qemu/hw/pci-host/pnv_phb4.c
Daniel Henrique Barboza 9747d061ca pnv_phb4.c: do not set 'root-bus' as bus name
This change has the same motivation as the one done for pnv-phb3-root-bus
buses previously. Defaulting every bus to 'root-bus' makes it impossible to attach
root ports to specific buses and it doesn't allow for custom bus
naming because we're ignoring the 'id' value when registering the root
bus.

After this patch, creating pnv-phb4 devices with 'id' being set will
result in the following qtree:

qemu-system-ppc64 -m 4G -machine powernv9,accel=tcg \
   -device pnv-phb4,chip-id=0,index=0,id=pcie.0 \
   -device pnv-phb4,chip-id=1,index=4,id=pcie.1

bus: main-system-bus
  type System
  dev: pnv-phb4, id "pcie.1"
    index = 4 (0x4)
    chip-id = 1 (0x1)
    version = 704374636546 (0xa400000002)
    device-id = 1217 (0x4c1)
    x-config-reg-migration-enabled = true
    bypass-iommu = false
    bus: pcie.1
      type pnv-phb4-root-bus
  dev: pnv-phb4, id "pcie.0"
    index = 0 (0x0)
    chip-id = 0 (0x0)
    version = 704374636546 (0xa400000002)
    device-id = 1217 (0x4c1)
    x-config-reg-migration-enabled = true
    bypass-iommu = false
    bus: pcie.0
      type pnv-phb4-root-bus

And without setting any ids:

qemu-system-ppc64 -m 4G -machine powernv9,accel=tcg \
   -device pnv-phb4,chip-id=0,index=0,id=pcie.0 \
   -device pnv-phb4,chip-id=1,index=4,id=pcie.1

bus: main-system-bus
  type System
  dev: pnv-phb4, id ""
    index = 4 (0x4)
    chip-id = 1 (0x1)
    version = 704374636546 (0xa400000002)
    device-id = 1217 (0x4c1)
    x-config-reg-migration-enabled = true
    bypass-iommu = false
    bus: pnv-phb4-root-bus.1
      type pnv-phb4-root-bus
  dev: pnv-phb4, id ""
    index = 0 (0x0)
    chip-id = 0 (0x0)
    version = 704374636546 (0xa400000002)
    device-id = 1217 (0x4c1)
    x-config-reg-migration-enabled = true
    bypass-iommu = false
    bus: pnv-phb4-root-bus.0
      type pnv-phb4-root-bus

Signed-off-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20211228193806.1198496-17-danielhb413@gmail.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
2022-01-04 07:55:34 +01:00

1426 lines
42 KiB
C

/*
* QEMU PowerPC PowerNV (POWER9) PHB4 model
*
* Copyright (c) 2018-2020, IBM Corporation.
*
* This code is licensed under the GPL version 2 or later. See the
* COPYING file in the top-level directory.
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "qapi/visitor.h"
#include "qapi/error.h"
#include "qemu-common.h"
#include "monitor/monitor.h"
#include "target/ppc/cpu.h"
#include "hw/pci-host/pnv_phb4_regs.h"
#include "hw/pci-host/pnv_phb4.h"
#include "hw/pci/pcie_host.h"
#include "hw/pci/pcie_port.h"
#include "hw/ppc/pnv.h"
#include "hw/ppc/pnv_xscom.h"
#include "hw/irq.h"
#include "hw/qdev-properties.h"
#include "qom/object.h"
#include "trace.h"
#define phb_error(phb, fmt, ...) \
qemu_log_mask(LOG_GUEST_ERROR, "phb4[%d:%d]: " fmt "\n", \
(phb)->chip_id, (phb)->phb_id, ## __VA_ARGS__)
/*
* QEMU version of the GETFIELD/SETFIELD macros
*
* These are common with the PnvXive model.
*/
static inline uint64_t GETFIELD(uint64_t mask, uint64_t word)
{
return (word & mask) >> ctz64(mask);
}
static inline uint64_t SETFIELD(uint64_t mask, uint64_t word,
uint64_t value)
{
return (word & ~mask) | ((value << ctz64(mask)) & mask);
}
static PCIDevice *pnv_phb4_find_cfg_dev(PnvPHB4 *phb)
{
PCIHostState *pci = PCI_HOST_BRIDGE(phb);
uint64_t addr = phb->regs[PHB_CONFIG_ADDRESS >> 3];
uint8_t bus, devfn;
if (!(addr >> 63)) {
return NULL;
}
bus = (addr >> 52) & 0xff;
devfn = (addr >> 44) & 0xff;
/* We don't access the root complex this way */
if (bus == 0 && devfn == 0) {
return NULL;
}
return pci_find_device(pci->bus, bus, devfn);
}
/*
* The CONFIG_DATA register expects little endian accesses, but as the
* region is big endian, we have to swap the value.
*/
static void pnv_phb4_config_write(PnvPHB4 *phb, unsigned off,
unsigned size, uint64_t val)
{
uint32_t cfg_addr, limit;
PCIDevice *pdev;
pdev = pnv_phb4_find_cfg_dev(phb);
if (!pdev) {
return;
}
cfg_addr = (phb->regs[PHB_CONFIG_ADDRESS >> 3] >> 32) & 0xffc;
cfg_addr |= off;
limit = pci_config_size(pdev);
if (limit <= cfg_addr) {
/*
* conventional pci device can be behind pcie-to-pci bridge.
* 256 <= addr < 4K has no effects.
*/
return;
}
switch (size) {
case 1:
break;
case 2:
val = bswap16(val);
break;
case 4:
val = bswap32(val);
break;
default:
g_assert_not_reached();
}
pci_host_config_write_common(pdev, cfg_addr, limit, val, size);
}
static uint64_t pnv_phb4_config_read(PnvPHB4 *phb, unsigned off,
unsigned size)
{
uint32_t cfg_addr, limit;
PCIDevice *pdev;
uint64_t val;
pdev = pnv_phb4_find_cfg_dev(phb);
if (!pdev) {
return ~0ull;
}
cfg_addr = (phb->regs[PHB_CONFIG_ADDRESS >> 3] >> 32) & 0xffc;
cfg_addr |= off;
limit = pci_config_size(pdev);
if (limit <= cfg_addr) {
/*
* conventional pci device can be behind pcie-to-pci bridge.
* 256 <= addr < 4K has no effects.
*/
return ~0ull;
}
val = pci_host_config_read_common(pdev, cfg_addr, limit, size);
switch (size) {
case 1:
return val;
case 2:
return bswap16(val);
case 4:
return bswap32(val);
default:
g_assert_not_reached();
}
}
/*
* Root complex register accesses are memory mapped.
