static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
|
|
Error **errp)
|
|
{
|
|
SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
|
|
SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
|
|
SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
|
|
SpaprDrc *drc;
|
|
bool hotplugged = spapr_drc_hotplugged(dev);
|
|
Error *local_err = NULL;
|
|
|
|
if (!smc->dr_phb_enabled) {
|
|
return;
|
|
}
|
|
|
|
drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
|
|
/* hotplug hooks should check it's enabled before getting this far */
|
|
assert(drc);
|
|
|
|
spapr_drc_attach(drc, dev, &local_err);
|
|
if (local_err) {
|
|
error_propagate(errp, local_err);
|
|
return;
|
|
}
|
|
|
|
if (hotplugged) {
|
|
spapr_hotplug_req_add_by_index(drc);
|
|
} else {
|
|
spapr_drc_reset(drc);
|
|
}
|
|
}
|
|
|
|
void spapr_phb_release(DeviceState *dev)
|
|
{
|
|
HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
|
|
|
|
hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
|
|
object_unparent(OBJECT(dev));
|
|
}
|
|
|
|
static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
|
|
{
|
|
qdev_unrealize(dev);
|
|
}
|
|
|
|
static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
|
|
DeviceState *dev, Error **errp)
|
|
{
|
|
SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
|
|
SpaprDrc *drc;
|
|
|
|
drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
|
|
assert(drc);
|
|
|
|
if (!spapr_drc_unplug_requested(drc)) {
|
|
spapr_drc_detach(drc);
|
|
spapr_hotplug_req_remove_by_index(drc);
|
|
}
|
|
}
|
|
|
|
static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
|
|
Error **errp)
|
|
{
|
|
SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
|
|
SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev);
|
|
|
|
if (spapr->tpm_proxy != NULL) {
|
|
error_setg(errp, "Only one TPM proxy can be specified for this machine");
|
|
return;
|
|
}
|
|
|
|
spapr->tpm_proxy = tpm_proxy;
|
|
}
|
|
|
|
static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
|
|
{
|
|
SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
|
|
|
|
qdev_unrealize(dev);
|
|
object_unparent(OBJECT(dev));
|
|
spapr->tpm_proxy = NULL;
|
|
}
|
|
|
|
static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
|
|
DeviceState *dev, Error **errp)
|
|
{
|
|
if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
|
|
spapr_memory_plug(hotplug_dev, dev, errp);
|
|
} else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
|
|
spapr_core_plug(hotplug_dev, dev, errp);
|
|
} else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
|
|
spapr_phb_plug(hotplug_dev, dev, errp);
|
|
} else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
|
|
spapr_tpm_proxy_plug(hotplug_dev, dev, errp);
|
|
}
|
|
}
|
|
|
|
static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
|
|
DeviceState *dev, Error **errp)
|
|
{
|
|
if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
|
|
spapr_memory_unplug(hotplug_dev, dev);
|
|
} else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
|
|
spapr_core_unplug(hotplug_dev, dev);
|
|
} else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
|
|
spapr_phb_unplug(hotplug_dev, dev);
|
|
} else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
|
|
spapr_tpm_proxy_unplug(hotplug_dev, dev);
|
|
}
|
|
}
|
|
|
|
static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
|
|
DeviceState *dev, Error **errp)
|
|
{
|
|
SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
|
|
MachineClass *mc = MACHINE_GET_CLASS(sms);
|
|
SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
|
|
|
|
if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
|
|
if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
|
|
spapr_memory_unplug_request(hotplug_dev, dev, errp);
|
|
} else {
|
|
/* NOTE: this means there is a window after guest reset, prior to
|
|
* CAS negotiation, where unplug requests will fail due to the
|
|
* capability not being detected yet. This is a bit different than
|
|
* the case with PCI unplug, where the events will be queued and
|
|
* eventually handled by the guest after boot
|
|
*/
|
|
