qemu/hw/usb-ehci.c
Anthony Liguori 40021f0888 pci: convert to QEMU Object Model
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2012-01-27 10:50:50 -06:00

2385 lines
68 KiB
C

/*
* QEMU USB EHCI Emulation
*
* Copyright(c) 2008 Emutex Ltd. (address@hidden)
*
* EHCI project was started by Mark Burkley, with contributions by
* Niels de Vos. David S. Ahern continued working on it. Kevin Wolf,
* Jan Kiszka and Vincent Palatin contributed bugfixes.
*
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or(at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "hw.h"
#include "qemu-timer.h"
#include "usb.h"
#include "pci.h"
#include "monitor.h"
#include "trace.h"
#include "dma.h"
#define EHCI_DEBUG 0
#if EHCI_DEBUG
#define DPRINTF printf
#else
#define DPRINTF(...)
#endif
/* internal processing - reset HC to try and recover */
#define USB_RET_PROCERR (-99)
#define MMIO_SIZE 0x1000
/* Capability Registers Base Address - section 2.2 */
#define CAPREGBASE 0x0000
#define CAPLENGTH CAPREGBASE + 0x0000 // 1-byte, 0x0001 reserved
#define HCIVERSION CAPREGBASE + 0x0002 // 2-bytes, i/f version #
#define HCSPARAMS CAPREGBASE + 0x0004 // 4-bytes, structural params
#define HCCPARAMS CAPREGBASE + 0x0008 // 4-bytes, capability params
#define EECP HCCPARAMS + 1
#define HCSPPORTROUTE1 CAPREGBASE + 0x000c
#define HCSPPORTROUTE2 CAPREGBASE + 0x0010
#define OPREGBASE 0x0020 // Operational Registers Base Address
#define USBCMD OPREGBASE + 0x0000
#define USBCMD_RUNSTOP (1 << 0) // run / Stop
#define USBCMD_HCRESET (1 << 1) // HC Reset
#define USBCMD_FLS (3 << 2) // Frame List Size
#define USBCMD_FLS_SH 2 // Frame List Size Shift
#define USBCMD_PSE (1 << 4) // Periodic Schedule Enable
#define USBCMD_ASE (1 << 5) // Asynch Schedule Enable
#define USBCMD_IAAD (1 << 6) // Int Asynch Advance Doorbell
#define USBCMD_LHCR (1 << 7) // Light Host Controller Reset
#define USBCMD_ASPMC (3 << 8) // Async Sched Park Mode Count
#define USBCMD_ASPME (1 << 11) // Async Sched Park Mode Enable
#define USBCMD_ITC (0x7f << 16) // Int Threshold Control
#define USBCMD_ITC_SH 16 // Int Threshold Control Shift
#define USBSTS OPREGBASE + 0x0004
#define USBSTS_RO_MASK 0x0000003f
#define USBSTS_INT (1 << 0) // USB Interrupt
#define USBSTS_ERRINT (1 << 1) // Error Interrupt
#define USBSTS_PCD (1 << 2) // Port Change Detect
#define USBSTS_FLR (1 << 3) // Frame List Rollover
#define USBSTS_HSE (1 << 4) // Host System Error
#define USBSTS_IAA (1 << 5) // Interrupt on Async Advance
#define USBSTS_HALT (1 << 12) // HC Halted
#define USBSTS_REC (1 << 13) // Reclamation
#define USBSTS_PSS (1 << 14) // Periodic Schedule Status
#define USBSTS_ASS (1 << 15) // Asynchronous Schedule Status
/*
* Interrupt enable bits correspond to the interrupt active bits in USBSTS
* so no need to redefine here.
*/
#define USBINTR OPREGBASE + 0x0008
#define USBINTR_MASK 0x0000003f
#define FRINDEX OPREGBASE + 0x000c
#define CTRLDSSEGMENT OPREGBASE + 0x0010
#define PERIODICLISTBASE OPREGBASE + 0x0014
#define ASYNCLISTADDR OPREGBASE + 0x0018
#define ASYNCLISTADDR_MASK 0xffffffe0
#define CONFIGFLAG OPREGBASE + 0x0040
#define PORTSC (OPREGBASE + 0x0044)
#define PORTSC_BEGIN PORTSC
#define PORTSC_END (PORTSC + 4 * NB_PORTS)
/*
* Bits that are reserved or are read-only are masked out of values
* written to us by software
*/
#define PORTSC_RO_MASK 0x007001c0
#define PORTSC_RWC_MASK 0x0000002a
#define PORTSC_WKOC_E (1 << 22) // Wake on Over Current Enable
#define PORTSC_WKDS_E (1 << 21) // Wake on Disconnect Enable
#define PORTSC_WKCN_E (1 << 20) // Wake on Connect Enable
#define PORTSC_PTC (15 << 16) // Port Test Control
#define PORTSC_PTC_SH 16 // Port Test Control shift
#define PORTSC_PIC (3 << 14) // Port Indicator Control
#define PORTSC_PIC_SH 14 // Port Indicator Control Shift
#define PORTSC_POWNER (1 << 13) // Port Owner
#define PORTSC_PPOWER (1 << 12) // Port Power
#define PORTSC_LINESTAT (3 << 10) // Port Line Status
#define PORTSC_LINESTAT_SH 10 // Port Line Status Shift
#define PORTSC_PRESET (1 << 8) // Port Reset
#define PORTSC_SUSPEND (1 << 7) // Port Suspend
#define PORTSC_FPRES (1 << 6) // Force Port Resume
#define PORTSC_OCC (1 << 5) // Over Current Change
#define PORTSC_OCA (1 << 4) // Over Current Active
#define PORTSC_PEDC (1 << 3) // Port Enable/Disable Change
#define PORTSC_PED (1 << 2) // Port Enable/Disable
#define PORTSC_CSC (1 << 1) // Connect Status Change
#define PORTSC_CONNECT (1 << 0) // Current Connect Status
#define FRAME_TIMER_FREQ 1000
#define FRAME_TIMER_NS (1000000000 / FRAME_TIMER_FREQ)
#define NB_MAXINTRATE 8 // Max rate at which controller issues ints
#define NB_PORTS 6 // Number of downstream ports
#define BUFF_SIZE 5*4096 // Max bytes to transfer per transaction
#define MAX_ITERATIONS 20 // Max number of QH before we break the loop
#define MAX_QH 100 // Max allowable queue heads in a chain
/* Internal periodic / asynchronous schedule state machine states
*/
typedef enum {
EST_INACTIVE = 1000,
EST_ACTIVE,
EST_EXECUTING,
EST_SLEEPING,
/* The following states are internal to the state machine function
*/
EST_WAITLISTHEAD,
EST_FETCHENTRY,
EST_FETCHQH,
EST_FETCHITD,
EST_FETCHSITD,
EST_ADVANCEQUEUE,
EST_FETCHQTD,
EST_EXECUTE,
EST_WRITEBACK,
EST_HORIZONTALQH
} EHCI_STATES;
/* macros for accessing fields within next link pointer entry */
#define NLPTR_GET(x) ((x) & 0xffffffe0)
#define NLPTR_TYPE_GET(x) (((x) >> 1) & 3)
#define NLPTR_TBIT(x) ((x) & 1) // 1=invalid, 0=valid
/* link pointer types */
#define NLPTR_TYPE_ITD 0 // isoc xfer descriptor
#define NLPTR_TYPE_QH 1 // queue head
#define NLPTR_TYPE_STITD 2 // split xaction, isoc xfer descriptor
#define NLPTR_TYPE_FSTN 3 // frame span traversal node
/* EHCI spec version 1.0 Section 3.3
*/
typedef struct EHCIitd {
uint32_t next;
uint32_t transact[8];
#define ITD_XACT_ACTIVE (1 << 31)
#define ITD_XACT_DBERROR (1 << 30)
#define ITD_XACT_BABBLE (1 << 29)
#define ITD_XACT_XACTERR (1 << 28)
#define ITD_XACT_LENGTH_MASK 0x0fff0000
#define ITD_XACT_LENGTH_SH 16
#define ITD_XACT_IOC (1 << 15)
#define ITD_XACT_PGSEL_MASK 0x00007000
#define ITD_XACT_PGSEL_SH 12
#define ITD_XACT_OFFSET_MASK 0x00000fff
uint32_t bufptr[7];
#define ITD_BUFPTR_MASK 0xfffff000
#define ITD_BUFPTR_SH 12
#define ITD_BUFPTR_EP_MASK 0x00000f00
#define ITD_BUFPTR_EP_SH 8
#define ITD_BUFPTR_DEVADDR_MASK 0x0000007f
#define ITD_BUFPTR_DEVADDR_SH 0
#define ITD_BUFPTR_DIRECTION (1 << 11)
#define ITD_BUFPTR_MAXPKT_MASK 0x000007ff
#define ITD_BUFPTR_MAXPKT_SH 0
#define ITD_BUFPTR_MULT_MASK 0x00000003
#define ITD_BUFPTR_MULT_SH 0
} EHCIitd;
/* EHCI spec version 1.0 Section 3.4
*/
typedef struct EHCIsitd {
uint32_t next; // Standard next link pointer
uint32_t epchar;
#define SITD_EPCHAR_IO (1 << 31)
#define SITD_EPCHAR_PORTNUM_MASK 0x7f000000
#define SITD_EPCHAR_PORTNUM_SH 24
#define SITD_EPCHAR_HUBADD_MASK 0x007f0000
#define SITD_EPCHAR_HUBADDR_SH 16
#define SITD_EPCHAR_EPNUM_MASK 0x00000f00
#define SITD_EPCHAR_EPNUM_SH 8
#define SITD_EPCHAR_DEVADDR_MASK 0x0000007f
uint32_t uframe;
#define SITD_UFRAME_CMASK_MASK 0x0000ff00
#define SITD_UFRAME_CMASK_SH 8
#define SITD_UFRAME_SMASK_MASK 0x000000ff
uint32_t results;
#define SITD_RESULTS_IOC (1 << 31)
#define SITD_RESULTS_PGSEL (1 << 30)
#define SITD_RESULTS_TBYTES_MASK 0x03ff0000
#define SITD_RESULTS_TYBYTES_SH 16
#define SITD_RESULTS_CPROGMASK_MASK 0x0000ff00
#define SITD_RESULTS_CPROGMASK_SH 8
#define SITD_RESULTS_ACTIVE (1 << 7)