*/
static void pnv_phb4_rc_config_write(PnvPHB4 *phb, unsigned off,
unsigned size, uint64_t val)
{
PCIHostState *pci = PCI_HOST_BRIDGE(phb);
PCIDevice *pdev;
if (size != 4) {
phb_error(phb, "rc_config_write invalid size %d\n", size);
return;
}
pdev = pci_find_device(pci->bus, 0, 0);
assert(pdev);
pci_host_config_write_common(pdev, off, PHB_RC_CONFIG_SIZE,
bswap32(val), 4);
}
static uint64_t pnv_phb4_rc_config_read(PnvPHB4 *phb, unsigned off,
unsigned size)
{
PCIHostState *pci = PCI_HOST_BRIDGE(phb);
PCIDevice *pdev;
uint64_t val;
if (size != 4) {
phb_error(phb, "rc_config_read invalid size %d\n", size);
return ~0ull;
}
pdev = pci_find_device(pci->bus, 0, 0);
assert(pdev);
val = pci_host_config_read_common(pdev, off, PHB_RC_CONFIG_SIZE, 4);
return bswap32(val);
}
static void pnv_phb4_check_mbt(PnvPHB4 *phb, uint32_t index)
{
uint64_t base, start, size, mbe0, mbe1;
MemoryRegion *parent;
char name[64];
/* Unmap first */
if (memory_region_is_mapped(&phb->mr_mmio[index])) {
/* Should we destroy it in RCU friendly way... ? */
memory_region_del_subregion(phb->mr_mmio[index].container,
&phb->mr_mmio[index]);
}
/* Get table entry */
mbe0 = phb->ioda_MBT[(index << 1)];
mbe1 = phb->ioda_MBT[(index << 1) + 1];
if (!(mbe0 & IODA3_MBT0_ENABLE)) {
return;
}
/* Grab geometry from registers */
base = GETFIELD(IODA3_MBT0_BASE_ADDR, mbe0) << 12;
size = GETFIELD(IODA3_MBT1_MASK, mbe1) << 12;
size |= 0xff00000000000000ull;
size = ~size + 1;
/* Calculate PCI side start address based on M32/M64 window type */
if (mbe0 & IODA3_MBT0_TYPE_M32) {
start = phb->regs[PHB_M32_START_ADDR >> 3];
if ((start + size) > 0x100000000ull) {
phb_error(phb, "M32 set beyond 4GB boundary !");
size = 0x100000000 - start;
}
} else {
start = base | (phb->regs[PHB_M64_UPPER_BITS >> 3]);
}
/* TODO: Figure out how to implemet/decode AOMASK */
/* Check if it matches an enabled MMIO region in the PEC stack */
if (memory_region_is_mapped(&phb->stack->mmbar0) &&
base >= phb->stack->mmio0_base &&
(base + size) <= (phb->stack->mmio0_base + phb->stack->mmio0_size)) {
parent = &phb->stack->mmbar0;
base -= phb->stack->mmio0_base;
} else if (memory_region_is_mapped(&phb->stack->mmbar1) &&
base >= phb->stack->mmio1_base &&
(base + size) <= (phb->stack->mmio1_base + phb->stack->mmio1_size)) {
parent = &phb->stack->mmbar1;
base -= phb->stack->mmio1_base;
} else {
phb_error(phb, "PHB MBAR %d out of parent bounds", index);
return;
}
/* Create alias (better name ?) */
snprintf(name, sizeof(name), "phb4-mbar%d", index);
memory_region_init_alias(&phb->mr_mmio[index], OBJECT(phb), name,
&phb->pci_mmio, start, size);
memory_region_add_subregion(parent, base, &phb->mr_mmio[index]);
}
static void pnv_phb4_check_all_mbt(PnvPHB4 *phb)
{
uint64_t i;
uint32_t num_windows = phb->big_phb ? PNV_PHB4_MAX_MMIO_WINDOWS :
PNV_PHB4_MIN_MMIO_WINDOWS;
for (i = 0; i < num_windows; i++) {
pnv_phb4_check_mbt(phb, i);
}
}
static uint64_t *pnv_phb4_ioda_access(PnvPHB4 *phb,
unsigned *out_table, unsigned *out_idx)
{
uint64_t adreg = phb->regs[PHB_IODA_ADDR >> 3];
unsigned int index = GETFIELD(PHB_IODA_AD_TADR, adreg);
unsigned int table = GETFIELD(PHB_IODA_AD_TSEL, adreg);
unsigned int mask;
uint64_t *tptr = NULL;
switch (table) {
case IODA3_TBL_LIST:
tptr = phb->ioda_LIST;
mask = 7;
break;
case IODA3_TBL_MIST:
tptr = phb->ioda_MIST;
mask = phb->big_phb ? PNV_PHB4_MAX_MIST : (PNV_PHB4_MAX_MIST >> 1);
mask -= 1;
break;
case IODA3_TBL_RCAM:
mask = phb->big_phb ? 127 : 63;
break;
case IODA3_TBL_MRT:
mask = phb->big_phb ? 15 : 7;
break;
case IODA3_TBL_PESTA:
case IODA3_TBL_PESTB:
mask = phb->big_phb ? PNV_PHB4_MAX_PEs : (PNV_PHB4_MAX_PEs >> 1);
mask -= 1;
break;
case IODA3_TBL_TVT:
tptr = phb->ioda_TVT;
mask = phb->big_phb ? PNV_PHB4_MAX_TVEs : (PNV_PHB4_MAX_TVEs >> 1);
mask -= 1;
break;
case IODA3_TBL_TCR:
case IODA3_TBL_TDR:
mask = phb->big_phb ? 1023 : 511;
break;
case IODA3_TBL_MBT:
tptr = phb->ioda_MBT;
mask = phb->big_phb ? PNV_PHB4_MAX_MBEs : (PNV_PHB4_MAX_MBEs >> 1);
mask -= 1;
break;
case IODA3_TBL_MDT:
tptr = phb->ioda_MDT;
mask = phb->big_phb ? PNV_PHB4_MAX_PEs : (PNV_PHB4_MAX_PEs >> 1);
mask -= 1;
break;
case IODA3_TBL_PEEV:
tptr = phb->ioda_PEEV;
mask = phb->big_phb ? PNV_PHB4_MAX_PEEVs : (PNV_PHB4_MAX_PEEVs >> 1);
mask -= 1;
break;
default:
phb_error(phb, "invalid IODA table %d", table);
return NULL;
}
index &= mask;
if (out_idx) {
*out_idx = index;
}
if (out_table) {
*out_table = table;
}
if (tptr) {
tptr += index;
}
if (adreg & PHB_IODA_AD_AUTOINC) {
index = (index + 1) & mask;
adreg = SETFIELD(PHB_IODA_AD_TADR, adreg, index);