error_setg(errp, "Memory hot unplug not supported for this guest");
|
|
}
|
|
} else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
|
|
if (!mc->has_hotpluggable_cpus) {
|
|
error_setg(errp, "CPU hot unplug not supported on this machine");
|
|
return;
|
|
}
|
|
spapr_core_unplug_request(hotplug_dev, dev, errp);
|
|
} else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
|
|
if (!smc->dr_phb_enabled) {
|
|
error_setg(errp, "PHB hot unplug not supported on this machine");
|
|
return;
|
|
}
|
|
spapr_phb_unplug_request(hotplug_dev, dev, errp);
|
|
} else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
|
|
spapr_tpm_proxy_unplug(hotplug_dev, dev);
|
|
}
|
|
}
|
|
|
|
static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
|
|
DeviceState *dev, Error **errp)
|
|
{
|
|
if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
|
|
spapr_memory_pre_plug(hotplug_dev, dev, errp);
|
|
} else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
|
|
spapr_core_pre_plug(hotplug_dev, dev, errp);
|
|
} else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
|
|
spapr_phb_pre_plug(hotplug_dev, dev, errp);
|
|
}
|
|
}
|
|
|
|
static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
|
|
DeviceState *dev)
|
|
{
|
|
if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
|
|
object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
|
|
object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) ||
|
|
object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
|
|
return HOTPLUG_HANDLER(machine);
|
|
}
|
|
if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
|
|
PCIDevice *pcidev = PCI_DEVICE(dev);
|
|
PCIBus *root = pci_device_root_bus(pcidev);
|
|
SpaprPhbState *phb =
|
|
(SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
|
|
TYPE_SPAPR_PCI_HOST_BRIDGE);
|
|
|
|
if (phb) {
|
|
return HOTPLUG_HANDLER(phb);
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static CpuInstanceProperties
|
|
spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
|
|
{
|
|
CPUArchId *core_slot;
|
|
MachineClass *mc = MACHINE_GET_CLASS(machine);
|
|
|
|
/* make sure possible_cpu are intialized */
|
|
mc->possible_cpu_arch_ids(machine);
|
|
/* get CPU core slot containing thread that matches cpu_index */
|
|
core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
|
|
assert(core_slot);
|
|
return core_slot->props;
|
|
}
|
|
|
|
static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
|
|
{
|
|
return idx / ms->smp.cores % ms->numa_state->num_nodes;
|
|
}
|
|
|
|
static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
|
|
{
|
|
int i;
|
|
unsigned int smp_threads = machine->smp.threads;
|
|
unsigned int smp_cpus = machine->smp.cpus;
|
|
const char *core_type;
|
|
int spapr_max_cores = machine->smp.max_cpus / smp_threads;
|
|
MachineClass *mc = MACHINE_GET_CLASS(machine);
|
|
|
|
if (!mc->has_hotpluggable_cpus) {
|
|
spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
|
|
}
|
|
if (machine->possible_cpus) {
|
|
assert(machine->possible_cpus->len == spapr_max_cores);
|
|
return machine->possible_cpus;
|
|
}
|
|
|
|
core_type = spapr_get_cpu_core_type(machine->cpu_type);
|
|
if (!core_type) {
|
|
error_report("Unable to find sPAPR CPU Core definition");
|
|
exit(1);
|
|
}
|
|
|
|
machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
|
|
sizeof(CPUArchId) * spapr_max_cores);
|
|
machine->possible_cpus->len = spapr_max_cores;
|
|
for (i = 0; i < machine->possible_cpus->len; i++) {
|
|
int core_id = i * smp_threads;
|
|
|
|
machine->possible_cpus->cpus[i].type = core_type;
|
|
machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
|
|
machine->possible_cpus->cpus[i].arch_id = core_id;
|
|
machine->possible_cpus->cpus[i].props.has_core_id = true;
|
|
machine->possible_cpus->cpus[i].props.core_id = core_id;
|
|
}
|
|
return machine->possible_cpus;
|
|
}
|
|
|
|
static void spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
|
|
uint64_t *buid, hwaddr *pio,
|
|
hwaddr *mmio32, hwaddr *mmio64,
|
|
unsigned n_dma, uint32_t *liobns,
|
|
hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
|
|
{
|
|
/*
|
|
* New-style PHB window placement.
