qemu/hw/arm/virt.c
Peter Maydell 0be969a2d9 hw/arm/virt: fix pl011 and pl031 irq flags
The pl011 and pl031 devices both use level triggered interrupts,
but the device tree we construct was incorrectly telling the
kernel to configure the GIC to treat them as edge triggered.
This meant that output from the pl011 would hang after a while.

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 1410274423-9461-1-git-send-email-peter.maydell@linaro.org
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Cc: qemu-stable@nongnu.org
2014-09-12 14:06:50 +01:00

625 lines
22 KiB
C

/*
* ARM mach-virt emulation
*
* Copyright (c) 2013 Linaro Limited
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2 or later, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*
* Emulate a virtual board which works by passing Linux all the information
* it needs about what devices are present via the device tree.
* There are some restrictions about what we can do here:
* + we can only present devices whose Linux drivers will work based
* purely on the device tree with no platform data at all
* + we want to present a very stripped-down minimalist platform,
* both because this reduces the security attack surface from the guest
* and also because it reduces our exposure to being broken when
* the kernel updates its device tree bindings and requires further
* information in a device binding that we aren't providing.
* This is essentially the same approach kvmtool uses.
*/
#include "hw/sysbus.h"
#include "hw/arm/arm.h"
#include "hw/arm/primecell.h"
#include "hw/devices.h"
#include "net/net.h"
#include "sysemu/device_tree.h"
#include "sysemu/sysemu.h"
#include "sysemu/kvm.h"
#include "hw/boards.h"
#include "hw/loader.h"
#include "exec/address-spaces.h"
#include "qemu/bitops.h"
#include "qemu/error-report.h"
#define NUM_VIRTIO_TRANSPORTS 32
/* Number of external interrupt lines to configure the GIC with */
#define NUM_IRQS 128
#define GIC_FDT_IRQ_TYPE_SPI 0
#define GIC_FDT_IRQ_TYPE_PPI 1
#define GIC_FDT_IRQ_FLAGS_EDGE_LO_HI 1
#define GIC_FDT_IRQ_FLAGS_EDGE_HI_LO 2
#define GIC_FDT_IRQ_FLAGS_LEVEL_HI 4
#define GIC_FDT_IRQ_FLAGS_LEVEL_LO 8
#define GIC_FDT_IRQ_PPI_CPU_START 8
#define GIC_FDT_IRQ_PPI_CPU_WIDTH 8
enum {
VIRT_FLASH,
VIRT_MEM,
VIRT_CPUPERIPHS,
VIRT_GIC_DIST,
VIRT_GIC_CPU,
VIRT_UART,
VIRT_MMIO,
VIRT_RTC,
};
typedef struct MemMapEntry {
hwaddr base;
hwaddr size;
} MemMapEntry;
typedef struct VirtBoardInfo {
struct arm_boot_info bootinfo;
const char *cpu_model;
const MemMapEntry *memmap;
const int *irqmap;
int smp_cpus;
void *fdt;
int fdt_size;
uint32_t clock_phandle;
} VirtBoardInfo;
/* Addresses and sizes of our components.
* 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
* 128MB..256MB is used for miscellaneous device I/O.
* 256MB..1GB is reserved for possible future PCI support (ie where the
* PCI memory window will go if we add a PCI host controller).
* 1GB and up is RAM (which may happily spill over into the
* high memory region beyond 4GB).
* This represents a compromise between how much RAM can be given to
* a 32 bit VM and leaving space for expansion and in particular for PCI.
* Note that devices should generally be placed at multiples of 0x10000,
* to accommodate guests using 64K pages.
