qemu/hw/ppc/e500.c
Andreas Färber 259186a7d2 cpu: Move halted and interrupt_request fields to CPUState
Both fields are used in VMState, thus need to be moved together.
Explicitly zero them on reset since they were located before
breakpoints.

Pass PowerPCCPU to kvmppc_handle_halt().

Signed-off-by: Andreas Färber <afaerber@suse.de>
2013-03-12 10:35:55 +01:00

704 lines
24 KiB
C

/*
* QEMU PowerPC e500-based platforms
*
* Copyright (C) 2009 Freescale Semiconductor, Inc. All rights reserved.
*
* Author: Yu Liu, <yu.liu@freescale.com>
*
* This file is derived from hw/ppc440_bamboo.c,
* the copyright for that material belongs to the original owners.
*
* This is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include "config.h"
#include "qemu-common.h"
#include "e500.h"
#include "e500-ccsr.h"
#include "net/net.h"
#include "qemu/config-file.h"
#include "hw/hw.h"
#include "hw/serial.h"
#include "hw/pci/pci.h"
#include "hw/boards.h"
#include "sysemu/sysemu.h"
#include "sysemu/kvm.h"
#include "kvm_ppc.h"
#include "sysemu/device_tree.h"
#include "hw/openpic.h"
#include "hw/ppc.h"
#include "hw/loader.h"
#include "elf.h"
#include "hw/sysbus.h"
#include "exec/address-spaces.h"
#include "qemu/host-utils.h"
#include "hw/ppce500_pci.h"
#define BINARY_DEVICE_TREE_FILE "mpc8544ds.dtb"
#define UIMAGE_LOAD_BASE 0
#define DTC_LOAD_PAD 0x1800000
#define DTC_PAD_MASK 0xFFFFF
#define DTB_MAX_SIZE (8 * 1024 * 1024)
#define INITRD_LOAD_PAD 0x2000000
#define INITRD_PAD_MASK 0xFFFFFF
#define RAM_SIZES_ALIGN (64UL << 20)
/* TODO: parameterize */
#define MPC8544_CCSRBAR_BASE 0xE0000000ULL
#define MPC8544_CCSRBAR_SIZE 0x00100000ULL
#define MPC8544_MPIC_REGS_OFFSET 0x40000ULL
#define MPC8544_MSI_REGS_OFFSET 0x41600ULL
#define MPC8544_SERIAL0_REGS_OFFSET 0x4500ULL
#define MPC8544_SERIAL1_REGS_OFFSET 0x4600ULL
#define MPC8544_PCI_REGS_OFFSET 0x8000ULL
#define MPC8544_PCI_REGS_BASE (MPC8544_CCSRBAR_BASE + \
MPC8544_PCI_REGS_OFFSET)
#define MPC8544_PCI_REGS_SIZE 0x1000ULL
#define MPC8544_PCI_IO 0xE1000000ULL
#define MPC8544_UTIL_OFFSET 0xe0000ULL
#define MPC8544_SPIN_BASE 0xEF000000ULL
struct boot_info
{
uint32_t dt_base;
uint32_t dt_size;
uint32_t entry;
};
static uint32_t *pci_map_create(void *fdt, uint32_t mpic, int first_slot,
int nr_slots, int *len)
{
int i = 0;
int slot;
int pci_irq;
int host_irq;
int last_slot = first_slot + nr_slots;
uint32_t *pci_map;
*len = nr_slots * 4 * 7 * sizeof(uint32_t);
pci_map = g_malloc(*len);
for (slot = first_slot; slot < last_slot; slot++) {
for (pci_irq = 0; pci_irq < 4; pci_irq++) {
pci_map[i++] = cpu_to_be32(slot << 11);
pci_map[i++] = cpu_to_be32(0x0);
pci_map[i++] = cpu_to_be32(0x0);
pci_map[i++] = cpu_to_be32(pci_irq + 1);
pci_map[i++] = cpu_to_be32(mpic);
host_irq = ppce500_pci_map_irq_slot(slot, pci_irq);
pci_map[i++] = cpu_to_be32(host_irq + 1);
pci_map[i++] = cpu_to_be32(0x1);
}
}
assert((i * sizeof(uint32_t)) == *len);
return pci_map;
}
static void dt_serial_create(void *fdt, unsigned long long offset,
const char *soc, const char *mpic,
const char *alias, int idx, bool defcon)
{
char ser[128];
snprintf(ser, sizeof(ser), "%s/serial@%llx", soc, offset);
qemu_devtree_add_subnode(fdt, ser);
qemu_devtree_setprop_string(fdt, ser, "device_type", "serial");