|
|
*
|
|
* Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
|
|
* for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
|
|
* windows.
|
|
*
|
|
* Some guest kernels can't work with MMIO windows above 1<<46
|
|
* (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
|
|
*
|
|
* 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
|
|
* PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
|
|
* 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
|
|
* 1TiB 64-bit MMIO windows for each PHB.
|
|
*/
|
|
const uint64_t base_buid = 0x800000020000000ULL;
|
|
int i;
|
|
|
|
/* Sanity check natural alignments */
|
|
QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
|
|
QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
|
|
QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
|
|
QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
|
|
/* Sanity check bounds */
|
|
QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
|
|
SPAPR_PCI_MEM32_WIN_SIZE);
|
|
QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
|
|
SPAPR_PCI_MEM64_WIN_SIZE);
|
|
|
|
if (index >= SPAPR_MAX_PHBS) {
|
|
error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
|
|
SPAPR_MAX_PHBS - 1);
|
|
return;
|
|
}
|
|
|
|
*buid = base_buid + index;
|
|
for (i = 0; i < n_dma; ++i) {
|
|
liobns[i] = SPAPR_PCI_LIOBN(index, i);
|
|
}
|
|
|
|
*pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
|
|
*mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
|
|
*mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
|
|
|
|
*nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE;
|
|
*nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE;
|
|
}
|
|
|
|
static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
|
|
{
|
|
SpaprMachineState *spapr = SPAPR_MACHINE(dev);
|
|
|
|
return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
|
|
}
|
|
|
|
static void spapr_ics_resend(XICSFabric *dev)
|
|
{
|
|
SpaprMachineState *spapr = SPAPR_MACHINE(dev);
|
|
|
|
ics_resend(spapr->ics);
|
|
}
|
|
|
|
static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
|
|
{
|
|
PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
|
|
|
|
return cpu ? spapr_cpu_state(cpu)->icp : NULL;
|
|
}
|
|
|
|
static void spapr_pic_print_info(InterruptStatsProvider *obj,
|
|
Monitor *mon)
|
|
{
|
|
SpaprMachineState *spapr = SPAPR_MACHINE(obj);
|
|
|
|
spapr_irq_print_info(spapr, mon);
|
|
monitor_printf(mon, "irqchip: %s\n",
|
|
kvm_irqchip_in_kernel() ? "in-kernel" : "emulated");
|
|
}
|
|
|
|
/*
|
|
* This is a XIVE only operation
|
|
*/
|
|
static int spapr_match_nvt(XiveFabric *xfb, uint8_t format,
|
|
uint8_t nvt_blk, uint32_t nvt_idx,
|
|
bool cam_ignore, uint8_t priority,
|
|
uint32_t logic_serv, XiveTCTXMatch *match)
|
|
{
|
|
SpaprMachineState *spapr = SPAPR_MACHINE(xfb);
|
|
XivePresenter *xptr = XIVE_PRESENTER(spapr->active_intc);
|
|
XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
|
|
int count;
|
|
|
|
count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
|
|
priority, logic_serv, match);
|
|
if (count < 0) {
|
|
return count;
|
|
}
|
|
|
|
/*
|
|
* When we implement the save and restore of the thread interrupt
|
|
* contexts in the enter/exit CPU handlers of the machine and the
|
|
* escalations in QEMU, we should be able to handle non dispatched
|
|
* vCPUs.
|
|
*
|
|
* Until this is done, the sPAPR machine should find at least one
|
|
* matching context always.