}
phb->regs[PHB_IODA_ADDR >> 3] = adreg;
return tptr;
}
static uint64_t pnv_phb4_ioda_read(PnvPHB4 *phb)
{
unsigned table, idx;
uint64_t *tptr;
tptr = pnv_phb4_ioda_access(phb, &table, &idx);
if (!tptr) {
/* Special PESTA case */
if (table == IODA3_TBL_PESTA) {
return ((uint64_t)(phb->ioda_PEST_AB[idx] & 1)) << 63;
} else if (table == IODA3_TBL_PESTB) {
return ((uint64_t)(phb->ioda_PEST_AB[idx] & 2)) << 62;
}
/* Return 0 on unsupported tables, not ff's */
return 0;
}
return *tptr;
}
static void pnv_phb4_ioda_write(PnvPHB4 *phb, uint64_t val)
{
unsigned table, idx;
uint64_t *tptr;
tptr = pnv_phb4_ioda_access(phb, &table, &idx);
if (!tptr) {
/* Special PESTA case */
if (table == IODA3_TBL_PESTA) {
phb->ioda_PEST_AB[idx] &= ~1;
phb->ioda_PEST_AB[idx] |= (val >> 63) & 1;
} else if (table == IODA3_TBL_PESTB) {
phb->ioda_PEST_AB[idx] &= ~2;
phb->ioda_PEST_AB[idx] |= (val >> 62) & 2;
}
return;
}
/* Handle side effects */
switch (table) {
case IODA3_TBL_LIST:
break;
case IODA3_TBL_MIST: {
/* Special mask for MIST partial write */
uint64_t adreg = phb->regs[PHB_IODA_ADDR >> 3];
uint32_t mmask = GETFIELD(PHB_IODA_AD_MIST_PWV, adreg);
uint64_t v = *tptr;
if (mmask == 0) {
mmask = 0xf;
}
if (mmask & 8) {
v &= 0x0000ffffffffffffull;
v |= 0xcfff000000000000ull & val;
}
if (mmask & 4) {
v &= 0xffff0000ffffffffull;
v |= 0x0000cfff00000000ull & val;
}
if (mmask & 2) {
v &= 0xffffffff0000ffffull;
v |= 0x00000000cfff0000ull & val;
}
if (mmask & 1) {
v &= 0xffffffffffff0000ull;
v |= 0x000000000000cfffull & val;
}
*tptr = v;
break;
}
case IODA3_TBL_MBT:
*tptr = val;
/* Copy accross the valid bit to the other half */
phb->ioda_MBT[idx ^ 1] &= 0x7fffffffffffffffull;
phb->ioda_MBT[idx ^ 1] |= 0x8000000000000000ull & val;
/* Update mappings */
pnv_phb4_check_mbt(phb, idx >> 1);
break;
default:
*tptr = val;
}
}
static void pnv_phb4_rtc_invalidate(PnvPHB4 *phb, uint64_t val)
{
PnvPhb4DMASpace *ds;
/* Always invalidate all for now ... */
QLIST_FOREACH(ds, &phb->dma_spaces, list) {
ds->pe_num = PHB_INVALID_PE;
}
}
static void pnv_phb4_update_msi_regions(PnvPhb4DMASpace *ds)
{
uint64_t cfg = ds->phb->regs[PHB_PHB4_CONFIG >> 3];
if (cfg & PHB_PHB4C_32BIT_MSI_EN) {
if (!memory_region_is_mapped(MEMORY_REGION(&ds->msi32_mr))) {
memory_region_add_subregion(MEMORY_REGION(&ds->dma_mr),
0xffff0000, &ds->msi32_mr);
}
} else {
if (memory_region_is_mapped(MEMORY_REGION(&ds->msi32_mr))) {
memory_region_del_subregion(MEMORY_REGION(&ds->dma_mr),
&ds->msi32_mr);
}
}
if (cfg & PHB_PHB4C_64BIT_MSI_EN) {
if (!memory_region_is_mapped(MEMORY_REGION(&ds->msi64_mr))) {
memory_region_add_subregion(MEMORY_REGION(&ds->dma_mr),
(1ull << 60), &ds->msi64_mr);
}
} else {
if (memory_region_is_mapped(MEMORY_REGION(&ds->msi64_mr))) {
memory_region_del_subregion(MEMORY_REGION(&ds->dma_mr),
&ds->msi64_mr);
}
}
}
static void pnv_phb4_update_all_msi_regions(PnvPHB4 *phb)
{
PnvPhb4DMASpace *ds;
QLIST_FOREACH(ds, &phb->dma_spaces, list) {
pnv_phb4_update_msi_regions(ds);
}
}
static void pnv_phb4_update_xsrc(PnvPHB4 *phb)
{
int shift, flags, i, lsi_base;
XiveSource *xsrc = &phb->xsrc;
/* The XIVE source characteristics can be set at run time */
if (phb->regs[PHB_CTRLR >> 3] & PHB_CTRLR_IRQ_PGSZ_64K) {
shift = XIVE_ESB_64K;
} else {
shift = XIVE_ESB_4K;
}
if (phb->regs[PHB_CTRLR >> 3] & PHB_CTRLR_IRQ_STORE_EOI) {
flags = XIVE_SRC_STORE_EOI;
} else {
flags = 0;
}
phb->xsrc.esb_shift = shift;
phb->xsrc.esb_flags = flags;
lsi_base = GETFIELD(PHB_LSI_SRC_ID, phb->regs[PHB_LSI_SOURCE_ID >> 3]);
lsi_base <<= 3;
/* TODO: handle reset values of PHB_LSI_SRC_ID */
if (!lsi_base) {
return;
}
/* TODO: need a xive_source_irq_reset_lsi() */
bitmap_zero(xsrc->lsi_map, xsrc->nr_irqs);
for (i = 0; i < xsrc->nr_irqs; i++) {
bool msi = (i < lsi_base || i >= (lsi_base + 8));
if (!msi) {
xive_source_irq_set_lsi(xsrc, i);
}
}
}
static void pnv_phb4_reg_write(void *opaque, hwaddr off, uint64_t val,
unsigned size)
{
PnvPHB4 *phb = PNV_PHB4(opaque);
bool changed;
/* Special case outbound configuration data */
if ((off & 0xfffc) == PHB_CONFIG_DATA) {
pnv_phb4_config_write(phb, off & 0x3, size, val);
return;
}
/* Special case RC configuration space */
if ((off & 0xf800) == PHB_RC_CONFIG_BASE) {
pnv_phb4_rc_config_write(phb, off & 0x7ff, size, val);
return;
}
/* Other registers are 64-bit only */
if (size != 8 || off & 0x7) {
phb_error(phb, "Invalid register access, offset: 0x%"PRIx64" size: %d",
off, size);
return;
}
/* Handle masking */
switch (off) {
case PHB_LSI_SOURCE_ID:
val &= PHB_LSI_SRC_ID;
break;
case PHB_M64_UPPER_BITS:
val &= 0xff00000000000000ull;
break;
/* TCE Kill */
case PHB_TCE_KILL:
/* Clear top 3 bits which HW does to indicate successful queuing */
val &= ~(PHB_TCE_KILL_ALL | PHB_TCE_KILL_PE | PHB_TCE_KILL_ONE);
break;
case PHB_Q_DMA_R:
/*
* This is enough logic to make SW happy but we aren't
* actually quiescing the DMAs
*/
if (val & PHB_Q_DMA_R_AUTORESET) {
val = 0;
} else {
val &= PHB_Q_DMA_R_QUIESCE_DMA;
}
break;
/* LEM stuff */
case PHB_LEM_FIR_AND_MASK:
phb->regs[PHB_LEM_FIR_ACCUM >> 3] &= val;
return;
case PHB_LEM_FIR_OR_MASK:
phb->regs[PHB_LEM_FIR_ACCUM >> 3] |= val;
return;
case PHB_LEM_ERROR_AND_MASK:
phb->regs[PHB_LEM_ERROR_MASK >> 3] &= val;
return;
case PHB_LEM_ERROR_OR_MASK:
phb->regs[PHB_LEM_ERROR_MASK >> 3] |= val;
return;
case PHB_LEM_WOF:
val = 0;
break;
/* TODO: More regs ..., maybe create a table with masks... */
/* Read only registers */
case PHB_CPU_LOADSTORE_STATUS:
case PHB_ETU_ERR_SUMMARY:
case PHB_PHB4_GEN_CAP:
case PHB_PHB4_TCE_CAP:
case PHB_PHB4_IRQ_CAP:
case PHB_PHB4_EEH_CAP:
return;
}
/* Record whether it changed */
changed = phb->regs[off >> 3] != val;
/* Store in register cache first */
phb->regs[off >> 3] = val;
/* Handle side effects */
switch (off) {
case PHB_PHB4_CONFIG:
if (changed) {
pnv_phb4_update_all_msi_regions(phb);
}
break;
case PHB_M32_START_ADDR:
case PHB_M64_UPPER_BITS:
if (changed) {
pnv_phb4_check_all_mbt(phb);
}
break;
/* IODA table accesses */
case PHB_IODA_DATA0:
pnv_phb4_ioda_write(phb, val);
break;
/* RTC invalidation */
case PHB_RTC_INVALIDATE:
pnv_phb4_rtc_invalidate(phb, val);
break;
/* PHB Control (Affects XIVE source) */
case PHB_CTRLR:
case PHB_LSI_SOURCE_ID:
pnv_phb4_update_xsrc(phb);
break;
/* Silent simple writes */
case PHB_ASN_CMPM:
case PHB_CONFIG_ADDRESS:
case PHB_IODA_ADDR:
case PHB_TCE_KILL:
case PHB_TCE_SPEC_CTL:
case PHB_PEST_BAR:
case PHB_PELTV_BAR:
case PHB_RTT_BAR:
case PHB_LEM_FIR_ACCUM:
case PHB_LEM_ERROR_MASK:
case PHB_LEM_ACTION0:
case PHB_LEM_ACTION1:
case PHB_TCE_TAG_ENABLE:
case PHB_INT_NOTIFY_ADDR:
case PHB_INT_NOTIFY_INDEX:
case PHB_DMARD_SYNC:
break;
/* Noise on anything else */
default:
qemu_log_mask(LOG_UNIMP, "phb4: reg_write 0x%"PRIx64"=%"PRIx64"\n",
off, val);
}
}
static uint64_t pnv_phb4_reg_read(void *opaque, hwaddr off, unsigned size)
{
PnvPHB4 *phb = PNV_PHB4(opaque);
uint64_t val;
if ((off & 0xfffc) == PHB_CONFIG_DATA) {
return pnv_phb4_config_read(phb, off & 0x3, size);
}
/* Special case RC configuration space */
if ((off & 0xf800) == PHB_RC_CONFIG_BASE) {
return pnv_phb4_rc_config_read(phb, off & 0x7ff, size);
}
/* Other registers are 64-bit only */
if (size != 8 || off & 0x7) {
phb_error(phb, "Invalid register access, offset: 0x%"PRIx64" size: %d",
off, size);
return ~0ull;
}
/* Default read from cache */
val = phb->regs[off >> 3];
switch (off) {
case PHB_VERSION:
return phb->version;
/* Read-only */
case PHB_PHB4_GEN_CAP:
return 0xe4b8000000000000ull;
case PHB_PHB4_TCE_CAP:
return phb->big_phb ? 0x4008440000000400ull : 0x2008440000000200ull;
case PHB_PHB4_IRQ_CAP:
return phb->big_phb ? 0x0800000000001000ull : 0x0800000000000800ull;
case PHB_PHB4_EEH_CAP:
return phb->big_phb ? 0x2000000000000000ull : 0x1000000000000000ull;
/* IODA table accesses */
case PHB_IODA_DATA0:
return pnv_phb4_ioda_read(phb);
/* Link training always appears trained */
case PHB_PCIE_DLP_TRAIN_CTL:
/* TODO: Do something sensible with speed ? */
return PHB_PCIE_DLP_INBAND_PRESENCE | PHB_PCIE_DLP_TL_LINKACT;
/* DMA read sync: make it look like it's complete */
case PHB_DMARD_SYNC:
return PHB_DMARD_SYNC_COMPLETE;
/* Silent simple reads */
case PHB_LSI_SOURCE_ID:
case PHB_CPU_LOADSTORE_STATUS:
case PHB_ASN_CMPM:
case PHB_PHB4_CONFIG:
case PHB_M32_START_ADDR:
case PHB_CONFIG_ADDRESS:
case PHB_IODA_ADDR:
case PHB_RTC_INVALIDATE:
case PHB_TCE_KILL:
case PHB_TCE_SPEC_CTL:
case PHB_PEST_BAR:
case PHB_PELTV_BAR:
case PHB_RTT_BAR:
case PHB_M64_UPPER_BITS:
case PHB_CTRLR:
case PHB_LEM_FIR_ACCUM:
case PHB_LEM_ERROR_MASK:
case PHB_LEM_ACTION0:
case PHB_LEM_ACTION1:
case PHB_TCE_TAG_ENABLE:
case PHB_INT_NOTIFY_ADDR:
case PHB_INT_NOTIFY_INDEX:
case PHB_Q_DMA_R:
case PHB_ETU_ERR_SUMMARY:
break;
/* Noise on anything else */
default:
qemu_log_mask(LOG_UNIMP, "phb4: reg_read 0x%"PRIx64"=%"PRIx64"\n",
off, val);
}
return val;
}
static const MemoryRegionOps pnv_phb4_reg_ops = {
.read = pnv_phb4_reg_read,
.write = pnv_phb4_reg_write,
.valid.min_access_size = 1,
.valid.max_access_size = 8,
.impl.min_access_size = 1,
.impl.max_access_size = 8,
.endianness = DEVICE_BIG_ENDIAN,
};
static uint64_t pnv_phb4_xscom_read(void *opaque, hwaddr addr, unsigned size)