#define SITD_RESULTS_ERR (1 << 6)
#define SITD_RESULTS_DBERR (1 << 5)
#define SITD_RESULTS_BABBLE (1 << 4)
#define SITD_RESULTS_XACTERR (1 << 3)
#define SITD_RESULTS_MISSEDUF (1 << 2)
#define SITD_RESULTS_SPLITXSTATE (1 << 1)
uint32_t bufptr[2];
#define SITD_BUFPTR_MASK 0xfffff000
#define SITD_BUFPTR_CURROFF_MASK 0x00000fff
#define SITD_BUFPTR_TPOS_MASK 0x00000018
#define SITD_BUFPTR_TPOS_SH 3
#define SITD_BUFPTR_TCNT_MASK 0x00000007
uint32_t backptr; // Standard next link pointer
} EHCIsitd;
/* EHCI spec version 1.0 Section 3.5
*/
typedef struct EHCIqtd {
uint32_t next; // Standard next link pointer
uint32_t altnext; // Standard next link pointer
uint32_t token;
#define QTD_TOKEN_DTOGGLE (1 << 31)
#define QTD_TOKEN_TBYTES_MASK 0x7fff0000
#define QTD_TOKEN_TBYTES_SH 16
#define QTD_TOKEN_IOC (1 << 15)
#define QTD_TOKEN_CPAGE_MASK 0x00007000
#define QTD_TOKEN_CPAGE_SH 12
#define QTD_TOKEN_CERR_MASK 0x00000c00
#define QTD_TOKEN_CERR_SH 10
#define QTD_TOKEN_PID_MASK 0x00000300
#define QTD_TOKEN_PID_SH 8
#define QTD_TOKEN_ACTIVE (1 << 7)
#define QTD_TOKEN_HALT (1 << 6)
#define QTD_TOKEN_DBERR (1 << 5)
#define QTD_TOKEN_BABBLE (1 << 4)
#define QTD_TOKEN_XACTERR (1 << 3)
#define QTD_TOKEN_MISSEDUF (1 << 2)
#define QTD_TOKEN_SPLITXSTATE (1 << 1)
#define QTD_TOKEN_PING (1 << 0)
uint32_t bufptr[5]; // Standard buffer pointer
#define QTD_BUFPTR_MASK 0xfffff000
#define QTD_BUFPTR_SH 12
} EHCIqtd;
/* EHCI spec version 1.0 Section 3.6
*/
typedef struct EHCIqh {
uint32_t next; // Standard next link pointer
/* endpoint characteristics */
uint32_t epchar;
#define QH_EPCHAR_RL_MASK 0xf0000000
#define QH_EPCHAR_RL_SH 28
#define QH_EPCHAR_C (1 << 27)
#define QH_EPCHAR_MPLEN_MASK 0x07FF0000
#define QH_EPCHAR_MPLEN_SH 16
#define QH_EPCHAR_H (1 << 15)
#define QH_EPCHAR_DTC (1 << 14)
#define QH_EPCHAR_EPS_MASK 0x00003000
#define QH_EPCHAR_EPS_SH 12
#define EHCI_QH_EPS_FULL 0
#define EHCI_QH_EPS_LOW 1
#define EHCI_QH_EPS_HIGH 2
#define EHCI_QH_EPS_RESERVED 3
#define QH_EPCHAR_EP_MASK 0x00000f00
#define QH_EPCHAR_EP_SH 8
#define QH_EPCHAR_I (1 << 7)
#define QH_EPCHAR_DEVADDR_MASK 0x0000007f
#define QH_EPCHAR_DEVADDR_SH 0
/* endpoint capabilities */
uint32_t epcap;
#define QH_EPCAP_MULT_MASK 0xc0000000
#define QH_EPCAP_MULT_SH 30
#define QH_EPCAP_PORTNUM_MASK 0x3f800000
#define QH_EPCAP_PORTNUM_SH 23
#define QH_EPCAP_HUBADDR_MASK 0x007f0000
#define QH_EPCAP_HUBADDR_SH 16
#define QH_EPCAP_CMASK_MASK 0x0000ff00
#define QH_EPCAP_CMASK_SH 8
#define QH_EPCAP_SMASK_MASK 0x000000ff
#define QH_EPCAP_SMASK_SH 0
uint32_t current_qtd; // Standard next link pointer
uint32_t next_qtd; // Standard next link pointer
uint32_t altnext_qtd;
#define QH_ALTNEXT_NAKCNT_MASK 0x0000001e
#define QH_ALTNEXT_NAKCNT_SH 1
uint32_t token; // Same as QTD token
uint32_t bufptr[5]; // Standard buffer pointer
#define BUFPTR_CPROGMASK_MASK 0x000000ff
#define BUFPTR_FRAMETAG_MASK 0x0000001f
#define BUFPTR_SBYTES_MASK 0x00000fe0
#define BUFPTR_SBYTES_SH 5
} EHCIqh;
/* EHCI spec version 1.0 Section 3.7
*/
typedef struct EHCIfstn {
uint32_t next; // Standard next link pointer
uint32_t backptr; // Standard next link pointer
} EHCIfstn;
typedef struct EHCIQueue EHCIQueue;
typedef struct EHCIState EHCIState;
enum async_state {
EHCI_ASYNC_NONE = 0,
EHCI_ASYNC_INFLIGHT,
EHCI_ASYNC_FINISHED,
};
struct EHCIQueue {
EHCIState *ehci;
QTAILQ_ENTRY(EHCIQueue) next;
bool async_schedule;
uint32_t seen;
uint64_t ts;
/* cached data from guest - needs to be flushed
* when guest removes an entry (doorbell, handshake sequence)
*/
EHCIqh qh; // copy of current QH (being worked on)
uint32_t qhaddr; // address QH read from
EHCIqtd qtd; // copy of current QTD (being worked on)
uint32_t qtdaddr; // address QTD read from
USBPacket packet;
QEMUSGList sgl;
int pid;
uint32_t tbytes;
enum async_state async;
int usb_status;
};
struct EHCIState {
PCIDevice dev;
USBBus bus;
qemu_irq irq;
MemoryRegion mem;
int companion_count;
/* properties */
uint32_t freq;
uint32_t maxframes;
/*
* EHCI spec version 1.0 Section 2.3
* Host Controller Operational Registers
*/
union {
uint8_t mmio[MMIO_SIZE];
struct {
uint8_t cap[OPREGBASE];
uint32_t usbcmd;
uint32_t usbsts;
uint32_t usbintr;
uint32_t frindex;
uint32_t ctrldssegment;
uint32_t periodiclistbase;
uint32_t asynclistaddr;
uint32_t notused[9];
uint32_t configflag;
uint32_t portsc[NB_PORTS];
};
};
/*
* Internal states, shadow registers, etc
*/
uint32_t sofv;
QEMUTimer *frame_timer;
int attach_poll_counter;
int astate; // Current state in asynchronous schedule
int pstate; // Current state in periodic schedule
USBPort ports[NB_PORTS];
USBPort *companion_ports[NB_PORTS];
uint32_t usbsts_pending;
QTAILQ_HEAD(, EHCIQueue) queues;
uint32_t a_fetch_addr; // which address to look at next
uint32_t p_fetch_addr; // which address to look at next
USBPacket ipacket;
QEMUSGList isgl;
int isoch_pause;
uint64_t last_run_ns;
};
#define SET_LAST_RUN_CLOCK(s) \
(s)->last_run_ns = qemu_get_clock_ns(vm_clock);
/* nifty macros from Arnon's EHCI version */
#define get_field(data, field) \
(((data) & field##_MASK) >> field##_SH)
#define set_field(data, newval, field) do { \
uint32_t val = *data; \
val &= ~ field##_MASK; \
val |= ((newval) << field##_SH) & field##_MASK; \
*data = val; \
} while(0)
static const char *ehci_state_names[] = {
[EST_INACTIVE] = "INACTIVE",
[EST_ACTIVE] = "ACTIVE",
[EST_EXECUTING] = "EXECUTING",
[EST_SLEEPING] = "SLEEPING",
[EST_WAITLISTHEAD] = "WAITLISTHEAD",
[EST_FETCHENTRY] = "FETCH ENTRY",
[EST_FETCHQH] = "FETCH QH",
[EST_FETCHITD] = "FETCH ITD",
[EST_ADVANCEQUEUE] = "ADVANCEQUEUE",
[EST_FETCHQTD] = "FETCH QTD",
[EST_EXECUTE] = "EXECUTE",
[EST_WRITEBACK] = "WRITEBACK",
[EST_HORIZONTALQH] = "HORIZONTALQH",
};
static const char *ehci_mmio_names[] = {
[CAPLENGTH] = "CAPLENGTH",
[HCIVERSION] = "HCIVERSION",
[HCSPARAMS] = "HCSPARAMS",
[HCCPARAMS] = "HCCPARAMS",
[USBCMD] = "USBCMD",
[USBSTS] = "USBSTS",
[USBINTR] = "USBINTR",
[FRINDEX] = "FRINDEX",
[PERIODICLISTBASE] = "P-LIST BASE",
[ASYNCLISTADDR] = "A-LIST ADDR",
[PORTSC_BEGIN] = "PORTSC #0",
[PORTSC_BEGIN + 4] = "PORTSC #1",
[PORTSC_BEGIN + 8] = "PORTSC #2",
[PORTSC_BEGIN + 12] = "PORTSC #3",
[PORTSC_BEGIN + 16] = "PORTSC #4",
[PORTSC_BEGIN + 20] = "PORTSC #5",
[CONFIGFLAG] = "CONFIGFLAG",
};
static const char *nr2str(const char **n, size_t len, uint32_t nr)
{
if (nr < len && n[nr] != NULL) {
return n[nr];
} else {
return "unknown";
}
}
static const char *state2str(uint32_t state)
{
return nr2str(ehci_state_names, ARRAY_SIZE(ehci_state_names), state);
}
static const char *addr2str(target_phys_addr_t addr)
{
return nr2str(ehci_mmio_names, ARRAY_SIZE(ehci_mmio_names), addr);
}
static void ehci_trace_usbsts(uint32_t mask, int state)
{
/* interrupts */
if (mask & USBSTS_INT) {
trace_usb_ehci_usbsts("INT", state);
}
if (mask & USBSTS_ERRINT) {
trace_usb_ehci_usbsts("ERRINT", state);
}
if (mask & USBSTS_PCD) {
trace_usb_ehci_usbsts("PCD", state);
}
if (mask & USBSTS_FLR) {
trace_usb_ehci_usbsts("FLR", state);
}
if (mask & USBSTS_HSE) {
trace_usb_ehci_usbsts("HSE", state);
}
if (mask & USBSTS_IAA) {
trace_usb_ehci_usbsts("IAA", state);
}
/* status */
if (mask & USBSTS_HALT) {
trace_usb_ehci_usbsts("HALT", state);
}
if (mask & USBSTS_REC) {
trace_usb_ehci_usbsts("REC", state);
}
if (mask & USBSTS_PSS) {
trace_usb_ehci_usbsts("PSS", state);
}
if (mask & USBSTS_ASS) {
trace_usb_ehci_usbsts("ASS", state);
}
}
static inline void ehci_set_usbsts(EHCIState *s, int mask)