|
|
*/
|
|
if (count == 0) {
|
|
qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n",
|
|
nvt_blk, nvt_idx);
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
int spapr_get_vcpu_id(PowerPCCPU *cpu)
|
|
{
|
|
return cpu->vcpu_id;
|
|
}
|
|
|
|
void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
|
|
{
|
|
SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
|
|
MachineState *ms = MACHINE(spapr);
|
|
int vcpu_id;
|
|
|
|
vcpu_id = spapr_vcpu_id(spapr, cpu_index);
|
|
|
|
if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
|
|
error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
|
|
error_append_hint(errp, "Adjust the number of cpus to %d "
|
|
"or try to raise the number of threads per core\n",
|
|
vcpu_id * ms->smp.threads / spapr->vsmt);
|
|
return;
|
|
}
|
|
|
|
cpu->vcpu_id = vcpu_id;
|
|
}
|
|
|
|
PowerPCCPU *spapr_find_cpu(int vcpu_id)
|
|
{
|
|
CPUState *cs;
|
|
|
|
CPU_FOREACH(cs) {
|
|
PowerPCCPU *cpu = POWERPC_CPU(cs);
|
|
|
|
if (spapr_get_vcpu_id(cpu) == vcpu_id) {
|
|
return cpu;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
|
|
{
|
|
SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
|
|
|
|
/* These are only called by TCG, KVM maintains dispatch state */
|
|
|
|
spapr_cpu->prod = false;
|
|
if (spapr_cpu->vpa_addr) {
|
|
CPUState *cs = CPU(cpu);
|
|
uint32_t dispatch;
|
|
|
|
dispatch = ldl_be_phys(cs->as,
|
|
spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
|
|
dispatch++;
|
|
if ((dispatch & 1) != 0) {
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"VPA: incorrect dispatch counter value for "
|
|
"dispatched partition %u, correcting.\n", dispatch);
|
|
dispatch++;
|
|
}
|
|
stl_be_phys(cs->as,
|
|
spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
|
|
}
|
|
}
|
|
|
|
static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
|
|
{
|
|
SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
|
|
|
|
if (spapr_cpu->vpa_addr) {
|
|
CPUState *cs = CPU(cpu);
|
|
uint32_t dispatch;
|
|
|
|
dispatch = ldl_be_phys(cs->as,
|
|
spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
|
|
dispatch++;
|
|
if ((dispatch & 1) != 1) {
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"VPA: incorrect dispatch counter value for "
|
|
"preempted partition %u, correcting.\n", dispatch);
|
|
dispatch++;
|
|
}
|
|
stl_be_phys(cs->as,
|
|
spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
|
|
}
|
|
}
|
|
|
|
static void spapr_machine_class_init(ObjectClass *oc, void *data)
|
|
{
|
|
MachineClass *mc = MACHINE_CLASS(oc);
|
|
SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
|
|
FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
|
|
NMIClass *nc = NMI_CLASS(oc);
|
|
HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
|
|
PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
|
|
XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
|
|
InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
|
|
XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
|
|
|
|
mc->desc = "pSeries Logical Partition (PAPR compliant)";
|
|
mc->ignore_boot_device_suffixes = true;
|
|
|
|
/*
|
|
* We set up the default / latest behaviour here. The class_init
|
|
* functions for the specific versioned machine types can override
|
|
* these details for backwards compatibility
|
|
*/
|
|
mc->init = spapr_machine_init;
|
|
mc->reset = spapr_machine_reset;
|
|
mc->block_default_type = IF_SCSI;
|
|
mc->max_cpus = 1024;
|
|
mc->no_parallel = 1;
|
|
mc->default_boot_order = "";
|
|
mc->default_ram_size = 512 * MiB;
|
|
mc->default_ram_id = "ppc_spapr.ram";
|
|
mc->default_display = "std";
|
|
mc->kvm_type = spapr_kvm_type;
|
|
machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
|
|
mc->pci_allow_0_address = true;
|
|
assert(!mc->get_hotplug_handler);
|
|
mc->get_hotplug_handler = spapr_get_hotplug_handler;
|
|
hc->pre_plug = spapr_machine_device_pre_plug;
|
|
hc->plug = spapr_machine_device_plug;
|
|
mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
|
|
mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
|
|
mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
|
|