*/
static const MemMapEntry a15memmap[] = {
/* Space up to 0x8000000 is reserved for a boot ROM */
[VIRT_FLASH] = { 0, 0x08000000 },
[VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 },
/* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
[VIRT_GIC_DIST] = { 0x08000000, 0x00010000 },
[VIRT_GIC_CPU] = { 0x08010000, 0x00010000 },
[VIRT_UART] = { 0x09000000, 0x00001000 },
[VIRT_RTC] = { 0x09010000, 0x00001000 },
[VIRT_MMIO] = { 0x0a000000, 0x00000200 },
/* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
/* 0x10000000 .. 0x40000000 reserved for PCI */
[VIRT_MEM] = { 0x40000000, 30ULL * 1024 * 1024 * 1024 },
};
static const int a15irqmap[] = {
[VIRT_UART] = 1,
[VIRT_RTC] = 2,
[VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
};
static VirtBoardInfo machines[] = {
{
.cpu_model = "cortex-a15",
.memmap = a15memmap,
.irqmap = a15irqmap,
},
{
.cpu_model = "cortex-a57",
.memmap = a15memmap,
.irqmap = a15irqmap,
},
{
.cpu_model = "host",
.memmap = a15memmap,
.irqmap = a15irqmap,
},
};
static VirtBoardInfo *find_machine_info(const char *cpu)
{
int i;
for (i = 0; i < ARRAY_SIZE(machines); i++) {
if (strcmp(cpu, machines[i].cpu_model) == 0) {
return &machines[i];
}
}
return NULL;
}
static void create_fdt(VirtBoardInfo *vbi)
{
void *fdt = create_device_tree(&vbi->fdt_size);
if (!fdt) {
error_report("create_device_tree() failed");
exit(1);
}
vbi->fdt = fdt;
/* Header */
qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
/*
* /chosen and /memory nodes must exist for load_dtb
* to fill in necessary properties later
*/
qemu_fdt_add_subnode(fdt, "/chosen");
qemu_fdt_add_subnode(fdt, "/memory");
qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
/* Clock node, for the benefit of the UART. The kernel device tree
* binding documentation claims the PL011 node clock properties are
* optional but in practice if you omit them the kernel refuses to
* probe for the device.
*/
vbi->clock_phandle = qemu_fdt_alloc_phandle(fdt);
qemu_fdt_add_subnode(fdt, "/apb-pclk");
qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
"clk24mhz");
qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vbi->clock_phandle);
}
static void fdt_add_psci_node(const VirtBoardInfo *vbi)
{
void *fdt = vbi->fdt;
ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
/* No PSCI for TCG yet */
if (kvm_enabled()) {
uint32_t cpu_suspend_fn;
uint32_t cpu_off_fn;
uint32_t cpu_on_fn;
uint32_t migrate_fn;
qemu_fdt_add_subnode(fdt, "/psci");
if (armcpu->psci_version == 2) {
const char comp[] = "arm,psci-0.2\0arm,psci";
qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
} else {
cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
}
} else {
qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
}
qemu_fdt_setprop_string(fdt, "/psci", "method", "hvc");
qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
}
}
static void fdt_add_timer_nodes(const VirtBoardInfo *vbi)
{
/* Note that on A15 h/w these interrupts are level-triggered,
* but for the GIC implementation provided by both QEMU and KVM
* they are edge-triggered.