qemu_devtree_setprop_string(fdt, ser, "compatible", "ns16550");
qemu_devtree_setprop_cells(fdt, ser, "reg", offset, 0x100);
qemu_devtree_setprop_cell(fdt, ser, "cell-index", idx);
qemu_devtree_setprop_cell(fdt, ser, "clock-frequency", 0);
qemu_devtree_setprop_cells(fdt, ser, "interrupts", 42, 2);
qemu_devtree_setprop_phandle(fdt, ser, "interrupt-parent", mpic);
qemu_devtree_setprop_string(fdt, "/aliases", alias, ser);
if (defcon) {
qemu_devtree_setprop_string(fdt, "/chosen", "linux,stdout-path", ser);
}
}
static int ppce500_load_device_tree(CPUPPCState *env,
PPCE500Params *params,
hwaddr addr,
hwaddr initrd_base,
hwaddr initrd_size)
{
int ret = -1;
uint64_t mem_reg_property[] = { 0, cpu_to_be64(params->ram_size) };
int fdt_size;
void *fdt;
uint8_t hypercall[16];
uint32_t clock_freq = 400000000;
uint32_t tb_freq = 400000000;
int i;
const char *toplevel_compat = NULL; /* user override */
char compatible_sb[] = "fsl,mpc8544-immr\0simple-bus";
char soc[128];
char mpic[128];
uint32_t mpic_ph;
uint32_t msi_ph;
char gutil[128];
char pci[128];
char msi[128];
uint32_t *pci_map = NULL;
int len;
uint32_t pci_ranges[14] =
{
0x2000000, 0x0, 0xc0000000,
0x0, 0xc0000000,
0x0, 0x20000000,
0x1000000, 0x0, 0x0,
0x0, 0xe1000000,
0x0, 0x10000,
};
QemuOpts *machine_opts;
const char *dtb_file = NULL;
machine_opts = qemu_opts_find(qemu_find_opts("machine"), 0);
if (machine_opts) {
dtb_file = qemu_opt_get(machine_opts, "dtb");
toplevel_compat = qemu_opt_get(machine_opts, "dt_compatible");
}
if (dtb_file) {
char *filename;
filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, dtb_file);
if (!filename) {
goto out;
}
fdt = load_device_tree(filename, &fdt_size);
if (!fdt) {
goto out;
}
goto done;
}
fdt = create_device_tree(&fdt_size);
if (fdt == NULL) {
goto out;
}
/* Manipulate device tree in memory. */
qemu_devtree_setprop_cell(fdt, "/", "#address-cells", 2);
qemu_devtree_setprop_cell(fdt, "/", "#size-cells", 2);
qemu_devtree_add_subnode(fdt, "/memory");
qemu_devtree_setprop_string(fdt, "/memory", "device_type", "memory");
qemu_devtree_setprop(fdt, "/memory", "reg", mem_reg_property,
sizeof(mem_reg_property));
qemu_devtree_add_subnode(fdt, "/chosen");
if (initrd_size) {
ret = qemu_devtree_setprop_cell(fdt, "/chosen", "linux,initrd-start",
initrd_base);
if (ret < 0) {
fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n");
}
ret = qemu_devtree_setprop_cell(fdt, "/chosen", "linux,initrd-end",
(initrd_base + initrd_size));
if (ret < 0) {
fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n");
}
}
ret = qemu_devtree_setprop_string(fdt, "/chosen", "bootargs",
params->kernel_cmdline);
if (ret < 0)
fprintf(stderr, "couldn't set /chosen/bootargs\n");
if (kvm_enabled()) {
/* Read out host's frequencies */
clock_freq = kvmppc_get_clockfreq();
tb_freq = kvmppc_get_tbfreq();
/* indicate KVM hypercall interface */
qemu_devtree_add_subnode(fdt, "/hypervisor");
qemu_devtree_setprop_string(fdt, "/hypervisor", "compatible",
"linux,kvm");
kvmppc_get_hypercall(env, hypercall, sizeof(hypercall));
qemu_devtree_setprop(fdt, "/hypervisor", "hcall-instructions",
hypercall, sizeof(hypercall));
/* if KVM supports the idle hcall, set property indicating this */
if (kvmppc_get_hasidle(env)) {