hc->unplug_request = spapr_machine_device_unplug_request;
|
|
hc->unplug = spapr_machine_device_unplug;
|
|
|
|
smc->dr_lmb_enabled = true;
|
|
smc->update_dt_enabled = true;
|
|
mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
|
|
mc->has_hotpluggable_cpus = true;
|
|
mc->nvdimm_supported = true;
|
|
smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
|
|
fwc->get_dev_path = spapr_get_fw_dev_path;
|
|
nc->nmi_monitor_handler = spapr_nmi;
|
|
smc->phb_placement = spapr_phb_placement;
|
|
vhc->hypercall = emulate_spapr_hypercall;
|
|
vhc->hpt_mask = spapr_hpt_mask;
|
|
vhc->map_hptes = spapr_map_hptes;
|
|
vhc->unmap_hptes = spapr_unmap_hptes;
|
|
vhc->hpte_set_c = spapr_hpte_set_c;
|
|
vhc->hpte_set_r = spapr_hpte_set_r;
|
|
vhc->get_pate = spapr_get_pate;
|
|
vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
|
|
vhc->cpu_exec_enter = spapr_cpu_exec_enter;
|
|
vhc->cpu_exec_exit = spapr_cpu_exec_exit;
|
|
xic->ics_get = spapr_ics_get;
|
|
xic->ics_resend = spapr_ics_resend;
|
|
xic->icp_get = spapr_icp_get;
|
|
ispc->print_info = spapr_pic_print_info;
|
|
/* Force NUMA node memory size to be a multiple of
|
|
* SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
|
|
* in which LMBs are represented and hot-added
|
|
*/
|
|
mc->numa_mem_align_shift = 28;
|
|
mc->numa_mem_supported = true;
|
|
mc->auto_enable_numa = true;
|
|
|
|
smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
|
|
smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
|
|
smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
|
|
smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
|
|
smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
|
|
smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
|
|
smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
|
|
smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
|
|
smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
|
|
smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_ON;
|
|
smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_ON;
|
|
spapr_caps_add_properties(smc);
|
|
smc->irq = &spapr_irq_dual;
|
|
smc->dr_phb_enabled = true;
|
|
smc->linux_pci_probe = true;
|
|
smc->smp_threads_vsmt = true;
|
|
smc->nr_xirqs = SPAPR_NR_XIRQS;
|
|
xfc->match_nvt = spapr_match_nvt;
|
|
}
|
|
|
|
static const TypeInfo spapr_machine_info = {
|
|
.name = TYPE_SPAPR_MACHINE,
|
|
.parent = TYPE_MACHINE,
|
|
.abstract = true,
|
|
.instance_size = sizeof(SpaprMachineState),
|
|
.instance_init = spapr_instance_init,
|
|
.instance_finalize = spapr_machine_finalizefn,
|
|
.class_size = sizeof(SpaprMachineClass),
|
|
.class_init = spapr_machine_class_init,
|
|
.interfaces = (InterfaceInfo[]) {
|
|
{ TYPE_FW_PATH_PROVIDER },
|
|
{ TYPE_NMI },
|
|
{ TYPE_HOTPLUG_HANDLER },
|
|
{ TYPE_PPC_VIRTUAL_HYPERVISOR },
|
|
{ TYPE_XICS_FABRIC },
|
|
{ TYPE_INTERRUPT_STATS_PROVIDER },
|
|
{ TYPE_XIVE_FABRIC },
|
|
{ }
|
|
},
|
|
};
|
|
|
|
static void spapr_machine_latest_class_options(MachineClass *mc)
|
|
{
|
|
mc->alias = "pseries";
|
|
mc->is_default = true;
|
|
}
|
|
|
|
#define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
|
|
static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
|
|
void *data) \
|
|
{ \
|
|
MachineClass *mc = MACHINE_CLASS(oc); \
|
|
spapr_machine_##suffix##_class_options(mc); \
|
|
if (latest) { \
|
|
spapr_machine_latest_class_options(mc); \
|
|
} \
|
|
} \
|
|
static const TypeInfo spapr_machine_##suffix##_info = { \
|
|
.name = MACHINE_TYPE_NAME("pseries-" verstr), \
|
|
.parent = TYPE_SPAPR_MACHINE, \
|
|
.class_init = spapr_machine_##suffix##_class_init, \
|
|
}; \
|
|
static void spapr_machine_register_##suffix(void) \
|
|
{ \
|
|
type_register(&spapr_machine_##suffix##_info); \
|
|
} \
|
|
type_init(spapr_machine_register_##suffix)
|
|
|
|
/*
|
|
* pseries-5.1
|
|
*/
|
|
static void spapr_machine_5_1_class_options(MachineClass *mc)
|
|
{
|
|
/* Defaults for the latest behaviour inherited from the base class */
|
|
}
|
|
|
|
DEFINE_SPAPR_MACHINE(5_1, "5.1", true);
|
|
|
|
/*
|
|
* pseries-5.0
|
|
*/
|
|
static void spapr_machine_5_0_class_options(MachineClass *mc)
|
|
{
|
|
spapr_machine_5_1_class_options(mc);