{
if ((s->usbsts & mask) == mask) {
return;
}
ehci_trace_usbsts(mask, 1);
s->usbsts |= mask;
}
static inline void ehci_clear_usbsts(EHCIState *s, int mask)
{
if ((s->usbsts & mask) == 0) {
return;
}
ehci_trace_usbsts(mask, 0);
s->usbsts &= ~mask;
}
static inline void ehci_set_interrupt(EHCIState *s, int intr)
{
int level = 0;
// TODO honour interrupt threshold requests
ehci_set_usbsts(s, intr);
if ((s->usbsts & USBINTR_MASK) & s->usbintr) {
level = 1;
}
qemu_set_irq(s->irq, level);
}
static inline void ehci_record_interrupt(EHCIState *s, int intr)
{
s->usbsts_pending |= intr;
}
static inline void ehci_commit_interrupt(EHCIState *s)
{
if (!s->usbsts_pending) {
return;
}
ehci_set_interrupt(s, s->usbsts_pending);
s->usbsts_pending = 0;
}
static void ehci_set_state(EHCIState *s, int async, int state)
{
if (async) {
trace_usb_ehci_state("async", state2str(state));
s->astate = state;
} else {
trace_usb_ehci_state("periodic", state2str(state));
s->pstate = state;
}
}
static int ehci_get_state(EHCIState *s, int async)
{
return async ? s->astate : s->pstate;
}
static void ehci_set_fetch_addr(EHCIState *s, int async, uint32_t addr)
{
if (async) {
s->a_fetch_addr = addr;
} else {
s->p_fetch_addr = addr;
}
}
static int ehci_get_fetch_addr(EHCIState *s, int async)
{
return async ? s->a_fetch_addr : s->p_fetch_addr;
}
static void ehci_trace_qh(EHCIQueue *q, target_phys_addr_t addr, EHCIqh *qh)
{
/* need three here due to argument count limits */
trace_usb_ehci_qh_ptrs(q, addr, qh->next,
qh->current_qtd, qh->next_qtd, qh->altnext_qtd);
trace_usb_ehci_qh_fields(addr,
get_field(qh->epchar, QH_EPCHAR_RL),
get_field(qh->epchar, QH_EPCHAR_MPLEN),
get_field(qh->epchar, QH_EPCHAR_EPS),
get_field(qh->epchar, QH_EPCHAR_EP),
get_field(qh->epchar, QH_EPCHAR_DEVADDR));
trace_usb_ehci_qh_bits(addr,
(bool)(qh->epchar & QH_EPCHAR_C),
(bool)(qh->epchar & QH_EPCHAR_H),
(bool)(qh->epchar & QH_EPCHAR_DTC),
(bool)(qh->epchar & QH_EPCHAR_I));
}
static void ehci_trace_qtd(EHCIQueue *q, target_phys_addr_t addr, EHCIqtd *qtd)
{
/* need three here due to argument count limits */
trace_usb_ehci_qtd_ptrs(q, addr, qtd->next, qtd->altnext);
trace_usb_ehci_qtd_fields(addr,
get_field(qtd->token, QTD_TOKEN_TBYTES),
get_field(qtd->token, QTD_TOKEN_CPAGE),
get_field(qtd->token, QTD_TOKEN_CERR),
get_field(qtd->token, QTD_TOKEN_PID));
trace_usb_ehci_qtd_bits(addr,
(bool)(qtd->token & QTD_TOKEN_IOC),
(bool)(qtd->token & QTD_TOKEN_ACTIVE),
(bool)(qtd->token & QTD_TOKEN_HALT),
(bool)(qtd->token & QTD_TOKEN_BABBLE),
(bool)(qtd->token & QTD_TOKEN_XACTERR));
}
static void ehci_trace_itd(EHCIState *s, target_phys_addr_t addr, EHCIitd *itd)
{
trace_usb_ehci_itd(addr, itd->next,
get_field(itd->bufptr[1], ITD_BUFPTR_MAXPKT),
get_field(itd->bufptr[2], ITD_BUFPTR_MULT),
get_field(itd->bufptr[0], ITD_BUFPTR_EP),
get_field(itd->bufptr[0], ITD_BUFPTR_DEVADDR));
}
static void ehci_trace_sitd(EHCIState *s, target_phys_addr_t addr,
EHCIsitd *sitd)
{
trace_usb_ehci_sitd(addr, sitd->next,
(bool)(sitd->results & SITD_RESULTS_ACTIVE));
}
/* queue management */
static EHCIQueue *ehci_alloc_queue(EHCIState *ehci, int async)
{
EHCIQueue *q;
q = g_malloc0(sizeof(*q));
q->ehci = ehci;
q->async_schedule = async;
QTAILQ_INSERT_HEAD(&ehci->queues, q, next);
trace_usb_ehci_queue_action(q, "alloc");
return q;
}
static void ehci_free_queue(EHCIQueue *q)
{
trace_usb_ehci_queue_action(q, "free");
if (q->async == EHCI_ASYNC_INFLIGHT) {
usb_cancel_packet(&q->packet);
}
QTAILQ_REMOVE(&q->ehci->queues, q, next);
g_free(q);
}
static EHCIQueue *ehci_find_queue_by_qh(EHCIState *ehci, uint32_t addr)
{
EHCIQueue *q;
QTAILQ_FOREACH(q, &ehci->queues, next) {
if (addr == q->qhaddr) {
return q;
}
}
return NULL;
}
static void ehci_queues_rip_unused(EHCIState *ehci)
{
EHCIQueue *q, *tmp;
QTAILQ_FOREACH_SAFE(q, &ehci->queues, next, tmp) {
if (q->seen) {
q->seen = 0;
q->ts = ehci->last_run_ns;
continue;
}
if (ehci->last_run_ns < q->ts + 250000000) {
/* allow 0.25 sec idle */
continue;
}
ehci_free_queue(q);
}
}
static void ehci_queues_rip_device(EHCIState *ehci, USBDevice *dev)
{
EHCIQueue *q, *tmp;
QTAILQ_FOREACH_SAFE(q, &ehci->queues, next, tmp) {
if (q->packet.owner == NULL ||
q->packet.owner->dev != dev) {
continue;
}
ehci_free_queue(q);
}
}
static void ehci_queues_rip_all(EHCIState *ehci)
{
EHCIQueue *q, *tmp;
QTAILQ_FOREACH_SAFE(q, &ehci->queues, next, tmp) {
ehci_free_queue(q);
}
}
/* Attach or detach a device on root hub */
static void ehci_attach(USBPort *port)
{
EHCIState *s = port->opaque;
uint32_t *portsc = &s->portsc[port->index];
trace_usb_ehci_port_attach(port->index, port->dev->product_desc);
if (*portsc & PORTSC_POWNER) {
USBPort *companion = s->companion_ports[port->index];
companion->dev = port->dev;
companion->ops->attach(companion);
return;
}
*portsc |= PORTSC_CONNECT;
*portsc |= PORTSC_CSC;
ehci_set_interrupt(s, USBSTS_PCD);
}
static void ehci_detach(USBPort *port)
{
EHCIState *s = port->opaque;
uint32_t *portsc = &s->portsc[port->index];
trace_usb_ehci_port_detach(port->index);
if (*portsc & PORTSC_POWNER) {
USBPort *companion = s->companion_ports[port->index];
companion->ops->detach(companion);
companion->dev = NULL;
return;
}
ehci_queues_rip_device(s, port->dev);
*portsc &= ~(PORTSC_CONNECT|PORTSC_PED);
*portsc |= PORTSC_CSC;
ehci_set_interrupt(s, USBSTS_PCD);
}
static void ehci_child_detach(USBPort *port, USBDevice *child)
{
EHCIState *s = port->opaque;
uint32_t portsc = s->portsc[port->index];
if (portsc & PORTSC_POWNER) {
USBPort *companion = s->companion_ports[port->index];
companion->ops->child_detach(companion, child);
companion->dev = NULL;
return;
}
ehci_queues_rip_device(s, child);
}
static void ehci_wakeup(USBPort *port)
{
EHCIState *s = port->opaque;
uint32_t portsc = s->portsc[port->index];
if (portsc & PORTSC_POWNER) {
USBPort *companion = s->companion_ports[port->index];
if (companion->ops->wakeup) {
companion->ops->wakeup(companion);
}
}
}
static int ehci_register_companion(USBBus *bus, USBPort *ports[],
uint32_t portcount, uint32_t firstport)
{
EHCIState *s = container_of(bus, EHCIState, bus);
uint32_t i;
if (firstport + portcount > NB_PORTS) {
qerror_report(QERR_INVALID_PARAMETER_VALUE, "firstport",
"firstport on masterbus");
error_printf_unless_qmp(
"firstport value of %u makes companion take ports %u - %u, which "
"is outside of the valid range of 0 - %u\n", firstport, firstport,
firstport + portcount - 1, NB_PORTS - 1);
return -1;
}
for (i = 0; i < portcount; i++) {
if (s->companion_ports[firstport + i]) {
qerror_report(QERR_INVALID_PARAMETER_VALUE, "masterbus",
"an USB masterbus");
error_printf_unless_qmp(
"port %u on masterbus %s already has a companion assigned\n",
firstport + i, bus->qbus.name);
return -1;
}
}
for (i = 0; i < portcount; i++) {
s->companion_ports[firstport + i] = ports[i];
s->ports[firstport + i].speedmask |=
USB_SPEED_MASK_LOW | USB_SPEED_MASK_FULL;
/* Ensure devs attached before the initial reset go to the companion */
s->portsc[firstport + i] = PORTSC_POWNER;
}
s->companion_count++;
s->mmio[0x05] = (s->companion_count << 4) | portcount;
return 0;
}
/* 4.1 host controller initialization */
static void ehci_reset(void *opaque)
{
EHCIState *s = opaque;
int i;
USBDevice *devs[NB_PORTS];
trace_usb_ehci_reset();
/*
* Do the detach before touching portsc, so that it correctly gets send to
* us or to our companion based on PORTSC_POWNER before the reset.