qemu_devtree_setprop(fdt, "/hypervisor", "has-idle", NULL, 0);
}
}
/* Create CPU nodes */
qemu_devtree_add_subnode(fdt, "/cpus");
qemu_devtree_setprop_cell(fdt, "/cpus", "#address-cells", 1);
qemu_devtree_setprop_cell(fdt, "/cpus", "#size-cells", 0);
/* We need to generate the cpu nodes in reverse order, so Linux can pick
the first node as boot node and be happy */
for (i = smp_cpus - 1; i >= 0; i--) {
CPUState *cpu;
char cpu_name[128];
uint64_t cpu_release_addr = MPC8544_SPIN_BASE + (i * 0x20);
cpu = qemu_get_cpu(i);
if (cpu == NULL) {
continue;
}
env = cpu->env_ptr;
snprintf(cpu_name, sizeof(cpu_name), "/cpus/PowerPC,8544@%x",
cpu->cpu_index);
qemu_devtree_add_subnode(fdt, cpu_name);
qemu_devtree_setprop_cell(fdt, cpu_name, "clock-frequency", clock_freq);
qemu_devtree_setprop_cell(fdt, cpu_name, "timebase-frequency", tb_freq);
qemu_devtree_setprop_string(fdt, cpu_name, "device_type", "cpu");
qemu_devtree_setprop_cell(fdt, cpu_name, "reg", cpu->cpu_index);
qemu_devtree_setprop_cell(fdt, cpu_name, "d-cache-line-size",
env->dcache_line_size);
qemu_devtree_setprop_cell(fdt, cpu_name, "i-cache-line-size",
env->icache_line_size);
qemu_devtree_setprop_cell(fdt, cpu_name, "d-cache-size", 0x8000);
qemu_devtree_setprop_cell(fdt, cpu_name, "i-cache-size", 0x8000);
qemu_devtree_setprop_cell(fdt, cpu_name, "bus-frequency", 0);
if (cpu->cpu_index) {
qemu_devtree_setprop_string(fdt, cpu_name, "status", "disabled");
qemu_devtree_setprop_string(fdt, cpu_name, "enable-method", "spin-table");
qemu_devtree_setprop_u64(fdt, cpu_name, "cpu-release-addr",
cpu_release_addr);
} else {
qemu_devtree_setprop_string(fdt, cpu_name, "status", "okay");
}
}
qemu_devtree_add_subnode(fdt, "/aliases");
/* XXX These should go into their respective devices' code */
snprintf(soc, sizeof(soc), "/soc@%llx", MPC8544_CCSRBAR_BASE);
qemu_devtree_add_subnode(fdt, soc);
qemu_devtree_setprop_string(fdt, soc, "device_type", "soc");
qemu_devtree_setprop(fdt, soc, "compatible", compatible_sb,
sizeof(compatible_sb));
qemu_devtree_setprop_cell(fdt, soc, "#address-cells", 1);
qemu_devtree_setprop_cell(fdt, soc, "#size-cells", 1);
qemu_devtree_setprop_cells(fdt, soc, "ranges", 0x0,
MPC8544_CCSRBAR_BASE >> 32, MPC8544_CCSRBAR_BASE,
MPC8544_CCSRBAR_SIZE);
/* XXX should contain a reasonable value */
qemu_devtree_setprop_cell(fdt, soc, "bus-frequency", 0);
snprintf(mpic, sizeof(mpic), "%s/pic@%llx", soc, MPC8544_MPIC_REGS_OFFSET);
qemu_devtree_add_subnode(fdt, mpic);
qemu_devtree_setprop_string(fdt, mpic, "device_type", "open-pic");
qemu_devtree_setprop_string(fdt, mpic, "compatible", "fsl,mpic");
qemu_devtree_setprop_cells(fdt, mpic, "reg", MPC8544_MPIC_REGS_OFFSET,
0x40000);
qemu_devtree_setprop_cell(fdt, mpic, "#address-cells", 0);
qemu_devtree_setprop_cell(fdt, mpic, "#interrupt-cells", 2);
mpic_ph = qemu_devtree_alloc_phandle(fdt);
qemu_devtree_setprop_cell(fdt, mpic, "phandle", mpic_ph);
qemu_devtree_setprop_cell(fdt, mpic, "linux,phandle", mpic_ph);
qemu_devtree_setprop(fdt, mpic, "interrupt-controller", NULL, 0);
/*
* We have to generate ser1 first, because Linux takes the first
* device it finds in the dt as serial output device. And we generate
* devices in reverse order to the dt.