|
|
compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
|
|
}
|
|
|
|
DEFINE_SPAPR_MACHINE(5_0, "5.0", false);
|
|
|
|
/*
|
|
* pseries-4.2
|
|
*/
|
|
static void spapr_machine_4_2_class_options(MachineClass *mc)
|
|
{
|
|
SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
|
|
|
|
spapr_machine_5_0_class_options(mc);
|
|
compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
|
|
smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
|
|
smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_OFF;
|
|
smc->rma_limit = 16 * GiB;
|
|
mc->nvdimm_supported = false;
|
|
}
|
|
|
|
DEFINE_SPAPR_MACHINE(4_2, "4.2", false);
|
|
|
|
/*
|
|
* pseries-4.1
|
|
*/
|
|
static void spapr_machine_4_1_class_options(MachineClass *mc)
|
|
{
|
|
SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
|
|
static GlobalProperty compat[] = {
|
|
/* Only allow 4kiB and 64kiB IOMMU pagesizes */
|
|
{ TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" },
|
|
};
|
|
|
|
spapr_machine_4_2_class_options(mc);
|
|
smc->linux_pci_probe = false;
|
|
smc->smp_threads_vsmt = false;
|
|
compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
|
|
compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
|
|
}
|
|
|
|
DEFINE_SPAPR_MACHINE(4_1, "4.1", false);
|
|
|
|
/*
|
|
* pseries-4.0
|
|
*/
|
|
static void phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
|
|
uint64_t *buid, hwaddr *pio,
|
|
hwaddr *mmio32, hwaddr *mmio64,
|
|
unsigned n_dma, uint32_t *liobns,
|
|
hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
|
|
{
|
|
spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, liobns,
|
|
nv2gpa, nv2atsd, errp);
|
|
*nv2gpa = 0;
|
|
*nv2atsd = 0;
|
|
}
|
|
|
|
static void spapr_machine_4_0_class_options(MachineClass *mc)
|
|
{
|
|
SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
|
|
|
|
spapr_machine_4_1_class_options(mc);
|
|
compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
|
|
smc->phb_placement = phb_placement_4_0;
|
|
smc->irq = &spapr_irq_xics;
|
|
smc->pre_4_1_migration = true;
|
|
}
|
|
|
|
DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
|
|
|
|
/*
|
|
* pseries-3.1
|
|
*/
|
|
static void spapr_machine_3_1_class_options(MachineClass *mc)
|
|
{
|
|
SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
|
|
|
|
spapr_machine_4_0_class_options(mc);
|
|
compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
|
|
|
|
mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
|
|
smc->update_dt_enabled = false;
|
|
smc->dr_phb_enabled = false;
|
|
smc->broken_host_serial_model = true;
|
|
smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
|
|
smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
|
|
smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
|
|
smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
|
|
}
|
|
|
|
DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
|
|
|
|
/*
|
|
* pseries-3.0
|
|
*/
|
|
|
|
static void spapr_machine_3_0_class_options(MachineClass *mc)
|
|
{
|
|
SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
|
|
|
|
spapr_machine_3_1_class_options(mc);
|
|
compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
|
|
|
|
smc->legacy_irq_allocation = true;
|
|
smc->nr_xirqs = 0x400;
|
|
smc->irq = &spapr_irq_xics_legacy;
|
|
}
|
|
|
|
DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
|
|
|
|
/*
|
|
* pseries-2.12
|
|
*/
|
|
static void spapr_machine_2_12_class_options(MachineClass *mc)
|
|
{
|
|
SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
|
|
static GlobalProperty compat[] = {
|
|
{ TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
|
|
{ TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
|
|
};
|
|
|
|
spapr_machine_3_0_class_options(mc);
|
|
compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
|
|
compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
|
|
|
|
/* We depend on kvm_enabled() to choose a default value for the
|
|
* hpt-max-page-size capability. Of course we can't do it here
|
|
* because this is too early and the HW accelerator isn't initialzed
|
|
* yet. Postpone this to machine init (see default_caps_with_cpu()).