{
PnvPHB4 *phb = PNV_PHB4(opaque);
uint32_t reg = addr >> 3;
uint64_t val;
hwaddr offset;
switch (reg) {
case PHB_SCOM_HV_IND_ADDR:
return phb->scom_hv_ind_addr_reg;
case PHB_SCOM_HV_IND_DATA:
if (!(phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_VALID)) {
phb_error(phb, "Invalid indirect address");
return ~0ull;
}
size = (phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_4B) ? 4 : 8;
offset = GETFIELD(PHB_SCOM_HV_IND_ADDR_ADDR, phb->scom_hv_ind_addr_reg);
val = pnv_phb4_reg_read(phb, offset, size);
if (phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_AUTOINC) {
offset += size;
offset &= 0x3fff;
phb->scom_hv_ind_addr_reg = SETFIELD(PHB_SCOM_HV_IND_ADDR_ADDR,
phb->scom_hv_ind_addr_reg,
offset);
}
return val;
case PHB_SCOM_ETU_LEM_FIR:
case PHB_SCOM_ETU_LEM_FIR_AND:
case PHB_SCOM_ETU_LEM_FIR_OR:
case PHB_SCOM_ETU_LEM_FIR_MSK:
case PHB_SCOM_ETU_LEM_ERR_MSK_AND:
case PHB_SCOM_ETU_LEM_ERR_MSK_OR:
case PHB_SCOM_ETU_LEM_ACT0:
case PHB_SCOM_ETU_LEM_ACT1:
case PHB_SCOM_ETU_LEM_WOF:
offset = ((reg - PHB_SCOM_ETU_LEM_FIR) << 3) + PHB_LEM_FIR_ACCUM;
return pnv_phb4_reg_read(phb, offset, size);
case PHB_SCOM_ETU_PMON_CONFIG:
case PHB_SCOM_ETU_PMON_CTR0:
case PHB_SCOM_ETU_PMON_CTR1:
case PHB_SCOM_ETU_PMON_CTR2:
case PHB_SCOM_ETU_PMON_CTR3:
offset = ((reg - PHB_SCOM_ETU_PMON_CONFIG) << 3) + PHB_PERFMON_CONFIG;
return pnv_phb4_reg_read(phb, offset, size);
default:
qemu_log_mask(LOG_UNIMP, "phb4: xscom_read 0x%"HWADDR_PRIx"\n", addr);
return ~0ull;
}
}
static void pnv_phb4_xscom_write(void *opaque, hwaddr addr,
uint64_t val, unsigned size)
{
PnvPHB4 *phb = PNV_PHB4(opaque);
uint32_t reg = addr >> 3;
hwaddr offset;
switch (reg) {
case PHB_SCOM_HV_IND_ADDR:
phb->scom_hv_ind_addr_reg = val & 0xe000000000001fff;
break;
case PHB_SCOM_HV_IND_DATA:
if (!(phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_VALID)) {
phb_error(phb, "Invalid indirect address");
break;
}
size = (phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_4B) ? 4 : 8;
offset = GETFIELD(PHB_SCOM_HV_IND_ADDR_ADDR, phb->scom_hv_ind_addr_reg);
pnv_phb4_reg_write(phb, offset, val, size);
if (phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_AUTOINC) {
offset += size;
offset &= 0x3fff;
phb->scom_hv_ind_addr_reg = SETFIELD(PHB_SCOM_HV_IND_ADDR_ADDR,
phb->scom_hv_ind_addr_reg,
offset);
}
break;
case PHB_SCOM_ETU_LEM_FIR:
case PHB_SCOM_ETU_LEM_FIR_AND:
case PHB_SCOM_ETU_LEM_FIR_OR:
case PHB_SCOM_ETU_LEM_FIR_MSK:
case PHB_SCOM_ETU_LEM_ERR_MSK_AND:
case PHB_SCOM_ETU_LEM_ERR_MSK_OR:
case PHB_SCOM_ETU_LEM_ACT0:
case PHB_SCOM_ETU_LEM_ACT1:
case PHB_SCOM_ETU_LEM_WOF:
offset = ((reg - PHB_SCOM_ETU_LEM_FIR) << 3) + PHB_LEM_FIR_ACCUM;
pnv_phb4_reg_write(phb, offset, val, size);
break;
case PHB_SCOM_ETU_PMON_CONFIG:
case PHB_SCOM_ETU_PMON_CTR0:
case PHB_SCOM_ETU_PMON_CTR1:
case PHB_SCOM_ETU_PMON_CTR2:
case PHB_SCOM_ETU_PMON_CTR3:
offset = ((reg - PHB_SCOM_ETU_PMON_CONFIG) << 3) + PHB_PERFMON_CONFIG;
pnv_phb4_reg_write(phb, offset, val, size);
break;
default:
qemu_log_mask(LOG_UNIMP, "phb4: xscom_write 0x%"HWADDR_PRIx
"=%"PRIx64"\n", addr, val);
}
}
const MemoryRegionOps pnv_phb4_xscom_ops = {
.read = pnv_phb4_xscom_read,
.write = pnv_phb4_xscom_write,
.valid.min_access_size = 8,
.valid.max_access_size = 8,
.impl.min_access_size = 8,
.impl.max_access_size = 8,
.endianness = DEVICE_BIG_ENDIAN,
};
static int pnv_phb4_map_irq(PCIDevice *pci_dev, int irq_num)
{
/* Check that out properly ... */
return irq_num & 3;
}
static void pnv_phb4_set_irq(void *opaque, int irq_num, int level)
{
PnvPHB4 *phb = PNV_PHB4(opaque);
uint32_t lsi_base;
/* LSI only ... */
if (irq_num > 3) {
phb_error(phb, "IRQ %x is not an LSI", irq_num);
}
lsi_base = GETFIELD(PHB_LSI_SRC_ID, phb->regs[PHB_LSI_SOURCE_ID >> 3]);
lsi_base <<= 3;
qemu_set_irq(phb->qirqs[lsi_base + irq_num], level);
}
static bool pnv_phb4_resolve_pe(PnvPhb4DMASpace *ds)
{
uint64_t rtt, addr;
uint16_t rte;
int bus_num;
int num_PEs;
/* Already resolved ? */
if (ds->pe_num != PHB_INVALID_PE) {
return true;
}
/* We need to lookup the RTT */
rtt = ds->phb->regs[PHB_RTT_BAR >> 3];
if (!(rtt & PHB_RTT_BAR_ENABLE)) {
phb_error(ds->phb, "DMA with RTT BAR disabled !");
/* Set error bits ? fence ? ... */
return false;
}
/* Read RTE */
bus_num = pci_bus_num(ds->bus);
addr = rtt & PHB_RTT_BASE_ADDRESS_MASK;
addr += 2 * PCI_BUILD_BDF(bus_num, ds->devfn);
if (dma_memory_read(&address_space_memory, addr, &rte,
sizeof(rte), MEMTXATTRS_UNSPECIFIED)) {
phb_error(ds->phb, "Failed to read RTT entry at 0x%"PRIx64, addr);