*/
uint32_t irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
GIC_FDT_IRQ_PPI_CPU_WIDTH, (1 << vbi->smp_cpus) - 1);
qemu_fdt_add_subnode(vbi->fdt, "/timer");
qemu_fdt_setprop_string(vbi->fdt, "/timer",
"compatible", "arm,armv7-timer");
qemu_fdt_setprop_cells(vbi->fdt, "/timer", "interrupts",
GIC_FDT_IRQ_TYPE_PPI, 13, irqflags,
GIC_FDT_IRQ_TYPE_PPI, 14, irqflags,
GIC_FDT_IRQ_TYPE_PPI, 11, irqflags,
GIC_FDT_IRQ_TYPE_PPI, 10, irqflags);
}
static void fdt_add_cpu_nodes(const VirtBoardInfo *vbi)
{
int cpu;
qemu_fdt_add_subnode(vbi->fdt, "/cpus");
qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#address-cells", 0x1);
qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#size-cells", 0x0);
for (cpu = vbi->smp_cpus - 1; cpu >= 0; cpu--) {
char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
qemu_fdt_add_subnode(vbi->fdt, nodename);
qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "cpu");
qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible",
armcpu->dtb_compatible);
if (vbi->smp_cpus > 1) {
qemu_fdt_setprop_string(vbi->fdt, nodename,
"enable-method", "psci");
}
qemu_fdt_setprop_cell(vbi->fdt, nodename, "reg", cpu);
g_free(nodename);
}
}
static void fdt_add_gic_node(const VirtBoardInfo *vbi)
{
uint32_t gic_phandle;
gic_phandle = qemu_fdt_alloc_phandle(vbi->fdt);
qemu_fdt_setprop_cell(vbi->fdt, "/", "interrupt-parent", gic_phandle);
qemu_fdt_add_subnode(vbi->fdt, "/intc");
/* 'cortex-a15-gic' means 'GIC v2' */
qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible",
"arm,cortex-a15-gic");
qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#interrupt-cells", 3);
qemu_fdt_setprop(vbi->fdt, "/intc", "interrupt-controller", NULL, 0);
qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg",
2, vbi->memmap[VIRT_GIC_DIST].base,
2, vbi->memmap[VIRT_GIC_DIST].size,
2, vbi->memmap[VIRT_GIC_CPU].base,
2, vbi->memmap[VIRT_GIC_CPU].size);
qemu_fdt_setprop_cell(vbi->fdt, "/intc", "phandle", gic_phandle);
}
static void create_gic(const VirtBoardInfo *vbi, qemu_irq *pic)
{
/* We create a standalone GIC v2 */
DeviceState *gicdev;
SysBusDevice *gicbusdev;
const char *gictype = "arm_gic";
int i;
if (kvm_irqchip_in_kernel()) {
gictype = "kvm-arm-gic";
}
gicdev = qdev_create(NULL, gictype);
qdev_prop_set_uint32(gicdev, "revision", 2);
qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
/* Note that the num-irq property counts both internal and external
* interrupts; there are always 32 of the former (mandated by GIC spec).
*/
qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
qdev_init_nofail(gicdev);
gicbusdev = SYS_BUS_DEVICE(gicdev);
sysbus_mmio_map(gicbusdev, 0, vbi->memmap[VIRT_GIC_DIST].base);
sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_CPU].base);
/* Wire the outputs from each CPU's generic timer to the
* appropriate GIC PPI inputs, and the GIC's IRQ output to
* the CPU's IRQ input.
*/
for (i = 0; i < smp_cpus; i++) {
DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
int ppibase = NUM_IRQS + i * 32;
/* physical timer; we wire it up to the non-secure timer's ID,
* since a real A15 always has TrustZone but QEMU doesn't.
*/
qdev_connect_gpio_out(cpudev, 0,
qdev_get_gpio_in(gicdev, ppibase + 30));
/* virtual timer */
qdev_connect_gpio_out(cpudev, 1,
qdev_get_gpio_in(gicdev, ppibase + 27));
sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
}
for (i = 0; i < NUM_IRQS; i++) {
pic[i] = qdev_get_gpio_in(gicdev, i);
}
fdt_add_gic_node(vbi);
}
static void create_uart(const VirtBoardInfo *vbi, qemu_irq *pic)
{
char *nodename;
hwaddr base = vbi->memmap[VIRT_UART].base;
hwaddr size = vbi->memmap[VIRT_UART].size;
int irq = vbi->irqmap[VIRT_UART];
const char compat[] = "arm,pl011\0arm,primecell";
const char clocknames[] = "uartclk\0apb_pclk";
