qemu/tests/test-crypto-hash.c
Daniel P. Berrange ddbb0d0966 crypto: introduce new module for computing hash digests
Introduce a new crypto/ directory that will (eventually) contain
all the cryptographic related code. This initially defines a
wrapper for initializing gnutls and for computing hashes with
gnutls. The former ensures that gnutls is guaranteed to be
initialized exactly once in QEMU regardless of CLI args. The
block quorum code currently fails to initialize gnutls so it
only works by luck, if VNC server TLS is not requested. The
hash APIs avoids the need to litter the rest of the code with
preprocessor checks and simplifies callers by allocating the
correct amount of memory for the requested hash.

Signed-off-by: Daniel P. Berrange <berrange@redhat.com>
Message-Id: <1435770638-25715-2-git-send-email-berrange@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2015-07-07 12:04:07 +02:00

210 lines
6.3 KiB
C

/*
* QEMU Crypto hash algorithms
*
* Copyright (c) 2015 Red Hat, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*
*/
#include <glib.h>
#include "crypto/init.h"
#include "crypto/hash.h"
#define INPUT_TEXT "Hiss hisss Hissss hiss Hiss hisss Hiss hiss"
#define INPUT_TEXT1 "Hiss hisss "
#define INPUT_TEXT2 "Hissss hiss "
#define INPUT_TEXT3 "Hiss hisss Hiss hiss"
#define OUTPUT_MD5 "628d206371563035ab8ef62f492bdec9"
#define OUTPUT_SHA1 "b2e74f26758a3a421e509cee045244b78753cc02"
#define OUTPUT_SHA256 "bc757abb0436586f392b437e5dd24096" \
"f7f224de6b74d4d86e2abc6121b160d0"
#define OUTPUT_MD5_B64 "Yo0gY3FWMDWrjvYvSSveyQ=="
#define OUTPUT_SHA1_B64 "sudPJnWKOkIeUJzuBFJEt4dTzAI="
#define OUTPUT_SHA256_B64 "vHV6uwQ2WG85K0N+XdJAlvfyJN5rdNTYbiq8YSGxYNA="
static const char *expected_outputs[] = {
[QCRYPTO_HASH_ALG_MD5] = OUTPUT_MD5,
[QCRYPTO_HASH_ALG_SHA1] = OUTPUT_SHA1,
[QCRYPTO_HASH_ALG_SHA256] = OUTPUT_SHA256,
};
static const char *expected_outputs_b64[] = {
[QCRYPTO_HASH_ALG_MD5] = OUTPUT_MD5_B64,
[QCRYPTO_HASH_ALG_SHA1] = OUTPUT_SHA1_B64,
[QCRYPTO_HASH_ALG_SHA256] = OUTPUT_SHA256_B64,
};
static const int expected_lens[] = {
[QCRYPTO_HASH_ALG_MD5] = 16,
[QCRYPTO_HASH_ALG_SHA1] = 20,
[QCRYPTO_HASH_ALG_SHA256] = 32,
};
static const char hex[] = "0123456789abcdef";
/* Test with dynamic allocation */
static void test_hash_alloc(void)
{
size_t i;
g_assert(qcrypto_init(NULL) == 0);
for (i = 0; i < G_N_ELEMENTS(expected_outputs) ; i++) {
uint8_t *result = NULL;
size_t resultlen = 0;
int ret;
size_t j;
ret = qcrypto_hash_bytes(i,
INPUT_TEXT,
strlen(INPUT_TEXT),
&result,
&resultlen,
NULL);
g_assert(ret == 0);
g_assert(resultlen == expected_lens[i]);
for (j = 0; j < resultlen; j++) {
g_assert(expected_outputs[i][j * 2] == hex[(result[j] >> 4) & 0xf]);
g_assert(expected_outputs[i][j * 2 + 1] == hex[result[j] & 0xf]);
}
g_free(result);
}
}
/* Test with caller preallocating */
static void test_hash_prealloc(void)
{
size_t i;
g_assert(qcrypto_init(NULL) == 0);
for (i = 0; i < G_N_ELEMENTS(expected_outputs) ; i++) {
uint8_t *result;
size_t resultlen;
int ret;
size_t j;
resultlen = expected_lens[i];
result = g_new0(uint8_t, resultlen);
ret = qcrypto_hash_bytes(i,
INPUT_TEXT,
strlen(INPUT_TEXT),
&result,
&resultlen,
NULL);
g_assert(ret == 0);
g_assert(resultlen == expected_lens[i]);
for (j = 0; j < resultlen; j++) {
g_assert(expected_outputs[i][j * 2] == hex[(result[j] >> 4) & 0xf]);
g_assert(expected_outputs[i][j * 2 + 1] == hex[result[j] & 0xf]);
}
g_free(result);
}
}
/* Test with dynamic allocation */
static void test_hash_iov(void)
{
size_t i;
g_assert(qcrypto_init(NULL) == 0);
for (i = 0; i < G_N_ELEMENTS(expected_outputs) ; i++) {
struct iovec iov[3] = {
{ .iov_base = (char *)INPUT_TEXT1, .iov_len = strlen(INPUT_TEXT1) },
{ .iov_base = (char *)INPUT_TEXT2, .iov_len = strlen(INPUT_TEXT2) },
{ .iov_base = (char *)INPUT_TEXT3, .iov_len = strlen(INPUT_TEXT3) },
};
uint8_t *result = NULL;
size_t resultlen = 0;
int ret;
size_t j;
ret = qcrypto_hash_bytesv(i,
iov, 3,
&result,
&resultlen,
NULL);
g_assert(ret == 0);
g_assert(resultlen == expected_lens[i]);
for (j = 0; j < resultlen; j++) {
g_assert(expected_outputs[i][j * 2] == hex[(result[j] >> 4) & 0xf]);
g_assert(expected_outputs[i][j * 2 + 1] == hex[result[j] & 0xf]);
}
g_free(result);
}
}
/* Test with printable hashing */
static void test_hash_digest(void)
{
size_t i;
g_assert(qcrypto_init(NULL) == 0);
for (i = 0; i < G_N_ELEMENTS(expected_outputs) ; i++) {
int ret;
char *digest;
ret = qcrypto_hash_digest(i,
INPUT_TEXT,
strlen(INPUT_TEXT),
&digest,
NULL);
g_assert(ret == 0);
g_assert(g_str_equal(digest, expected_outputs[i]));
g_free(digest);
}
}
/* Test with base64 encoding */
static void test_hash_base64(void)
{
size_t i;
g_assert(qcrypto_init(NULL) == 0);
for (i = 0; i < G_N_ELEMENTS(expected_outputs) ; i++) {
int ret;
char *digest;
ret = qcrypto_hash_base64(i,
INPUT_TEXT,
strlen(INPUT_TEXT),
&digest,
NULL);
g_assert(ret == 0);
g_assert(g_str_equal(digest, expected_outputs_b64[i]));
g_free(digest);
}
}
int main(int argc, char **argv)
{
g_test_init(&argc, &argv, NULL);
g_test_add_func("/crypto/hash/iov", test_hash_iov);
g_test_add_func("/crypto/hash/alloc", test_hash_alloc);
g_test_add_func("/crypto/hash/prealloc", test_hash_prealloc);
g_test_add_func("/crypto/hash/digest", test_hash_digest);
g_test_add_func("/crypto/hash/base64", test_hash_base64);
return g_test_run();
}