*/
for(i = 0; i < NB_PORTS; i++) {
devs[i] = s->ports[i].dev;
if (devs[i] && devs[i]->attached) {
usb_detach(&s->ports[i]);
}
}
memset(&s->mmio[OPREGBASE], 0x00, MMIO_SIZE - OPREGBASE);
s->usbcmd = NB_MAXINTRATE << USBCMD_ITC_SH;
s->usbsts = USBSTS_HALT;
s->astate = EST_INACTIVE;
s->pstate = EST_INACTIVE;
s->isoch_pause = -1;
s->attach_poll_counter = 0;
for(i = 0; i < NB_PORTS; i++) {
if (s->companion_ports[i]) {
s->portsc[i] = PORTSC_POWNER | PORTSC_PPOWER;
} else {
s->portsc[i] = PORTSC_PPOWER;
}
if (devs[i] && devs[i]->attached) {
usb_attach(&s->ports[i]);
usb_send_msg(devs[i], USB_MSG_RESET);
}
}
ehci_queues_rip_all(s);
}
static uint32_t ehci_mem_readb(void *ptr, target_phys_addr_t addr)
{
EHCIState *s = ptr;
uint32_t val;
val = s->mmio[addr];
return val;
}
static uint32_t ehci_mem_readw(void *ptr, target_phys_addr_t addr)
{
EHCIState *s = ptr;
uint32_t val;
val = s->mmio[addr] | (s->mmio[addr+1] << 8);
return val;
}
static uint32_t ehci_mem_readl(void *ptr, target_phys_addr_t addr)
{
EHCIState *s = ptr;
uint32_t val;
val = s->mmio[addr] | (s->mmio[addr+1] << 8) |
(s->mmio[addr+2] << 16) | (s->mmio[addr+3] << 24);
trace_usb_ehci_mmio_readl(addr, addr2str(addr), val);
return val;
}
static void ehci_mem_writeb(void *ptr, target_phys_addr_t addr, uint32_t val)
{
fprintf(stderr, "EHCI doesn't handle byte writes to MMIO\n");
exit(1);
}
static void ehci_mem_writew(void *ptr, target_phys_addr_t addr, uint32_t val)
{
fprintf(stderr, "EHCI doesn't handle 16-bit writes to MMIO\n");
exit(1);
}
static void handle_port_owner_write(EHCIState *s, int port, uint32_t owner)
{
USBDevice *dev = s->ports[port].dev;
uint32_t *portsc = &s->portsc[port];
uint32_t orig;
if (s->companion_ports[port] == NULL)
return;
owner = owner & PORTSC_POWNER;
orig = *portsc & PORTSC_POWNER;
if (!(owner ^ orig)) {
return;
}
if (dev && dev->attached) {
usb_detach(&s->ports[port]);
}
*portsc &= ~PORTSC_POWNER;
*portsc |= owner;
if (dev && dev->attached) {
usb_attach(&s->ports[port]);
}
}
static void handle_port_status_write(EHCIState *s, int port, uint32_t val)
{
uint32_t *portsc = &s->portsc[port];
USBDevice *dev = s->ports[port].dev;
/* Clear rwc bits */
*portsc &= ~(val & PORTSC_RWC_MASK);
/* The guest may clear, but not set the PED bit */
*portsc &= val | ~PORTSC_PED;
/* POWNER is masked out by RO_MASK as it is RO when we've no companion */
handle_port_owner_write(s, port, val);
/* And finally apply RO_MASK */
val &= PORTSC_RO_MASK;
if ((val & PORTSC_PRESET) && !(*portsc & PORTSC_PRESET)) {
trace_usb_ehci_port_reset(port, 1);
}
if (!(val & PORTSC_PRESET) &&(*portsc & PORTSC_PRESET)) {
trace_usb_ehci_port_reset(port, 0);
if (dev && dev->attached) {
usb_reset(&s->ports[port]);
*portsc &= ~PORTSC_CSC;
}
/*
* Table 2.16 Set the enable bit(and enable bit change) to indicate
* to SW that this port has a high speed device attached
*/
if (dev && dev->attached && (dev->speedmask & USB_SPEED_MASK_HIGH)) {
val |= PORTSC_PED;
}
}
*portsc &= ~PORTSC_RO_MASK;
*portsc |= val;
}
static void ehci_mem_writel(void *ptr, target_phys_addr_t addr, uint32_t val)
{
EHCIState *s = ptr;
uint32_t *mmio = (uint32_t *)(&s->mmio[addr]);
uint32_t old = *mmio;
int i;
trace_usb_ehci_mmio_writel(addr, addr2str(addr), val);
/* Only aligned reads are allowed on OHCI */
if (addr & 3) {
fprintf(stderr, "usb-ehci: Mis-aligned write to addr 0x"
TARGET_FMT_plx "\n", addr);
return;
}
if (addr >= PORTSC && addr < PORTSC + 4 * NB_PORTS) {
handle_port_status_write(s, (addr-PORTSC)/4, val);
trace_usb_ehci_mmio_change(addr, addr2str(addr), *mmio, old);
return;
}
if (addr < OPREGBASE) {
fprintf(stderr, "usb-ehci: write attempt to read-only register"
TARGET_FMT_plx "\n", addr);
return;
}
/* Do any register specific pre-write processing here. */
switch(addr) {
case USBCMD:
if ((val & USBCMD_RUNSTOP) && !(s->usbcmd & USBCMD_RUNSTOP)) {
qemu_mod_timer(s->frame_timer, qemu_get_clock_ns(vm_clock));
SET_LAST_RUN_CLOCK(s);
ehci_clear_usbsts(s, USBSTS_HALT);
}
if (!(val & USBCMD_RUNSTOP) && (s->usbcmd & USBCMD_RUNSTOP)) {
qemu_del_timer(s->frame_timer);
// TODO - should finish out some stuff before setting halt
ehci_set_usbsts(s, USBSTS_HALT);
}
if (val & USBCMD_HCRESET) {
ehci_reset(s);
val &= ~USBCMD_HCRESET;
}
/* not supporting dynamic frame list size at the moment */
if ((val & USBCMD_FLS) && !(s->usbcmd & USBCMD_FLS)) {
fprintf(stderr, "attempt to set frame list size -- value %d\n",
val & USBCMD_FLS);
val &= ~USBCMD_FLS;
}
break;
case USBSTS:
val &= USBSTS_RO_MASK; // bits 6 thru 31 are RO
ehci_clear_usbsts(s, val); // bits 0 thru 5 are R/WC
val = s->usbsts;
ehci_set_interrupt(s, 0);
break;
case USBINTR:
val &= USBINTR_MASK;
break;
case FRINDEX:
s->sofv = val >> 3;
break;
case CONFIGFLAG:
val &= 0x1;
if (val) {
for(i = 0; i < NB_PORTS; i++)
handle_port_owner_write(s, i, 0);
}
break;
case PERIODICLISTBASE:
if ((s->usbcmd & USBCMD_PSE) && (s->usbcmd & USBCMD_RUNSTOP)) {
fprintf(stderr,
"ehci: PERIODIC list base register set while periodic schedule\n"
" is enabled and HC is enabled\n");
}
break;
case ASYNCLISTADDR:
if ((s->usbcmd & USBCMD_ASE) && (s->usbcmd & USBCMD_RUNSTOP)) {
fprintf(stderr,
"ehci: ASYNC list address register set while async schedule\n"
" is enabled and HC is enabled\n");
}
break;
}
*mmio = val;
trace_usb_ehci_mmio_change(addr, addr2str(addr), *mmio, old);
}
// TODO : Put in common header file, duplication from usb-ohci.c
/* Get an array of dwords from main memory */
static inline int get_dwords(EHCIState *ehci, uint32_t addr,
uint32_t *buf, int num)
{
int i;
for(i = 0; i < num; i++, buf++, addr += sizeof(*buf)) {
pci_dma_read(&ehci->dev, addr, buf, sizeof(*buf));
*buf = le32_to_cpu(*buf);
}
return 1;
}
/* Put an array of dwords in to main memory */
static inline int put_dwords(EHCIState *ehci, uint32_t addr,
uint32_t *buf, int num)
{
int i;
for(i = 0; i < num; i++, buf++, addr += sizeof(*buf)) {
uint32_t tmp = cpu_to_le32(*buf);
pci_dma_write(&ehci->dev, addr, &tmp, sizeof(tmp));
}
return 1;
}
// 4.10.2
static int ehci_qh_do_overlay(EHCIQueue *q)
{
int i;
int dtoggle;
int ping;
int eps;
int reload;
// remember values in fields to preserve in qh after overlay
dtoggle = q->qh.token & QTD_TOKEN_DTOGGLE;
ping = q->qh.token & QTD_TOKEN_PING;
q->qh.current_qtd = q->qtdaddr;
q->qh.next_qtd = q->qtd.next;
q->qh.altnext_qtd = q->qtd.altnext;
q->qh.token = q->qtd.token;
eps = get_field(q->qh.epchar, QH_EPCHAR_EPS);
if (eps == EHCI_QH_EPS_HIGH) {
q->qh.token &= ~QTD_TOKEN_PING;
q->qh.token |= ping;
}
reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
set_field(&q->qh.altnext_qtd, reload, QH_ALTNEXT_NAKCNT);
for (i = 0; i < 5; i++) {
q->qh.bufptr[i] = q->qtd.bufptr[i];
}
if (!(q->qh.epchar & QH_EPCHAR_DTC)) {
// preserve QH DT bit
q->qh.token &= ~QTD_TOKEN_DTOGGLE;
q->qh.token |= dtoggle;
}
q->qh.bufptr[1] &= ~BUFPTR_CPROGMASK_MASK;
q->qh.bufptr[2] &= ~BUFPTR_FRAMETAG_MASK;
put_dwords(q->ehci, NLPTR_GET(q->qhaddr), (uint32_t *) &q->qh,