sysbus_create_simple("pl011", base, pic[irq]);
nodename = g_strdup_printf("/pl011@%" PRIx64, base);
qemu_fdt_add_subnode(vbi->fdt, nodename);
/* Note that we can't use setprop_string because of the embedded NUL */
qemu_fdt_setprop(vbi->fdt, nodename, "compatible",
compat, sizeof(compat));
qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
2, base, 2, size);
qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
GIC_FDT_IRQ_TYPE_SPI, irq,
GIC_FDT_IRQ_FLAGS_LEVEL_HI);
qemu_fdt_setprop_cells(vbi->fdt, nodename, "clocks",
vbi->clock_phandle, vbi->clock_phandle);
qemu_fdt_setprop(vbi->fdt, nodename, "clock-names",
clocknames, sizeof(clocknames));
qemu_fdt_setprop_string(vbi->fdt, "/chosen", "linux,stdout-path", nodename);
g_free(nodename);
}
static void create_rtc(const VirtBoardInfo *vbi, qemu_irq *pic)
{
char *nodename;
hwaddr base = vbi->memmap[VIRT_RTC].base;
hwaddr size = vbi->memmap[VIRT_RTC].size;
int irq = vbi->irqmap[VIRT_RTC];
const char compat[] = "arm,pl031\0arm,primecell";
sysbus_create_simple("pl031", base, pic[irq]);
nodename = g_strdup_printf("/pl031@%" PRIx64, base);
qemu_fdt_add_subnode(vbi->fdt, nodename);
qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat));
qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
2, base, 2, size);
qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
GIC_FDT_IRQ_TYPE_SPI, irq,
GIC_FDT_IRQ_FLAGS_LEVEL_HI);
qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle);
qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk");
g_free(nodename);
}
static void create_virtio_devices(const VirtBoardInfo *vbi, qemu_irq *pic)
{
int i;
hwaddr size = vbi->memmap[VIRT_MMIO].size;
/* Note that we have to create the transports in forwards order
* so that command line devices are inserted lowest address first,
* and then add dtb nodes in reverse order so that they appear in
* the finished device tree lowest address first.
*/
for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
int irq = vbi->irqmap[VIRT_MMIO] + i;
hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
sysbus_create_simple("virtio-mmio", base, pic[irq]);
}
for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
char *nodename;
int irq = vbi->irqmap[VIRT_MMIO] + i;
hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
qemu_fdt_add_subnode(vbi->fdt, nodename);
qemu_fdt_setprop_string(vbi->fdt, nodename,
"compatible", "virtio,mmio");
qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
2, base, 2, size);
qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
GIC_FDT_IRQ_TYPE_SPI, irq,
GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
g_free(nodename);
}
}
static void create_one_flash(const char *name, hwaddr flashbase,
hwaddr flashsize)
{
/* Create and map a single flash device. We use the same
* parameters as the flash devices on the Versatile Express board.
*/
DriveInfo *dinfo = drive_get_next(IF_PFLASH);
DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
const uint64_t sectorlength = 256 * 1024;
if (dinfo && qdev_prop_set_drive(dev, "drive", dinfo->bdrv)) {
abort();
}
qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength);
qdev_prop_set_uint64(dev, "sector-length", sectorlength);
qdev_prop_set_uint8(dev, "width", 4);
qdev_prop_set_uint8(dev, "device-width", 2);
qdev_prop_set_uint8(dev, "big-endian", 0);
qdev_prop_set_uint16(dev, "id0", 0x89);
qdev_prop_set_uint16(dev, "id1", 0x18);
qdev_prop_set_uint16(dev, "id2", 0x00);
qdev_prop_set_uint16(dev, "id3", 0x00);
qdev_prop_set_string(dev, "name", name);
qdev_init_nofail(dev);
sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, flashbase);
}
static void create_flash(const VirtBoardInfo *vbi)
{
/* Create two flash devices to fill the VIRT_FLASH space in the memmap.
* Any file passed via -bios goes in the first of these.