|
|
*/
|
|
smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
|
|
}
|
|
|
|
DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
|
|
|
|
static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
|
|
{
|
|
SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
|
|
|
|
spapr_machine_2_12_class_options(mc);
|
|
smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
|
|
smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
|
|
smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
|
|
}
|
|
|
|
DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
|
|
|
|
/*
|
|
* pseries-2.11
|
|
*/
|
|
|
|
static void spapr_machine_2_11_class_options(MachineClass *mc)
|
|
{
|
|
SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
|
|
|
|
spapr_machine_2_12_class_options(mc);
|
|
smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
|
|
compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
|
|
}
|
|
|
|
DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
|
|
|
|
/*
|
|
* pseries-2.10
|
|
*/
|
|
|
|
static void spapr_machine_2_10_class_options(MachineClass *mc)
|
|
{
|
|
spapr_machine_2_11_class_options(mc);
|
|
compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
|
|
}
|
|
|
|
DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
|
|
|
|
/*
|
|
* pseries-2.9
|
|
*/
|
|
|
|
static void spapr_machine_2_9_class_options(MachineClass *mc)
|
|
{
|
|
SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
|
|
static GlobalProperty compat[] = {
|
|
{ TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
|
|
};
|
|
|
|
spapr_machine_2_10_class_options(mc);
|
|
compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
|
|
compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
|
|
mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
|
|
smc->pre_2_10_has_unused_icps = true;
|
|
smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
|
|
}
|
|
|
|
DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
|
|
|
|
/*
|
|
* pseries-2.8
|
|
*/
|
|
|
|
static void spapr_machine_2_8_class_options(MachineClass *mc)
|
|
{
|
|
static GlobalProperty compat[] = {
|
|
{ TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
|
|
};
|
|
|
|
spapr_machine_2_9_class_options(mc);
|
|
compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
|
|
compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
|
|
mc->numa_mem_align_shift = 23;
|
|
}
|
|
|
|
DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
|
|
|
|
/*
|
|
* pseries-2.7
|
|
*/
|
|
|
|
static void phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
|
|
uint64_t *buid, hwaddr *pio,
|
|
hwaddr *mmio32, hwaddr *mmio64,
|
|
unsigned n_dma, uint32_t *liobns,
|
|
hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
|
|
{
|
|
/* Legacy PHB placement for pseries-2.7 and earlier machine types */
|
|
const uint64_t base_buid = 0x800000020000000ULL;
|
|
const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
|
|
const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
|
|
const hwaddr pio_offset = 0x80000000; /* 2 GiB */
|
|
const uint32_t max_index = 255;
|
|
const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
|
|
|
|
uint64_t ram_top = MACHINE(spapr)->ram_size;
|
|
hwaddr phb0_base, phb_base;
|
|
int i;
|
|
|
|
/* Do we have device memory? */
|
|
if (MACHINE(spapr)->maxram_size > ram_top) {
|
|
/* Can't just use maxram_size, because there may be an
|
|
* alignment gap between normal and device memory regions
|
|
*/
|
|
ram_top = MACHINE(spapr)->device_memory->base +
|
|
memory_region_size(&MACHINE(spapr)->device_memory->mr);
|
|
}
|
|
|
|
phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
|
|
|
|
if (index > max_index) {
|
|
error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
|
|
max_index);
|
|
return;
|
|
}
|
|
|
|
*buid = base_buid + index;
|
|
for (i = 0; i < n_dma; ++i) {
|
|
liobns[i] = SPAPR_PCI_LIOBN(index, i);
|
|
}
|
|
|
|
phb_base = phb0_base + index * phb_spacing;
|
|
*pio = phb_base + pio_offset;