sizeof(EHCIqh) >> 2);
return 0;
}
static int ehci_init_transfer(EHCIQueue *q)
{
uint32_t cpage, offset, bytes, plen;
dma_addr_t page;
cpage = get_field(q->qh.token, QTD_TOKEN_CPAGE);
bytes = get_field(q->qh.token, QTD_TOKEN_TBYTES);
offset = q->qh.bufptr[0] & ~QTD_BUFPTR_MASK;
pci_dma_sglist_init(&q->sgl, &q->ehci->dev, 5);
while (bytes > 0) {
if (cpage > 4) {
fprintf(stderr, "cpage out of range (%d)\n", cpage);
return USB_RET_PROCERR;
}
page = q->qh.bufptr[cpage] & QTD_BUFPTR_MASK;
page += offset;
plen = bytes;
if (plen > 4096 - offset) {
plen = 4096 - offset;
offset = 0;
cpage++;
}
qemu_sglist_add(&q->sgl, page, plen);
bytes -= plen;
}
return 0;
}
static void ehci_finish_transfer(EHCIQueue *q, int status)
{
uint32_t cpage, offset;
qemu_sglist_destroy(&q->sgl);
if (status > 0) {
/* update cpage & offset */
cpage = get_field(q->qh.token, QTD_TOKEN_CPAGE);
offset = q->qh.bufptr[0] & ~QTD_BUFPTR_MASK;
offset += status;
cpage += offset >> QTD_BUFPTR_SH;
offset &= ~QTD_BUFPTR_MASK;
set_field(&q->qh.token, cpage, QTD_TOKEN_CPAGE);
q->qh.bufptr[0] &= QTD_BUFPTR_MASK;
q->qh.bufptr[0] |= offset;
}
}
static void ehci_async_complete_packet(USBPort *port, USBPacket *packet)
{
EHCIQueue *q;
EHCIState *s = port->opaque;
uint32_t portsc = s->portsc[port->index];
if (portsc & PORTSC_POWNER) {
USBPort *companion = s->companion_ports[port->index];
companion->ops->complete(companion, packet);
return;
}
q = container_of(packet, EHCIQueue, packet);
trace_usb_ehci_queue_action(q, "wakeup");
assert(q->async == EHCI_ASYNC_INFLIGHT);
q->async = EHCI_ASYNC_FINISHED;
q->usb_status = packet->result;
}
static void ehci_execute_complete(EHCIQueue *q)
{
int c_err, reload;
assert(q->async != EHCI_ASYNC_INFLIGHT);
q->async = EHCI_ASYNC_NONE;
DPRINTF("execute_complete: qhaddr 0x%x, next %x, qtdaddr 0x%x, status %d\n",
q->qhaddr, q->qh.next, q->qtdaddr, q->usb_status);
if (q->usb_status < 0) {
err:
/* TO-DO: put this is in a function that can be invoked below as well */
c_err = get_field(q->qh.token, QTD_TOKEN_CERR);
c_err--;
set_field(&q->qh.token, c_err, QTD_TOKEN_CERR);
switch(q->usb_status) {
case USB_RET_NODEV:
q->qh.token |= (QTD_TOKEN_HALT | QTD_TOKEN_XACTERR);
ehci_record_interrupt(q->ehci, USBSTS_ERRINT);
break;
case USB_RET_STALL:
q->qh.token |= QTD_TOKEN_HALT;
ehci_record_interrupt(q->ehci, USBSTS_ERRINT);
break;
case USB_RET_NAK:
/* 4.10.3 */
reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
if ((q->pid == USB_TOKEN_IN) && reload) {
int nakcnt = get_field(q->qh.altnext_qtd, QH_ALTNEXT_NAKCNT);
nakcnt--;
set_field(&q->qh.altnext_qtd, nakcnt, QH_ALTNEXT_NAKCNT);
} else if (!reload) {
return;
}
break;
case USB_RET_BABBLE:
q->qh.token |= (QTD_TOKEN_HALT | QTD_TOKEN_BABBLE);
ehci_record_interrupt(q->ehci, USBSTS_ERRINT);
break;
default:
/* should not be triggerable */
fprintf(stderr, "USB invalid response %d to handle\n", q->usb_status);
assert(0);
break;
}
} else {
// DPRINTF("Short packet condition\n");
// TODO check 4.12 for splits
if ((q->usb_status > q->tbytes) && (q->pid == USB_TOKEN_IN)) {
q->usb_status = USB_RET_BABBLE;
goto err;
}
if (q->tbytes && q->pid == USB_TOKEN_IN) {
q->tbytes -= q->usb_status;
} else {
q->tbytes = 0;
}
DPRINTF("updating tbytes to %d\n", q->tbytes);
set_field(&q->qh.token, q->tbytes, QTD_TOKEN_TBYTES);
}
ehci_finish_transfer(q, q->usb_status);
usb_packet_unmap(&q->packet);
q->qh.token ^= QTD_TOKEN_DTOGGLE;
q->qh.token &= ~QTD_TOKEN_ACTIVE;
if ((q->usb_status >= 0) && (q->qh.token & QTD_TOKEN_IOC)) {
ehci_record_interrupt(q->ehci, USBSTS_INT);
}
}
// 4.10.3
static int ehci_execute(EHCIQueue *q)
{
USBPort *port;
USBDevice *dev;
int ret;
int i;
int endp;
int devadr;
if ( !(q->qh.token & QTD_TOKEN_ACTIVE)) {
fprintf(stderr, "Attempting to execute inactive QH\n");
return USB_RET_PROCERR;
}
q->tbytes = (q->qh.token & QTD_TOKEN_TBYTES_MASK) >> QTD_TOKEN_TBYTES_SH;
if (q->tbytes > BUFF_SIZE) {
fprintf(stderr, "Request for more bytes than allowed\n");
return USB_RET_PROCERR;
}
q->pid = (q->qh.token & QTD_TOKEN_PID_MASK) >> QTD_TOKEN_PID_SH;
switch(q->pid) {
case 0: q->pid = USB_TOKEN_OUT; break;
case 1: q->pid = USB_TOKEN_IN; break;
case 2: q->pid = USB_TOKEN_SETUP; break;
default: fprintf(stderr, "bad token\n"); break;
}
if (ehci_init_transfer(q) != 0) {
return USB_RET_PROCERR;
}
endp = get_field(q->qh.epchar, QH_EPCHAR_EP);
devadr = get_field(q->qh.epchar, QH_EPCHAR_DEVADDR);
ret = USB_RET_NODEV;
usb_packet_setup(&q->packet, q->pid, devadr, endp);
usb_packet_map(&q->packet, &q->sgl);
// TO-DO: associating device with ehci port
for(i = 0; i < NB_PORTS; i++) {
port = &q->ehci->ports[i];
dev = port->dev;
if (!(q->ehci->portsc[i] &(PORTSC_CONNECT))) {
DPRINTF("Port %d, no exec, not connected(%08X)\n",
i, q->ehci->portsc[i]);
continue;
}
ret = usb_handle_packet(dev, &q->packet);
DPRINTF("submit: qh %x next %x qtd %x pid %x len %zd "
"(total %d) endp %x ret %d\n",
q->qhaddr, q->qh.next, q->qtdaddr, q->pid,
q->packet.iov.size, q->tbytes, endp, ret);
if (ret != USB_RET_NODEV) {
break;
}
}
if (ret > BUFF_SIZE) {
fprintf(stderr, "ret from usb_handle_packet > BUFF_SIZE\n");
return USB_RET_PROCERR;
}
return ret;
}
/* 4.7.2
*/
static int ehci_process_itd(EHCIState *ehci,
EHCIitd *itd)
{
USBPort *port;
USBDevice *dev;
int ret;
uint32_t i, j, len, pid, dir, devaddr, endp;
uint32_t pg, off, ptr1, ptr2, max, mult;
dir =(itd->bufptr[1] & ITD_BUFPTR_DIRECTION);
devaddr = get_field(itd->bufptr[0], ITD_BUFPTR_DEVADDR);
endp = get_field(itd->bufptr[0], ITD_BUFPTR_EP);
max = get_field(itd->bufptr[1], ITD_BUFPTR_MAXPKT);
mult = get_field(itd->bufptr[2], ITD_BUFPTR_MULT);
for(i = 0; i < 8; i++) {
if (itd->transact[i] & ITD_XACT_ACTIVE) {
pg = get_field(itd->transact[i], ITD_XACT_PGSEL);
off = itd->transact[i] & ITD_XACT_OFFSET_MASK;
ptr1 = (itd->bufptr[pg] & ITD_BUFPTR_MASK);
ptr2 = (itd->bufptr[pg+1] & ITD_BUFPTR_MASK);
len = get_field(itd->transact[i], ITD_XACT_LENGTH);
if (len > max * mult) {
len = max * mult;
}
if (len > BUFF_SIZE) {
return USB_RET_PROCERR;
}
pci_dma_sglist_init(&ehci->isgl, &ehci->dev, 2);
if (off + len > 4096) {
/* transfer crosses page border */
uint32_t len2 = off + len - 4096;
uint32_t len1 = len - len2;
qemu_sglist_add(&ehci->isgl, ptr1 + off, len1);
qemu_sglist_add(&ehci->isgl, ptr2, len2);
} else {
qemu_sglist_add(&ehci->isgl, ptr1 + off, len);
}
pid = dir ? USB_TOKEN_IN : USB_TOKEN_OUT;
usb_packet_setup(&ehci->ipacket, pid, devaddr, endp);
usb_packet_map(&ehci->ipacket, &ehci->isgl);
ret = USB_RET_NODEV;
for (j = 0; j < NB_PORTS; j++) {
port = &ehci->ports[j];
dev = port->dev;
if (!(ehci->portsc[j] &(PORTSC_CONNECT))) {
continue;
}
ret = usb_handle_packet(dev, &ehci->ipacket);
if (ret != USB_RET_NODEV) {
break;
}
}
usb_packet_unmap(&ehci->ipacket);
qemu_sglist_destroy(&ehci->isgl);
#if 0
/* In isoch, there is no facility to indicate a NAK so let's
* instead just complete a zero-byte transaction. Setting
* DBERR seems too draconian.