*/
dt_serial_create(fdt, MPC8544_SERIAL1_REGS_OFFSET,
soc, mpic, "serial1", 1, false);
dt_serial_create(fdt, MPC8544_SERIAL0_REGS_OFFSET,
soc, mpic, "serial0", 0, true);
snprintf(gutil, sizeof(gutil), "%s/global-utilities@%llx", soc,
MPC8544_UTIL_OFFSET);
qemu_devtree_add_subnode(fdt, gutil);
qemu_devtree_setprop_string(fdt, gutil, "compatible", "fsl,mpc8544-guts");
qemu_devtree_setprop_cells(fdt, gutil, "reg", MPC8544_UTIL_OFFSET, 0x1000);
qemu_devtree_setprop(fdt, gutil, "fsl,has-rstcr", NULL, 0);
snprintf(msi, sizeof(msi), "/%s/msi@%llx", soc, MPC8544_MSI_REGS_OFFSET);
qemu_devtree_add_subnode(fdt, msi);
qemu_devtree_setprop_string(fdt, msi, "compatible", "fsl,mpic-msi");
qemu_devtree_setprop_cells(fdt, msi, "reg", MPC8544_MSI_REGS_OFFSET, 0x200);
msi_ph = qemu_devtree_alloc_phandle(fdt);
qemu_devtree_setprop_cells(fdt, msi, "msi-available-ranges", 0x0, 0x100);
qemu_devtree_setprop_phandle(fdt, msi, "interrupt-parent", mpic);
qemu_devtree_setprop_cells(fdt, msi, "interrupts",
0xe0, 0x0,
0xe1, 0x0,
0xe2, 0x0,
0xe3, 0x0,
0xe4, 0x0,
0xe5, 0x0,
0xe6, 0x0,
0xe7, 0x0);
qemu_devtree_setprop_cell(fdt, msi, "phandle", msi_ph);
qemu_devtree_setprop_cell(fdt, msi, "linux,phandle", msi_ph);
snprintf(pci, sizeof(pci), "/pci@%llx", MPC8544_PCI_REGS_BASE);
qemu_devtree_add_subnode(fdt, pci);
qemu_devtree_setprop_cell(fdt, pci, "cell-index", 0);
qemu_devtree_setprop_string(fdt, pci, "compatible", "fsl,mpc8540-pci");
qemu_devtree_setprop_string(fdt, pci, "device_type", "pci");
qemu_devtree_setprop_cells(fdt, pci, "interrupt-map-mask", 0xf800, 0x0,
0x0, 0x7);
pci_map = pci_map_create(fdt, qemu_devtree_get_phandle(fdt, mpic),
params->pci_first_slot, params->pci_nr_slots,
&len);
qemu_devtree_setprop(fdt, pci, "interrupt-map", pci_map, len);
qemu_devtree_setprop_phandle(fdt, pci, "interrupt-parent", mpic);
qemu_devtree_setprop_cells(fdt, pci, "interrupts", 24, 2);
qemu_devtree_setprop_cells(fdt, pci, "bus-range", 0, 255);
for (i = 0; i < 14; i++) {
pci_ranges[i] = cpu_to_be32(pci_ranges[i]);
}
qemu_devtree_setprop_cell(fdt, pci, "fsl,msi", msi_ph);
qemu_devtree_setprop(fdt, pci, "ranges", pci_ranges, sizeof(pci_ranges));
qemu_devtree_setprop_cells(fdt, pci, "reg", MPC8544_PCI_REGS_BASE >> 32,
MPC8544_PCI_REGS_BASE, 0, 0x1000);
qemu_devtree_setprop_cell(fdt, pci, "clock-frequency", 66666666);
qemu_devtree_setprop_cell(fdt, pci, "#interrupt-cells", 1);
qemu_devtree_setprop_cell(fdt, pci, "#size-cells", 2);
qemu_devtree_setprop_cell(fdt, pci, "#address-cells", 3);
qemu_devtree_setprop_string(fdt, "/aliases", "pci0", pci);
params->fixup_devtree(params, fdt);
if (toplevel_compat) {
qemu_devtree_setprop(fdt, "/", "compatible", toplevel_compat,