|
|
*mmio32 = phb_base + mmio_offset;
|
|
/*
|
|
* We don't set the 64-bit MMIO window, relying on the PHB's
|
|
* fallback behaviour of automatically splitting a large "32-bit"
|
|
* window into contiguous 32-bit and 64-bit windows
|
|
*/
|
|
|
|
*nv2gpa = 0;
|
|
*nv2atsd = 0;
|
|
}
|
|
|
|
static void spapr_machine_2_7_class_options(MachineClass *mc)
|
|
{
|
|
SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
|
|
static GlobalProperty compat[] = {
|
|
{ TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
|
|
{ TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
|
|
{ TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
|
|
{ TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
|
|
};
|
|
|
|
spapr_machine_2_8_class_options(mc);
|
|
mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
|
|
mc->default_machine_opts = "modern-hotplug-events=off";
|
|
compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
|
|
compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
|
|
smc->phb_placement = phb_placement_2_7;
|
|
}
|
|
|
|
DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
|
|
|
|
/*
|
|
* pseries-2.6
|
|
*/
|
|
|
|
static void spapr_machine_2_6_class_options(MachineClass *mc)
|
|
{
|
|
static GlobalProperty compat[] = {
|
|
{ TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
|
|
};
|
|
|
|
spapr_machine_2_7_class_options(mc);
|
|
mc->has_hotpluggable_cpus = false;
|
|
compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
|
|
compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
|
|
}
|
|
|
|
DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
|
|
|
|
/*
|
|
* pseries-2.5
|
|
*/
|
|
|
|
static void spapr_machine_2_5_class_options(MachineClass *mc)
|
|
{
|
|
SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
|
|
static GlobalProperty compat[] = {
|
|
{ "spapr-vlan", "use-rx-buffer-pools", "off" },
|
|
};
|
|
|
|
spapr_machine_2_6_class_options(mc);
|
|
smc->use_ohci_by_default = true;
|
|
compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
|
|
compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
|
|
}
|
|
|
|
DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
|
|
|
|
/*
|
|
* pseries-2.4
|
|
*/
|
|
|
|
static void spapr_machine_2_4_class_options(MachineClass *mc)
|
|
{
|
|
SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
|
|
|
|
spapr_machine_2_5_class_options(mc);
|
|
smc->dr_lmb_enabled = false;
|
|
compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
|
|
}
|
|
|
|
DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
|
|
|
|
/*
|
|
* pseries-2.3
|
|
*/
|
|
|
|
static void spapr_machine_2_3_class_options(MachineClass *mc)
|
|
{
|
|
static GlobalProperty compat[] = {
|
|
{ "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
|
|
};
|
|
spapr_machine_2_4_class_options(mc);
|
|
compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
|
|
compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
|
|
}
|
|
DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
|
|
|
|
/*
|
|
* pseries-2.2
|
|
*/
|
|
|
|
static void spapr_machine_2_2_class_options(MachineClass *mc)
|
|
{
|
|
static GlobalProperty compat[] = {
|
|
{ TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
|
|
};
|
|
|
|
spapr_machine_2_3_class_options(mc);
|
|
compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
|
|
compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
|
|
mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
|
|
}
|
|
DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
|
|
|
|
/*
|
|
* pseries-2.1
|
|
*/
|
|
|
|
static void spapr_machine_2_1_class_options(MachineClass *mc)
|
|
{
|
|
spapr_machine_2_2_class_options(mc);
|
|
compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
|
|
}
|
|
DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
|
|
|
|
static void spapr_machine_register_types(void)
|
|
{
|
|
type_register_static(&spapr_machine_info);
|
|
}
|
|
|
|
type_init(spapr_machine_register_types)
|