/* Set error bits ? fence ? ... */
return false;
}
rte = be16_to_cpu(rte);
/* Fail upon reading of invalid PE# */
num_PEs = ds->phb->big_phb ? PNV_PHB4_MAX_PEs : (PNV_PHB4_MAX_PEs >> 1);
if (rte >= num_PEs) {
phb_error(ds->phb, "RTE for RID 0x%x invalid (%04x", ds->devfn, rte);
rte &= num_PEs - 1;
}
ds->pe_num = rte;
return true;
}
static void pnv_phb4_translate_tve(PnvPhb4DMASpace *ds, hwaddr addr,
bool is_write, uint64_t tve,
IOMMUTLBEntry *tlb)
{
uint64_t tta = GETFIELD(IODA3_TVT_TABLE_ADDR, tve);
int32_t lev = GETFIELD(IODA3_TVT_NUM_LEVELS, tve);
uint32_t tts = GETFIELD(IODA3_TVT_TCE_TABLE_SIZE, tve);
uint32_t tps = GETFIELD(IODA3_TVT_IO_PSIZE, tve);
/* Invalid levels */
if (lev > 4) {
phb_error(ds->phb, "Invalid #levels in TVE %d", lev);
return;
}
/* Invalid entry */
if (tts == 0) {
phb_error(ds->phb, "Access to invalid TVE");
return;
}
/* IO Page Size of 0 means untranslated, else use TCEs */
if (tps == 0) {
/* TODO: Handle boundaries */
/* Use 4k pages like q35 ... for now */
tlb->iova = addr & 0xfffffffffffff000ull;
tlb->translated_addr = addr & 0x0003fffffffff000ull;
tlb->addr_mask = 0xfffull;
tlb->perm = IOMMU_RW;
} else {
uint32_t tce_shift, tbl_shift, sh;
uint64_t base, taddr, tce, tce_mask;
/* Address bits per bottom level TCE entry */
tce_shift = tps + 11;
/* Address bits per table level */
tbl_shift = tts + 8;
/* Top level table base address */
base = tta << 12;
/* Total shift to first level */
sh = tbl_shift * lev + tce_shift;
/* TODO: Limit to support IO page sizes */
/* TODO: Multi-level untested */
while ((lev--) >= 0) {
/* Grab the TCE address */
taddr = base | (((addr >> sh) & ((1ul << tbl_shift) - 1)) << 3);
if (dma_memory_read(&address_space_memory, taddr, &tce,
sizeof(tce), MEMTXATTRS_UNSPECIFIED)) {
phb_error(ds->phb, "Failed to read TCE at 0x%"PRIx64, taddr);
return;
}
tce = be64_to_cpu(tce);
/* Check permission for indirect TCE */
if ((lev >= 0) && !(tce & 3)) {
phb_error(ds->phb, "Invalid indirect TCE at 0x%"PRIx64, taddr);
phb_error(ds->phb, " xlate %"PRIx64":%c TVE=%"PRIx64, addr,
is_write ? 'W' : 'R', tve);
phb_error(ds->phb, " tta=%"PRIx64" lev=%d tts=%d tps=%d",
tta, lev, tts, tps);
return;
}
sh -= tbl_shift;
base = tce & ~0xfffull;
}
/* We exit the loop with TCE being the final TCE */
tce_mask = ~((1ull << tce_shift) - 1);
tlb->iova = addr & tce_mask;
tlb->translated_addr = tce & tce_mask;
tlb->addr_mask = ~tce_mask;
tlb->perm = tce & 3;
if ((is_write & !(tce & 2)) || ((!is_write) && !(tce & 1))) {
phb_error(ds->phb, "TCE access fault at 0x%"PRIx64, taddr);
phb_error(ds->phb, " xlate %"PRIx64":%c TVE=%"PRIx64, addr,
is_write ? 'W' : 'R', tve);
phb_error(ds->phb, " tta=%"PRIx64" lev=%d tts=%d tps=%d",
tta, lev, tts, tps);
}
}
}
static IOMMUTLBEntry pnv_phb4_translate_iommu(IOMMUMemoryRegion *iommu,
hwaddr addr,
IOMMUAccessFlags flag,
int iommu_idx)
{
PnvPhb4DMASpace *ds = container_of(iommu, PnvPhb4DMASpace, dma_mr);
int tve_sel;
uint64_t tve, cfg;
IOMMUTLBEntry ret = {
.target_as = &address_space_memory,
.iova = addr,
.translated_addr = 0,
.addr_mask = ~(hwaddr)0,
.perm = IOMMU_NONE,
};
/* Resolve PE# */
if (!pnv_phb4_resolve_pe(ds)) {
phb_error(ds->phb, "Failed to resolve PE# for bus @%p (%d) devfn 0x%x",
ds->bus, pci_bus_num(ds->bus), ds->devfn);
return ret;
}
/* Check top bits */
switch (addr >> 60) {
case 00:
/* DMA or 32-bit MSI ? */
cfg = ds->phb->regs[PHB_PHB4_CONFIG >> 3];
if ((cfg & PHB_PHB4C_32BIT_MSI_EN) &&
((addr & 0xffffffffffff0000ull) == 0xffff0000ull)) {
phb_error(ds->phb, "xlate on 32-bit MSI region");
return ret;
}
/* Choose TVE XXX Use PHB4 Control Register */
tve_sel = (addr >> 59) & 1;
tve = ds->phb->ioda_TVT[ds->pe_num * 2 + tve_sel];
pnv_phb4_translate_tve(ds, addr, flag & IOMMU_WO, tve, &ret);
break;
case 01:
phb_error(ds->phb, "xlate on 64-bit MSI region");
break;
default:
phb_error(ds->phb, "xlate on unsupported address 0x%"PRIx64, addr);
}
return ret;
}
#define TYPE_PNV_PHB4_IOMMU_MEMORY_REGION "pnv-phb4-iommu-memory-region"
DECLARE_INSTANCE_CHECKER(IOMMUMemoryRegion, PNV_PHB4_IOMMU_MEMORY_REGION,
TYPE_PNV_PHB4_IOMMU_MEMORY_REGION)
static void pnv_phb4_iommu_memory_region_class_init(ObjectClass *klass,
void *data)
{
IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
imrc->translate = pnv_phb4_translate_iommu;
}
static const TypeInfo pnv_phb4_iommu_memory_region_info = {
.parent = TYPE_IOMMU_MEMORY_REGION,
.name = TYPE_PNV_PHB4_IOMMU_MEMORY_REGION,
.class_init = pnv_phb4_iommu_memory_region_class_init,
};
/*
* MSI/MSIX memory region implementation.
* The handler handles both MSI and MSIX.