strlen(toplevel_compat) + 1);
}
done:
qemu_devtree_dumpdtb(fdt, fdt_size);
ret = rom_add_blob_fixed(BINARY_DEVICE_TREE_FILE, fdt, fdt_size, addr);
if (ret < 0) {
goto out;
}
g_free(fdt);
ret = fdt_size;
out:
g_free(pci_map);
return ret;
}
/* Create -kernel TLB entries for BookE. */
static inline hwaddr booke206_page_size_to_tlb(uint64_t size)
{
return 63 - clz64(size >> 10);
}
static void mmubooke_create_initial_mapping(CPUPPCState *env)
{
struct boot_info *bi = env->load_info;
ppcmas_tlb_t *tlb = booke206_get_tlbm(env, 1, 0, 0);
hwaddr size, dt_end;
int ps;
/* Our initial TLB entry needs to cover everything from 0 to
the device tree top */
dt_end = bi->dt_base + bi->dt_size;
ps = booke206_page_size_to_tlb(dt_end) + 1;
if (ps & 1) {
/* e500v2 can only do even TLB size bits */
ps++;
}
size = (ps << MAS1_TSIZE_SHIFT);
tlb->mas1 = MAS1_VALID | size;
tlb->mas2 = 0;
tlb->mas7_3 = 0;
tlb->mas7_3 |= MAS3_UR | MAS3_UW | MAS3_UX | MAS3_SR | MAS3_SW | MAS3_SX;
env->tlb_dirty = true;
}
static void ppce500_cpu_reset_sec(void *opaque)
{
PowerPCCPU *cpu = opaque;
CPUState *cs = CPU(cpu);
CPUPPCState *env = &cpu->env;
cpu_reset(cs);
/* Secondary CPU starts in halted state for now. Needs to change when
implementing non-kernel boot. */
cs->halted = 1;
env->exception_index = EXCP_HLT;
}
static void ppce500_cpu_reset(void *opaque)
{
PowerPCCPU *cpu = opaque;
CPUState *cs = CPU(cpu);
CPUPPCState *env = &cpu->env;
struct boot_info *bi = env->load_info;
cpu_reset(cs);
/* Set initial guest state. */
cs->halted = 0;
env->gpr[1] = (16<<20) - 8;
env->gpr[3] = bi->dt_base;
env->nip = bi->entry;
mmubooke_create_initial_mapping(env);
}
void ppce500_init(PPCE500Params *params)
{
MemoryRegion *address_space_mem = get_system_memory();
MemoryRegion *ram = g_new(MemoryRegion, 1);
PCIBus *pci_bus;
CPUPPCState *env = NULL;
uint64_t elf_entry;
uint64_t elf_lowaddr;
hwaddr entry=0;
hwaddr loadaddr=UIMAGE_LOAD_BASE;
target_long kernel_size=0;
target_ulong dt_base = 0;
target_ulong initrd_base = 0;
target_long initrd_size = 0;
target_ulong cur_base = 0;
int i = 0, j, k;
unsigned int pci_irq_nrs[4] = {1, 2, 3, 4};
qemu_irq **irqs, *mpic;
DeviceState *dev;
CPUPPCState *firstenv = NULL;
MemoryRegion *ccsr_addr_space;
SysBusDevice *s;
PPCE500CCSRState *ccsr;
/* Setup CPUs */
if (params->cpu_model == NULL) {
params->cpu_model = "e500v2_v30";
}
irqs = g_malloc0(smp_cpus * sizeof(qemu_irq *));
irqs[0] = g_malloc0(smp_cpus * sizeof(qemu_irq) * OPENPIC_OUTPUT_NB);
for (i = 0; i < smp_cpus; i++) {
PowerPCCPU *cpu;
CPUState *cs;
qemu_irq *input;
cpu = cpu_ppc_init(params->cpu_model);
if (cpu == NULL) {