*/
if (ret == USB_RET_NAK) {
if (ehci->isoch_pause > 0) {
DPRINTF("ISOCH: received a NAK but paused so returning\n");
ehci->isoch_pause--;
return 0;
} else if (ehci->isoch_pause == -1) {
DPRINTF("ISOCH: recv NAK & isoch pause inactive, setting\n");
// Pause frindex for up to 50 msec waiting for data from
// remote
ehci->isoch_pause = 50;
return 0;
} else {
DPRINTF("ISOCH: isoch pause timeout! return 0\n");
ret = 0;
}
} else {
DPRINTF("ISOCH: received ACK, clearing pause\n");
ehci->isoch_pause = -1;
}
#else
if (ret == USB_RET_NAK) {
ret = 0;
}
#endif
if (ret >= 0) {
if (!dir) {
/* OUT */
set_field(&itd->transact[i], len - ret, ITD_XACT_LENGTH);
} else {
/* IN */
set_field(&itd->transact[i], ret, ITD_XACT_LENGTH);
}
if (itd->transact[i] & ITD_XACT_IOC) {
ehci_record_interrupt(ehci, USBSTS_INT);
}
}
itd->transact[i] &= ~ITD_XACT_ACTIVE;
}
}
return 0;
}
/* This state is the entry point for asynchronous schedule
* processing. Entry here consitutes a EHCI start event state (4.8.5)
*/
static int ehci_state_waitlisthead(EHCIState *ehci, int async)
{
EHCIqh qh;
int i = 0;
int again = 0;
uint32_t entry = ehci->asynclistaddr;
/* set reclamation flag at start event (4.8.6) */
if (async) {
ehci_set_usbsts(ehci, USBSTS_REC);
}
ehci_queues_rip_unused(ehci);
/* Find the head of the list (4.9.1.1) */
for(i = 0; i < MAX_QH; i++) {
get_dwords(ehci, NLPTR_GET(entry), (uint32_t *) &qh,
sizeof(EHCIqh) >> 2);
ehci_trace_qh(NULL, NLPTR_GET(entry), &qh);
if (qh.epchar & QH_EPCHAR_H) {
if (async) {
entry |= (NLPTR_TYPE_QH << 1);
}
ehci_set_fetch_addr(ehci, async, entry);
ehci_set_state(ehci, async, EST_FETCHENTRY);
again = 1;
goto out;
}
entry = qh.next;
if (entry == ehci->asynclistaddr) {
break;
}
}
/* no head found for list. */
ehci_set_state(ehci, async, EST_ACTIVE);
out:
return again;
}
/* This state is the entry point for periodic schedule processing as
* well as being a continuation state for async processing.
*/
static int ehci_state_fetchentry(EHCIState *ehci, int async)
{
int again = 0;
uint32_t entry = ehci_get_fetch_addr(ehci, async);
if (entry < 0x1000) {
DPRINTF("fetchentry: entry invalid (0x%08x)\n", entry);
ehci_set_state(ehci, async, EST_ACTIVE);
goto out;
}
/* section 4.8, only QH in async schedule */
if (async && (NLPTR_TYPE_GET(entry) != NLPTR_TYPE_QH)) {
fprintf(stderr, "non queue head request in async schedule\n");
return -1;
}
switch (NLPTR_TYPE_GET(entry)) {
case NLPTR_TYPE_QH:
ehci_set_state(ehci, async, EST_FETCHQH);
again = 1;
break;
case NLPTR_TYPE_ITD:
ehci_set_state(ehci, async, EST_FETCHITD);
again = 1;
break;
case NLPTR_TYPE_STITD:
ehci_set_state(ehci, async, EST_FETCHSITD);
again = 1;
break;
default:
/* TODO: handle FSTN type */
fprintf(stderr, "FETCHENTRY: entry at %X is of type %d "
"which is not supported yet\n", entry, NLPTR_TYPE_GET(entry));
return -1;
}
out:
return again;
}
static EHCIQueue *ehci_state_fetchqh(EHCIState *ehci, int async)
{
uint32_t entry;
EHCIQueue *q;
int reload;
entry = ehci_get_fetch_addr(ehci, async);
q = ehci_find_queue_by_qh(ehci, entry);
if (NULL == q) {
q = ehci_alloc_queue(ehci, async);
}
q->qhaddr = entry;
q->seen++;
if (q->seen > 1) {
/* we are going in circles -- stop processing */
ehci_set_state(ehci, async, EST_ACTIVE);
q = NULL;
goto out;
}
get_dwords(ehci, NLPTR_GET(q->qhaddr),
(uint32_t *) &q->qh, sizeof(EHCIqh) >> 2);
ehci_trace_qh(q, NLPTR_GET(q->qhaddr), &q->qh);
if (q->async == EHCI_ASYNC_INFLIGHT) {
/* I/O still in progress -- skip queue */
ehci_set_state(ehci, async, EST_HORIZONTALQH);
goto out;
}
if (q->async == EHCI_ASYNC_FINISHED) {
/* I/O finished -- continue processing queue */
trace_usb_ehci_queue_action(q, "resume");
ehci_set_state(ehci, async, EST_EXECUTING);
goto out;
}
if (async && (q->qh.epchar & QH_EPCHAR_H)) {
/* EHCI spec version 1.0 Section 4.8.3 & 4.10.1 */
if (ehci->usbsts & USBSTS_REC) {
ehci_clear_usbsts(ehci, USBSTS_REC);
} else {
DPRINTF("FETCHQH: QH 0x%08x. H-bit set, reclamation status reset"
" - done processing\n", q->qhaddr);
ehci_set_state(ehci, async, EST_ACTIVE);
q = NULL;
goto out;
}
}
#if EHCI_DEBUG
if (q->qhaddr != q->qh.next) {
DPRINTF("FETCHQH: QH 0x%08x (h %x halt %x active %x) next 0x%08x\n",
q->qhaddr,
q->qh.epchar & QH_EPCHAR_H,
q->qh.token & QTD_TOKEN_HALT,
q->qh.token & QTD_TOKEN_ACTIVE,
q->qh.next);
}
#endif
reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
if (reload) {
set_field(&q->qh.altnext_qtd, reload, QH_ALTNEXT_NAKCNT);
}
if (q->qh.token & QTD_TOKEN_HALT) {
ehci_set_state(ehci, async, EST_HORIZONTALQH);
} else if ((q->qh.token & QTD_TOKEN_ACTIVE) && (q->qh.current_qtd > 0x1000)) {
q->qtdaddr = q->qh.current_qtd;
ehci_set_state(ehci, async, EST_FETCHQTD);
} else {
/* EHCI spec version 1.0 Section 4.10.2 */
ehci_set_state(ehci, async, EST_ADVANCEQUEUE);
}
out:
return q;
}
static int ehci_state_fetchitd(EHCIState *ehci, int async)
{
uint32_t entry;
EHCIitd itd;
assert(!async);
entry = ehci_get_fetch_addr(ehci, async);
get_dwords(ehci, NLPTR_GET(entry), (uint32_t *) &itd,
sizeof(EHCIitd) >> 2);
ehci_trace_itd(ehci, entry, &itd);
if (ehci_process_itd(ehci, &itd) != 0) {
return -1;
}
put_dwords(ehci, NLPTR_GET(entry), (uint32_t *) &itd,
sizeof(EHCIitd) >> 2);
ehci_set_fetch_addr(ehci, async, itd.next);
ehci_set_state(ehci, async, EST_FETCHENTRY);
return 1;
}
static int ehci_state_fetchsitd(EHCIState *ehci, int async)
{
uint32_t entry;
EHCIsitd sitd;
assert(!async);
entry = ehci_get_fetch_addr(ehci, async);
get_dwords(ehci, NLPTR_GET(entry), (uint32_t *)&sitd,
sizeof(EHCIsitd) >> 2);
ehci_trace_sitd(ehci, entry, &sitd);
if (!(sitd.results & SITD_RESULTS_ACTIVE)) {
/* siTD is not active, nothing to do */;
} else {
/* TODO: split transfers are not implemented */
fprintf(stderr, "WARNING: Skipping active siTD\n");
}
ehci_set_fetch_addr(ehci, async, sitd.next);
ehci_set_state(ehci, async, EST_FETCHENTRY);
return 1;
}
/* Section 4.10.2 - paragraph 3 */
static int ehci_state_advqueue(EHCIQueue *q, int async)
{
#if 0
/* TO-DO: 4.10.2 - paragraph 2
* if I-bit is set to 1 and QH is not active
* go to horizontal QH
*/
if (I-bit set) {
ehci_set_state(ehci, async, EST_HORIZONTALQH);
goto out;
}
#endif
/*
* want data and alt-next qTD is valid
*/
if (((q->qh.token & QTD_TOKEN_TBYTES_MASK) != 0) &&
(q->qh.altnext_qtd > 0x1000) &&
(NLPTR_TBIT(q->qh.altnext_qtd) == 0)) {
q->qtdaddr = q->qh.altnext_qtd;
ehci_set_state(q->ehci, async, EST_FETCHQTD);
/*
* next qTD is valid
*/
} else if ((q->qh.next_qtd > 0x1000) &&
(NLPTR_TBIT(q->qh.next_qtd) == 0)) {
q->qtdaddr = q->qh.next_qtd;
ehci_set_state(q->ehci, async, EST_FETCHQTD);