*/
static void pnv_phb4_msi_write(void *opaque, hwaddr addr,
uint64_t data, unsigned size)
{
PnvPhb4DMASpace *ds = opaque;
PnvPHB4 *phb = ds->phb;
uint32_t src = ((addr >> 4) & 0xffff) | (data & 0x1f);
/* Resolve PE# */
if (!pnv_phb4_resolve_pe(ds)) {
phb_error(phb, "Failed to resolve PE# for bus @%p (%d) devfn 0x%x",
ds->bus, pci_bus_num(ds->bus), ds->devfn);
return;
}
/* TODO: Check it doesn't collide with LSIs */
if (src >= phb->xsrc.nr_irqs) {
phb_error(phb, "MSI %d out of bounds", src);
return;
}
/* TODO: check PE/MSI assignement */
qemu_irq_pulse(phb->qirqs[src]);
}
/* There is no .read as the read result is undefined by PCI spec */
static uint64_t pnv_phb4_msi_read(void *opaque, hwaddr addr, unsigned size)
{
PnvPhb4DMASpace *ds = opaque;
phb_error(ds->phb, "Invalid MSI read @ 0x%" HWADDR_PRIx, addr);
return -1;
}
static const MemoryRegionOps pnv_phb4_msi_ops = {
.read = pnv_phb4_msi_read,
.write = pnv_phb4_msi_write,
.endianness = DEVICE_LITTLE_ENDIAN
};
static PnvPhb4DMASpace *pnv_phb4_dma_find(PnvPHB4 *phb, PCIBus *bus, int devfn)
{
PnvPhb4DMASpace *ds;
QLIST_FOREACH(ds, &phb->dma_spaces, list) {
if (ds->bus == bus && ds->devfn == devfn) {
break;
}
}
return ds;
}
static AddressSpace *pnv_phb4_dma_iommu(PCIBus *bus, void *opaque, int devfn)
{
PnvPHB4 *phb = opaque;
PnvPhb4DMASpace *ds;
char name[32];
ds = pnv_phb4_dma_find(phb, bus, devfn);
if (ds == NULL) {
ds = g_malloc0(sizeof(PnvPhb4DMASpace));
ds->bus = bus;
ds->devfn = devfn;
ds->pe_num = PHB_INVALID_PE;
ds->phb = phb;
snprintf(name, sizeof(name), "phb4-%d.%d-iommu", phb->chip_id,
phb->phb_id);
memory_region_init_iommu(&ds->dma_mr, sizeof(ds->dma_mr),
TYPE_PNV_PHB4_IOMMU_MEMORY_REGION,
OBJECT(phb), name, UINT64_MAX);
address_space_init(&ds->dma_as, MEMORY_REGION(&ds->dma_mr),
name);
memory_region_init_io(&ds->msi32_mr, OBJECT(phb), &pnv_phb4_msi_ops,
ds, "msi32", 0x10000);
memory_region_init_io(&ds->msi64_mr, OBJECT(phb), &pnv_phb4_msi_ops,
ds, "msi64", 0x100000);
pnv_phb4_update_msi_regions(ds);
QLIST_INSERT_HEAD(&phb->dma_spaces, ds, list);
}
return &ds->dma_as;
}
static void pnv_phb4_instance_init(Object *obj)
{
PnvPHB4 *phb = PNV_PHB4(obj);
QLIST_INIT(&phb->dma_spaces);
/* XIVE interrupt source object */
object_initialize_child(obj, "source", &phb->xsrc, TYPE_XIVE_SOURCE);
/* Root Port */
object_initialize_child(obj, "root", &phb->root, TYPE_PNV_PHB4_ROOT_PORT);
qdev_prop_set_int32(DEVICE(&phb->root), "addr", PCI_DEVFN(0, 0));
qdev_prop_set_bit(DEVICE(&phb->root), "multifunction", false);
}
static void pnv_phb4_realize(DeviceState *dev, Error **errp)
{
PnvPHB4 *phb = PNV_PHB4(dev);
PCIHostState *pci = PCI_HOST_BRIDGE(dev);
XiveSource *xsrc = &phb->xsrc;
int nr_irqs;
char name[32];
assert(phb->stack);
/* Set the "big_phb" flag */
phb->big_phb = phb->phb_id == 0 || phb->phb_id == 3;
/* Controller Registers */
snprintf(name, sizeof(name), "phb4-%d.%d-regs", phb->chip_id,
phb->phb_id);
memory_region_init_io(&phb->mr_regs, OBJECT(phb), &pnv_phb4_reg_ops, phb,
name, 0x2000);
/*
* PHB4 doesn't support IO space. However, qemu gets very upset if
* we don't have an IO region to anchor IO BARs onto so we just
* initialize one which we never hook up to anything
*/
snprintf(name, sizeof(name), "phb4-%d.%d-pci-io", phb->chip_id,
phb->phb_id);
memory_region_init(&phb->pci_io, OBJECT(phb), name, 0x10000);
snprintf(name, sizeof(name), "phb4-%d.%d-pci-mmio", phb->chip_id,
phb->phb_id);
memory_region_init(&phb->pci_mmio, OBJECT(phb), name,
PCI_MMIO_TOTAL_SIZE);
pci->bus = pci_register_root_bus(dev, dev->id,
pnv_phb4_set_irq, pnv_phb4_map_irq, phb,
&phb->pci_mmio, &phb->pci_io,
0, 4, TYPE_PNV_PHB4_ROOT_BUS);
pci_setup_iommu(pci->bus, pnv_phb4_dma_iommu, phb);
pci->bus->flags |= PCI_BUS_EXTENDED_CONFIG_SPACE;
/* Add a single Root port */
qdev_prop_set_uint8(DEVICE(&phb->root), "chassis", phb->chip_id);
qdev_prop_set_uint16(DEVICE(&phb->root), "slot", phb->phb_id);
qdev_realize(DEVICE(&phb->root), BUS(pci->bus), &error_fatal);
/* Setup XIVE Source */
if (phb->big_phb) {
nr_irqs = PNV_PHB4_MAX_INTs;
} else {
nr_irqs = PNV_PHB4_MAX_INTs >> 1;
}
object_property_set_int(OBJECT(xsrc), "nr-irqs", nr_irqs, &error_fatal);
object_property_set_link(OBJECT(xsrc), "xive", OBJECT(phb), &error_fatal);
if (!qdev_realize(DEVICE(xsrc), NULL, errp)) {
return;
}
pnv_phb4_update_xsrc(phb);
phb->qirqs = qemu_allocate_irqs(xive_source_set_irq, xsrc, xsrc->nr_irqs);
}
static const char *pnv_phb4_root_bus_path(PCIHostState *host_bridge,
PCIBus *rootbus)
{
PnvPHB4 *phb = PNV_PHB4(host_bridge);
snprintf(phb->bus_path, sizeof(phb->bus_path), "00%02x:%02x",
phb->chip_id, phb->phb_id);
return phb->bus_path;
}
static void pnv_phb4_xive_notify(XiveNotifier *xf, uint32_t srcno)
{
PnvPHB4 *phb = PNV_PHB4(xf);
uint64_t notif_port = phb->regs[PHB_INT_NOTIFY_ADDR >> 3];