fprintf(stderr, "Unable to initialize CPU!\n");
exit(1);
}
env = &cpu->env;
cs = CPU(cpu);
if (!firstenv) {
firstenv = env;
}
irqs[i] = irqs[0] + (i * OPENPIC_OUTPUT_NB);
input = (qemu_irq *)env->irq_inputs;
irqs[i][OPENPIC_OUTPUT_INT] = input[PPCE500_INPUT_INT];
irqs[i][OPENPIC_OUTPUT_CINT] = input[PPCE500_INPUT_CINT];
env->spr[SPR_BOOKE_PIR] = cs->cpu_index = i;
env->mpic_iack = MPC8544_CCSRBAR_BASE +
MPC8544_MPIC_REGS_OFFSET + 0xa0;
ppc_booke_timers_init(cpu, 400000000, PPC_TIMER_E500);
/* Register reset handler */
if (!i) {
/* Primary CPU */
struct boot_info *boot_info;
boot_info = g_malloc0(sizeof(struct boot_info));
qemu_register_reset(ppce500_cpu_reset, cpu);
env->load_info = boot_info;
} else {
/* Secondary CPUs */
qemu_register_reset(ppce500_cpu_reset_sec, cpu);
}
}
env = firstenv;
/* Fixup Memory size on a alignment boundary */
ram_size &= ~(RAM_SIZES_ALIGN - 1);
/* Register Memory */
memory_region_init_ram(ram, "mpc8544ds.ram", ram_size);
vmstate_register_ram_global(ram);
memory_region_add_subregion(address_space_mem, 0, ram);
dev = qdev_create(NULL, "e500-ccsr");
object_property_add_child(qdev_get_machine(), "e500-ccsr",
OBJECT(dev), NULL);
qdev_init_nofail(dev);
ccsr = CCSR(dev);
ccsr_addr_space = &ccsr->ccsr_space;
memory_region_add_subregion(address_space_mem, MPC8544_CCSRBAR_BASE,
ccsr_addr_space);
/* MPIC */
mpic = g_new(qemu_irq, 256);
dev = qdev_create(NULL, "openpic");
qdev_prop_set_uint32(dev, "nb_cpus", smp_cpus);
qdev_prop_set_uint32(dev, "model", params->mpic_version);
qdev_init_nofail(dev);
s = SYS_BUS_DEVICE(dev);
k = 0;
for (i = 0; i < smp_cpus; i++) {
for (j = 0; j < OPENPIC_OUTPUT_NB; j++) {
sysbus_connect_irq(s, k++, irqs[i][j]);
}
}
for (i = 0; i < 256; i++) {
mpic[i] = qdev_get_gpio_in(dev, i);
}
memory_region_add_subregion(ccsr_addr_space, MPC8544_MPIC_REGS_OFFSET,
s->mmio[0].memory);
/* Serial */
if (serial_hds[0]) {
serial_mm_init(ccsr_addr_space, MPC8544_SERIAL0_REGS_OFFSET,
0, mpic[42], 399193,
serial_hds[0], DEVICE_BIG_ENDIAN);
}
if (serial_hds[1]) {
serial_mm_init(ccsr_addr_space, MPC8544_SERIAL1_REGS_OFFSET,
0, mpic[42], 399193,
serial_hds[1], DEVICE_BIG_ENDIAN);
}
/* General Utility device */
dev = qdev_create(NULL, "mpc8544-guts");
qdev_init_nofail(dev);
s = SYS_BUS_DEVICE(dev);
memory_region_add_subregion(ccsr_addr_space, MPC8544_UTIL_OFFSET,
sysbus_mmio_get_region(s, 0));
/* PCI */
dev = qdev_create(NULL, "e500-pcihost");
qdev_prop_set_uint32(dev, "first_slot", params->pci_first_slot);
qdev_init_nofail(dev);
s = SYS_BUS_DEVICE(dev);
sysbus_connect_irq(s, 0, mpic[pci_irq_nrs[0]]);
sysbus_connect_irq(s, 1, mpic[pci_irq_nrs[1]]);
sysbus_connect_irq(s, 2, mpic[pci_irq_nrs[2]]);