/*
* no valid qTD, try next QH
*/
} else {
ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
}
return 1;
}
/* Section 4.10.2 - paragraph 4 */
static int ehci_state_fetchqtd(EHCIQueue *q, int async)
{
int again = 0;
get_dwords(q->ehci, NLPTR_GET(q->qtdaddr), (uint32_t *) &q->qtd,
sizeof(EHCIqtd) >> 2);
ehci_trace_qtd(q, NLPTR_GET(q->qtdaddr), &q->qtd);
if (q->qtd.token & QTD_TOKEN_ACTIVE) {
ehci_set_state(q->ehci, async, EST_EXECUTE);
again = 1;
} else {
ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
again = 1;
}
return again;
}
static int ehci_state_horizqh(EHCIQueue *q, int async)
{
int again = 0;
if (ehci_get_fetch_addr(q->ehci, async) != q->qh.next) {
ehci_set_fetch_addr(q->ehci, async, q->qh.next);
ehci_set_state(q->ehci, async, EST_FETCHENTRY);
again = 1;
} else {
ehci_set_state(q->ehci, async, EST_ACTIVE);
}
return again;
}
/*
* Write the qh back to guest physical memory. This step isn't
* in the EHCI spec but we need to do it since we don't share
* physical memory with our guest VM.
*
* The first three dwords are read-only for the EHCI, so skip them
* when writing back the qh.
*/
static void ehci_flush_qh(EHCIQueue *q)
{
uint32_t *qh = (uint32_t *) &q->qh;
uint32_t dwords = sizeof(EHCIqh) >> 2;
uint32_t addr = NLPTR_GET(q->qhaddr);
put_dwords(q->ehci, addr + 3 * sizeof(uint32_t), qh + 3, dwords - 3);
}
static int ehci_state_execute(EHCIQueue *q, int async)
{
int again = 0;
int reload, nakcnt;
int smask;
if (ehci_qh_do_overlay(q) != 0) {
return -1;
}
smask = get_field(q->qh.epcap, QH_EPCAP_SMASK);
if (!smask) {
reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
nakcnt = get_field(q->qh.altnext_qtd, QH_ALTNEXT_NAKCNT);
if (reload && !nakcnt) {
ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
again = 1;
goto out;
}
}
// TODO verify enough time remains in the uframe as in 4.4.1.1
// TODO write back ptr to async list when done or out of time
// TODO Windows does not seem to ever set the MULT field
if (!async) {
int transactCtr = get_field(q->qh.epcap, QH_EPCAP_MULT);
if (!transactCtr) {
ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
again = 1;
goto out;
}
}
if (async) {
ehci_set_usbsts(q->ehci, USBSTS_REC);
}
q->usb_status = ehci_execute(q);
if (q->usb_status == USB_RET_PROCERR) {
again = -1;
goto out;
}
if (q->usb_status == USB_RET_ASYNC) {
ehci_flush_qh(q);
trace_usb_ehci_queue_action(q, "suspend");
q->async = EHCI_ASYNC_INFLIGHT;
ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
again = 1;
goto out;
}
ehci_set_state(q->ehci, async, EST_EXECUTING);
again = 1;
out:
return again;
}
static int ehci_state_executing(EHCIQueue *q, int async)
{
int again = 0;
int reload, nakcnt;
ehci_execute_complete(q);
if (q->usb_status == USB_RET_ASYNC) {
goto out;
}
if (q->usb_status == USB_RET_PROCERR) {
again = -1;
goto out;
}
// 4.10.3
if (!async) {
int transactCtr = get_field(q->qh.epcap, QH_EPCAP_MULT);
transactCtr--;
set_field(&q->qh.epcap, transactCtr, QH_EPCAP_MULT);
// 4.10.3, bottom of page 82, should exit this state when transaction
// counter decrements to 0
}
reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
if (reload) {
nakcnt = get_field(q->qh.altnext_qtd, QH_ALTNEXT_NAKCNT);
if (q->usb_status == USB_RET_NAK) {
if (nakcnt) {
nakcnt--;
}
} else {
nakcnt = reload;
}
set_field(&q->qh.altnext_qtd, nakcnt, QH_ALTNEXT_NAKCNT);
}
/* 4.10.5 */
if ((q->usb_status == USB_RET_NAK) || (q->qh.token & QTD_TOKEN_ACTIVE)) {
ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
} else {
ehci_set_state(q->ehci, async, EST_WRITEBACK);
}
again = 1;
out:
ehci_flush_qh(q);
return again;
}
static int ehci_state_writeback(EHCIQueue *q, int async)
{
int again = 0;
/* Write back the QTD from the QH area */
ehci_trace_qtd(q, NLPTR_GET(q->qtdaddr), (EHCIqtd*) &q->qh.next_qtd);
put_dwords(q->ehci, NLPTR_GET(q->qtdaddr), (uint32_t *) &q->qh.next_qtd,
sizeof(EHCIqtd) >> 2);
/*
* EHCI specs say go horizontal here.
*
* We can also advance the queue here for performance reasons. We
* need to take care to only take that shortcut in case we've
* processed the qtd just written back without errors, i.e. halt
* bit is clear.
*/
if (q->qh.token & QTD_TOKEN_HALT) {
ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
again = 1;
} else {
ehci_set_state(q->ehci, async, EST_ADVANCEQUEUE);
again = 1;
}
return again;
}
/*
* This is the state machine that is common to both async and periodic
*/
static void ehci_advance_state(EHCIState *ehci,
int async)
{
EHCIQueue *q = NULL;
int again;
int iter = 0;
do {
if (ehci_get_state(ehci, async) == EST_FETCHQH) {
iter++;
/* if we are roaming a lot of QH without executing a qTD
* something is wrong with the linked list. TO-DO: why is
* this hack needed?
*/
assert(iter < MAX_ITERATIONS);
#if 0
if (iter > MAX_ITERATIONS) {
DPRINTF("\n*** advance_state: bailing on MAX ITERATIONS***\n");
ehci_set_state(ehci, async, EST_ACTIVE);
break;
}
#endif
}
switch(ehci_get_state(ehci, async)) {
case EST_WAITLISTHEAD:
again = ehci_state_waitlisthead(ehci, async);
break;
case EST_FETCHENTRY:
again = ehci_state_fetchentry(ehci, async);
break;
case EST_FETCHQH:
q = ehci_state_fetchqh(ehci, async);
again = q ? 1 : 0;
break;
case EST_FETCHITD:
again = ehci_state_fetchitd(ehci, async);
break;
case EST_FETCHSITD:
again = ehci_state_fetchsitd(ehci, async);
break;
case EST_ADVANCEQUEUE:
again = ehci_state_advqueue(q, async);
break;
case EST_FETCHQTD:
again = ehci_state_fetchqtd(q, async);
break;
case EST_HORIZONTALQH:
again = ehci_state_horizqh(q, async);
break;
case EST_EXECUTE:
iter = 0;
again = ehci_state_execute(q, async);
break;
case EST_EXECUTING:
assert(q != NULL);
again = ehci_state_executing(q, async);
break;
case EST_WRITEBACK:
assert(q != NULL);
again = ehci_state_writeback(q, async);
break;
default:
fprintf(stderr, "Bad state!\n");
again = -1;
assert(0);
break;
}
if (again < 0) {
fprintf(stderr, "processing error - resetting ehci HC\n");
ehci_reset(ehci);
again = 0;
assert(0);
}
}
while (again);
ehci_commit_interrupt(ehci);
}
static void ehci_advance_async_state(EHCIState *ehci)
{
int async = 1;
switch(ehci_get_state(ehci, async)) {
case EST_INACTIVE:
if (!(ehci->usbcmd & USBCMD_ASE)) {
break;
}
ehci_set_usbsts(ehci, USBSTS_ASS);
ehci_set_state(ehci, async, EST_ACTIVE);
// No break, fall through to ACTIVE
case EST_ACTIVE:
if ( !(ehci->usbcmd & USBCMD_ASE)) {
ehci_clear_usbsts(ehci, USBSTS_ASS);
ehci_set_state(ehci, async, EST_INACTIVE);
break;
}
/* If the doorbell is set, the guest wants to make a change to the
* schedule. The host controller needs to release cached data.