uint32_t offset = phb->regs[PHB_INT_NOTIFY_INDEX >> 3];
uint64_t data = XIVE_TRIGGER_PQ | offset | srcno;
MemTxResult result;
trace_pnv_phb4_xive_notify(notif_port, data);
address_space_stq_be(&address_space_memory, notif_port, data,
MEMTXATTRS_UNSPECIFIED, &result);
if (result != MEMTX_OK) {
phb_error(phb, "trigger failed @%"HWADDR_PRIx "\n", notif_port);
return;
}
}
static Property pnv_phb4_properties[] = {
DEFINE_PROP_UINT32("index", PnvPHB4, phb_id, 0),
DEFINE_PROP_UINT32("chip-id", PnvPHB4, chip_id, 0),
DEFINE_PROP_UINT64("version", PnvPHB4, version, 0),
DEFINE_PROP_LINK("stack", PnvPHB4, stack, TYPE_PNV_PHB4_PEC_STACK,
PnvPhb4PecStack *),
DEFINE_PROP_END_OF_LIST(),
};
static void pnv_phb4_class_init(ObjectClass *klass, void *data)
{
PCIHostBridgeClass *hc = PCI_HOST_BRIDGE_CLASS(klass);
DeviceClass *dc = DEVICE_CLASS(klass);
XiveNotifierClass *xfc = XIVE_NOTIFIER_CLASS(klass);
hc->root_bus_path = pnv_phb4_root_bus_path;
dc->realize = pnv_phb4_realize;
device_class_set_props(dc, pnv_phb4_properties);
set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories);
dc->user_creatable = false;
xfc->notify = pnv_phb4_xive_notify;
}
static const TypeInfo pnv_phb4_type_info = {
.name = TYPE_PNV_PHB4,
.parent = TYPE_PCIE_HOST_BRIDGE,
.instance_init = pnv_phb4_instance_init,
.instance_size = sizeof(PnvPHB4),
.class_init = pnv_phb4_class_init,
.interfaces = (InterfaceInfo[]) {
{ TYPE_XIVE_NOTIFIER },
{ },
}
};
static void pnv_phb4_root_bus_class_init(ObjectClass *klass, void *data)
{
BusClass *k = BUS_CLASS(klass);
/*
* PHB4 has only a single root complex. Enforce the limit on the
* parent bus
*/
k->max_dev = 1;
}
static const TypeInfo pnv_phb4_root_bus_info = {
.name = TYPE_PNV_PHB4_ROOT_BUS,
.parent = TYPE_PCIE_BUS,
.class_init = pnv_phb4_root_bus_class_init,
.interfaces = (InterfaceInfo[]) {
{ INTERFACE_PCIE_DEVICE },
{ }
},
};
static void pnv_phb4_root_port_reset(DeviceState *dev)
{
PCIERootPortClass *rpc = PCIE_ROOT_PORT_GET_CLASS(dev);
PCIDevice *d = PCI_DEVICE(dev);
uint8_t *conf = d->config;
rpc->parent_reset(dev);
pci_byte_test_and_set_mask(conf + PCI_IO_BASE,
PCI_IO_RANGE_MASK & 0xff);
pci_byte_test_and_clear_mask(conf + PCI_IO_LIMIT,
PCI_IO_RANGE_MASK & 0xff);
pci_set_word(conf + PCI_MEMORY_BASE, 0);
pci_set_word(conf + PCI_MEMORY_LIMIT, 0xfff0);
pci_set_word(conf + PCI_PREF_MEMORY_BASE, 0x1);
pci_set_word(conf + PCI_PREF_MEMORY_LIMIT, 0xfff1);
pci_set_long(conf + PCI_PREF_BASE_UPPER32, 0x1); /* Hack */
pci_set_long(conf + PCI_PREF_LIMIT_UPPER32, 0xffffffff);
}
static void pnv_phb4_root_port_realize(DeviceState *dev, Error **errp)
{
PCIERootPortClass *rpc = PCIE_ROOT_PORT_GET_CLASS(dev);
Error *local_err = NULL;
rpc->parent_realize(dev, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
}
static void pnv_phb4_root_port_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
PCIERootPortClass *rpc = PCIE_ROOT_PORT_CLASS(klass);
dc->desc = "IBM PHB4 PCIE Root Port";
dc->user_creatable = false;
device_class_set_parent_realize(dc, pnv_phb4_root_port_realize,
&rpc->parent_realize);
device_class_set_parent_reset(dc, pnv_phb4_root_port_reset,
&rpc->parent_reset);
k->vendor_id = PCI_VENDOR_ID_IBM;
k->device_id = PNV_PHB4_DEVICE_ID;
k->revision = 0;
rpc->exp_offset = 0x48;
rpc->aer_offset = 0x100;
dc->reset = &pnv_phb4_root_port_reset;
}
static const TypeInfo pnv_phb4_root_port_info = {
.name = TYPE_PNV_PHB4_ROOT_PORT,
.parent = TYPE_PCIE_ROOT_PORT,
.instance_size = sizeof(PnvPHB4RootPort),
.class_init = pnv_phb4_root_port_class_init,
};
static void pnv_phb4_register_types(void)
{
type_register_static(&pnv_phb4_root_bus_info);
type_register_static(&pnv_phb4_root_port_info);
type_register_static(&pnv_phb4_type_info);
type_register_static(&pnv_phb4_iommu_memory_region_info);
}
type_init(pnv_phb4_register_types);
void pnv_phb4_update_regions(PnvPhb4PecStack *stack)
{
PnvPHB4 *phb = &stack->phb;
/* Unmap first always */
if (memory_region_is_mapped(&phb->mr_regs)) {
memory_region_del_subregion(&stack->phbbar, &phb->mr_regs);
}
if (memory_region_is_mapped(&phb->xsrc.esb_mmio)) {
memory_region_del_subregion(&stack->intbar, &phb->xsrc.esb_mmio);
}
/* Map registers if enabled */
if (memory_region_is_mapped(&stack->phbbar)) {
memory_region_add_subregion(&stack->phbbar, 0, &phb->mr_regs);
}
/* Map ESB if enabled */
if (memory_region_is_mapped(&stack->intbar)) {
memory_region_add_subregion(&stack->intbar, 0, &phb->xsrc.esb_mmio);
}
/* Check/update m32 */
pnv_phb4_check_all_mbt(phb);
}
void pnv_phb4_pic_print_info(PnvPHB4 *phb, Monitor *mon)
{
uint32_t offset = phb->regs[PHB_INT_NOTIFY_INDEX >> 3];
monitor_printf(mon, "PHB4[%x:%x] Source %08x .. %08x\n",
phb->chip_id, phb->phb_id,
offset, offset + phb->xsrc.nr_irqs - 1);
xive_source_pic_print_info(&phb->xsrc, 0, mon);
}