sysbus_connect_irq(s, 3, mpic[pci_irq_nrs[3]]);
memory_region_add_subregion(ccsr_addr_space, MPC8544_PCI_REGS_OFFSET,
sysbus_mmio_get_region(s, 0));
pci_bus = (PCIBus *)qdev_get_child_bus(dev, "pci.0");
if (!pci_bus)
printf("couldn't create PCI controller!\n");
sysbus_mmio_map(SYS_BUS_DEVICE(dev), 1, MPC8544_PCI_IO);
if (pci_bus) {
/* Register network interfaces. */
for (i = 0; i < nb_nics; i++) {
pci_nic_init_nofail(&nd_table[i], "virtio", NULL);
}
}
/* Register spinning region */
sysbus_create_simple("e500-spin", MPC8544_SPIN_BASE, NULL);
/* Load kernel. */
if (params->kernel_filename) {
kernel_size = load_uimage(params->kernel_filename, &entry,
&loadaddr, NULL);
if (kernel_size < 0) {
kernel_size = load_elf(params->kernel_filename, NULL, NULL,
&elf_entry, &elf_lowaddr, NULL, 1,
ELF_MACHINE, 0);
entry = elf_entry;
loadaddr = elf_lowaddr;
}
/* XXX try again as binary */
if (kernel_size < 0) {
fprintf(stderr, "qemu: could not load kernel '%s'\n",
params->kernel_filename);
exit(1);
}
cur_base = loadaddr + kernel_size;
/* Reserve space for dtb */
dt_base = (cur_base + DTC_LOAD_PAD) & ~DTC_PAD_MASK;
cur_base += DTB_MAX_SIZE;
}
/* Load initrd. */
if (params->initrd_filename) {
initrd_base = (cur_base + INITRD_LOAD_PAD) & ~INITRD_PAD_MASK;
initrd_size = load_image_targphys(params->initrd_filename, initrd_base,
ram_size - initrd_base);
if (initrd_size < 0) {
fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
params->initrd_filename);
exit(1);
}
cur_base = initrd_base + initrd_size;
}
/* If we're loading a kernel directly, we must load the device tree too. */
if (params->kernel_filename) {
struct boot_info *boot_info;
int dt_size;
dt_size = ppce500_load_device_tree(env, params, dt_base, initrd_base,
initrd_size);
if (dt_size < 0) {
fprintf(stderr, "couldn't load device tree\n");
exit(1);
}
assert(dt_size < DTB_MAX_SIZE);
boot_info = env->load_info;
boot_info->entry = entry;
boot_info->dt_base = dt_base;
boot_info->dt_size = dt_size;
}
if (kvm_enabled()) {
kvmppc_init();
}
}
static int e500_ccsr_initfn(SysBusDevice *dev)
{
PPCE500CCSRState *ccsr;
ccsr = CCSR(dev);
memory_region_init(&ccsr->ccsr_space, "e500-ccsr",
MPC8544_CCSRBAR_SIZE);
return 0;
}
static void e500_ccsr_class_init(ObjectClass *klass, void *data)
{
SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
k->init = e500_ccsr_initfn;
}
static const TypeInfo e500_ccsr_info = {
.name = TYPE_CCSR,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(PPCE500CCSRState),
.class_init = e500_ccsr_class_init,
};
static void e500_register_types(void)
{
type_register_static(&e500_ccsr_info);
}
type_init(e500_register_types)