* (section 4.8.2)
*/
if (ehci->usbcmd & USBCMD_IAAD) {
DPRINTF("ASYNC: doorbell request acknowledged\n");
ehci->usbcmd &= ~USBCMD_IAAD;
ehci_set_interrupt(ehci, USBSTS_IAA);
break;
}
/* make sure guest has acknowledged */
/* TO-DO: is this really needed? */
if (ehci->usbsts & USBSTS_IAA) {
DPRINTF("IAA status bit still set.\n");
break;
}
/* check that address register has been set */
if (ehci->asynclistaddr == 0) {
break;
}
ehci_set_state(ehci, async, EST_WAITLISTHEAD);
ehci_advance_state(ehci, async);
break;
default:
/* this should only be due to a developer mistake */
fprintf(stderr, "ehci: Bad asynchronous state %d. "
"Resetting to active\n", ehci->astate);
assert(0);
}
}
static void ehci_advance_periodic_state(EHCIState *ehci)
{
uint32_t entry;
uint32_t list;
int async = 0;
// 4.6
switch(ehci_get_state(ehci, async)) {
case EST_INACTIVE:
if ( !(ehci->frindex & 7) && (ehci->usbcmd & USBCMD_PSE)) {
ehci_set_usbsts(ehci, USBSTS_PSS);
ehci_set_state(ehci, async, EST_ACTIVE);
// No break, fall through to ACTIVE
} else
break;
case EST_ACTIVE:
if ( !(ehci->frindex & 7) && !(ehci->usbcmd & USBCMD_PSE)) {
ehci_clear_usbsts(ehci, USBSTS_PSS);
ehci_set_state(ehci, async, EST_INACTIVE);
break;
}
list = ehci->periodiclistbase & 0xfffff000;
/* check that register has been set */
if (list == 0) {
break;
}
list |= ((ehci->frindex & 0x1ff8) >> 1);
pci_dma_read(&ehci->dev, list, &entry, sizeof entry);
entry = le32_to_cpu(entry);
DPRINTF("PERIODIC state adv fr=%d. [%08X] -> %08X\n",
ehci->frindex / 8, list, entry);
ehci_set_fetch_addr(ehci, async,entry);
ehci_set_state(ehci, async, EST_FETCHENTRY);
ehci_advance_state(ehci, async);
break;
default:
/* this should only be due to a developer mistake */
fprintf(stderr, "ehci: Bad periodic state %d. "
"Resetting to active\n", ehci->pstate);
assert(0);
}
}
static void ehci_frame_timer(void *opaque)
{
EHCIState *ehci = opaque;
int64_t expire_time, t_now;
uint64_t ns_elapsed;
int frames;
int i;
int skipped_frames = 0;
t_now = qemu_get_clock_ns(vm_clock);
expire_time = t_now + (get_ticks_per_sec() / ehci->freq);
ns_elapsed = t_now - ehci->last_run_ns;
frames = ns_elapsed / FRAME_TIMER_NS;
for (i = 0; i < frames; i++) {
if ( !(ehci->usbsts & USBSTS_HALT)) {
if (ehci->isoch_pause <= 0) {
ehci->frindex += 8;
}
if (ehci->frindex > 0x00001fff) {
ehci->frindex = 0;
ehci_set_interrupt(ehci, USBSTS_FLR);
}
ehci->sofv = (ehci->frindex - 1) >> 3;
ehci->sofv &= 0x000003ff;
}
if (frames - i > ehci->maxframes) {
skipped_frames++;
} else {
ehci_advance_periodic_state(ehci);
}
ehci->last_run_ns += FRAME_TIMER_NS;
}
#if 0
if (skipped_frames) {
DPRINTF("WARNING - EHCI skipped %d frames\n", skipped_frames);
}
#endif
/* Async is not inside loop since it executes everything it can once
* called
*/
ehci_advance_async_state(ehci);
qemu_mod_timer(ehci->frame_timer, expire_time);
}
static const MemoryRegionOps ehci_mem_ops = {
.old_mmio = {
.read = { ehci_mem_readb, ehci_mem_readw, ehci_mem_readl },
.write = { ehci_mem_writeb, ehci_mem_writew, ehci_mem_writel },
},
.endianness = DEVICE_LITTLE_ENDIAN,
};
static int usb_ehci_initfn(PCIDevice *dev);
static USBPortOps ehci_port_ops = {
.attach = ehci_attach,
.detach = ehci_detach,
.child_detach = ehci_child_detach,
.wakeup = ehci_wakeup,
.complete = ehci_async_complete_packet,
};
static USBBusOps ehci_bus_ops = {
.register_companion = ehci_register_companion,
};
static const VMStateDescription vmstate_ehci = {
.name = "ehci",
.unmigratable = 1,
};
static Property ehci_properties[] = {
DEFINE_PROP_UINT32("freq", EHCIState, freq, FRAME_TIMER_FREQ),
DEFINE_PROP_UINT32("maxframes", EHCIState, maxframes, 128),
DEFINE_PROP_END_OF_LIST(),
};
static void ehci_class_init(ObjectClass *klass, void *data)
{
PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
k->init = usb_ehci_initfn;
k->vendor_id = PCI_VENDOR_ID_INTEL;
k->device_id = PCI_DEVICE_ID_INTEL_82801D; /* ich4 */
k->revision = 0x10;
k->class_id = PCI_CLASS_SERIAL_USB;
}
static DeviceInfo ehci_info = {
.name = "usb-ehci",
.size = sizeof(EHCIState),
.vmsd = &vmstate_ehci,
.props = ehci_properties,
.class_init = ehci_class_init,
};
static void ich9_ehci_class_init(ObjectClass *klass, void *data)
{
PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
k->init = usb_ehci_initfn;
k->vendor_id = PCI_VENDOR_ID_INTEL;
k->device_id = PCI_DEVICE_ID_INTEL_82801I_EHCI1;
k->revision = 0x03;
k->class_id = PCI_CLASS_SERIAL_USB;
}
static DeviceInfo ich9_ehci_info = {
.name = "ich9-usb-ehci1",
.size = sizeof(EHCIState),
.vmsd = &vmstate_ehci,
.props = ehci_properties,
.class_init = ich9_ehci_class_init,
};
static int usb_ehci_initfn(PCIDevice *dev)
{
EHCIState *s = DO_UPCAST(EHCIState, dev, dev);
uint8_t *pci_conf = s->dev.config;
int i;
pci_set_byte(&pci_conf[PCI_CLASS_PROG], 0x20);
/* capabilities pointer */
pci_set_byte(&pci_conf[PCI_CAPABILITY_LIST], 0x00);
//pci_set_byte(&pci_conf[PCI_CAPABILITY_LIST], 0x50);
pci_set_byte(&pci_conf[PCI_INTERRUPT_PIN], 4); /* interrupt pin D */
pci_set_byte(&pci_conf[PCI_MIN_GNT], 0);
pci_set_byte(&pci_conf[PCI_MAX_LAT], 0);
// pci_conf[0x50] = 0x01; // power management caps
pci_set_byte(&pci_conf[USB_SBRN], USB_RELEASE_2); // release number (2.1.4)
pci_set_byte(&pci_conf[0x61], 0x20); // frame length adjustment (2.1.5)
pci_set_word(&pci_conf[0x62], 0x00); // port wake up capability (2.1.6)
pci_conf[0x64] = 0x00;
pci_conf[0x65] = 0x00;
pci_conf[0x66] = 0x00;
pci_conf[0x67] = 0x00;
pci_conf[0x68] = 0x01;
pci_conf[0x69] = 0x00;
pci_conf[0x6a] = 0x00;
pci_conf[0x6b] = 0x00; // USBLEGSUP
pci_conf[0x6c] = 0x00;
pci_conf[0x6d] = 0x00;
pci_conf[0x6e] = 0x00;
pci_conf[0x6f] = 0xc0; // USBLEFCTLSTS
// 2.2 host controller interface version
s->mmio[0x00] = (uint8_t) OPREGBASE;
s->mmio[0x01] = 0x00;
s->mmio[0x02] = 0x00;
s->mmio[0x03] = 0x01; // HC version
s->mmio[0x04] = NB_PORTS; // Number of downstream ports
s->mmio[0x05] = 0x00; // No companion ports at present
s->mmio[0x06] = 0x00;
s->mmio[0x07] = 0x00;
s->mmio[0x08] = 0x80; // We can cache whole frame, not 64-bit capable
s->mmio[0x09] = 0x68; // EECP
s->mmio[0x0a] = 0x00;
s->mmio[0x0b] = 0x00;
s->irq = s->dev.irq[3];
usb_bus_new(&s->bus, &ehci_bus_ops, &s->dev.qdev);
for(i = 0; i < NB_PORTS; i++) {
usb_register_port(&s->bus, &s->ports[i], s, i, &ehci_port_ops,
USB_SPEED_MASK_HIGH);
s->ports[i].dev = 0;
}
s->frame_timer = qemu_new_timer_ns(vm_clock, ehci_frame_timer, s);
QTAILQ_INIT(&s->queues);
qemu_register_reset(ehci_reset, s);
memory_region_init_io(&s->mem, &ehci_mem_ops, s, "ehci", MMIO_SIZE);
pci_register_bar(&s->dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->mem);
fprintf(stderr, "*** EHCI support is under development ***\n");
return 0;
}
static void ehci_register(void)
{
pci_qdev_register(&ehci_info);
pci_qdev_register(&ich9_ehci_info);
}
device_init(ehci_register);
/*
* vim: expandtab ts=4
*/