*/
hwaddr flashsize = vbi->memmap[VIRT_FLASH].size / 2;
hwaddr flashbase = vbi->memmap[VIRT_FLASH].base;
char *nodename;
if (bios_name) {
const char *fn;
if (drive_get(IF_PFLASH, 0, 0)) {
error_report("The contents of the first flash device may be "
"specified with -bios or with -drive if=pflash... "
"but you cannot use both options at once");
exit(1);
}
fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
if (!fn || load_image_targphys(fn, flashbase, flashsize) < 0) {
error_report("Could not load ROM image '%s'", bios_name);
exit(1);
}
}
create_one_flash("virt.flash0", flashbase, flashsize);
create_one_flash("virt.flash1", flashbase + flashsize, flashsize);
nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
qemu_fdt_add_subnode(vbi->fdt, nodename);
qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash");
qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
2, flashbase, 2, flashsize,
2, flashbase + flashsize, 2, flashsize);
qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4);
g_free(nodename);
}
static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
{
const VirtBoardInfo *board = (const VirtBoardInfo *)binfo;
*fdt_size = board->fdt_size;
return board->fdt;
}
static void machvirt_init(MachineState *machine)
{
qemu_irq pic[NUM_IRQS];
MemoryRegion *sysmem = get_system_memory();
int n;
MemoryRegion *ram = g_new(MemoryRegion, 1);
const char *cpu_model = machine->cpu_model;
VirtBoardInfo *vbi;
if (!cpu_model) {
cpu_model = "cortex-a15";
}
vbi = find_machine_info(cpu_model);
if (!vbi) {
error_report("mach-virt: CPU %s not supported", cpu_model);
exit(1);
}
vbi->smp_cpus = smp_cpus;
/*
* Only supported method of starting secondary CPUs is PSCI and
* PSCI is not yet supported with TCG, so limit smp_cpus to 1
* if we're not using KVM.
*/
if (!kvm_enabled() && smp_cpus > 1) {
error_report("mach-virt: must enable KVM to use multiple CPUs");
exit(1);
}
if (machine->ram_size > vbi->memmap[VIRT_MEM].size) {
error_report("mach-virt: cannot model more than 30GB RAM");
exit(1);
}
create_fdt(vbi);
fdt_add_timer_nodes(vbi);
for (n = 0; n < smp_cpus; n++) {
ObjectClass *oc = cpu_class_by_name(TYPE_ARM_CPU, cpu_model);
Object *cpuobj;
if (!oc) {
fprintf(stderr, "Unable to find CPU definition\n");
exit(1);
}
cpuobj = object_new(object_class_get_name(oc));
/* Secondary CPUs start in PSCI powered-down state */
if (n > 0) {
object_property_set_bool(cpuobj, true, "start-powered-off", NULL);
}
if (object_property_find(cpuobj, "reset-cbar", NULL)) {
object_property_set_int(cpuobj, vbi->memmap[VIRT_CPUPERIPHS].base,
"reset-cbar", &error_abort);
}
object_property_set_bool(cpuobj, true, "realized", NULL);
}
fdt_add_cpu_nodes(vbi);
fdt_add_psci_node(vbi);
memory_region_init_ram(ram, NULL, "mach-virt.ram", machine->ram_size);
vmstate_register_ram_global(ram);
memory_region_add_subregion(sysmem, vbi->memmap[VIRT_MEM].base, ram);
create_flash(vbi);
create_gic(vbi, pic);
create_uart(vbi, pic);
create_rtc(vbi, pic);
/* Create mmio transports, so the user can create virtio backends
* (which will be automatically plugged in to the transports). If
* no backend is created the transport will just sit harmlessly idle.
*/
create_virtio_devices(vbi, pic);
vbi->bootinfo.ram_size = machine->ram_size;
vbi->bootinfo.kernel_filename = machine->kernel_filename;
vbi->bootinfo.kernel_cmdline = machine->kernel_cmdline;
vbi->bootinfo.initrd_filename = machine->initrd_filename;
vbi->bootinfo.nb_cpus = smp_cpus;
vbi->bootinfo.board_id = -1;
vbi->bootinfo.loader_start = vbi->memmap[VIRT_MEM].base;
vbi->bootinfo.get_dtb = machvirt_dtb;
arm_load_kernel(ARM_CPU(first_cpu), &vbi->bootinfo);
}
static QEMUMachine machvirt_a15_machine = {
.name = "virt",
.desc = "ARM Virtual Machine",
.init = machvirt_init,
.max_cpus = 8,
};
static void machvirt_machine_init(void)
{
qemu_register_machine(&machvirt_a15_machine);
}
machine_init(machvirt_machine_init);