d342eb7662
Remove dependency of possible_cpus on 1st CPU instance, which decouples configuration data from CPU instances that are created using that data. Also later it would be used for enabling early cpu to numa node configuration at runtime qmp_query_hotpluggable_cpus() should provide a list of available cpu slots at early stage, before machine_init() is called and the 1st cpu is created, so that mgmt might be able to call it and use output to set numa mapping. Use MachineClass::possible_cpu_arch_ids() callback to set cpu type info, along with the rest of possible cpu properties, to let machine define which cpu type* will be used. * for SPAPR it will be a spapr core type and for ARM/s390x/x86 a respective descendant of CPUClass. Move parse_numa_opts() in vl.c after cpu_model is parsed into cpu_type so that possible_cpu_arch_ids() would know which cpu_type to use during layout initialization. Signed-off-by: Igor Mammedov <imammedo@redhat.com> Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Message-Id: <1515597770-268979-1-git-send-email-imammedo@redhat.com> Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
1796 lines
66 KiB
C
1796 lines
66 KiB
C
/*
|
|
* ARM mach-virt emulation
|
|
*
|
|
* Copyright (c) 2013 Linaro Limited
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms and conditions of the GNU General Public License,
|
|
* version 2 or later, as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along with
|
|
* this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
* Emulate a virtual board which works by passing Linux all the information
|
|
* it needs about what devices are present via the device tree.
|
|
* There are some restrictions about what we can do here:
|
|
* + we can only present devices whose Linux drivers will work based
|
|
* purely on the device tree with no platform data at all
|
|
* + we want to present a very stripped-down minimalist platform,
|
|
* both because this reduces the security attack surface from the guest
|
|
* and also because it reduces our exposure to being broken when
|
|
* the kernel updates its device tree bindings and requires further
|
|
* information in a device binding that we aren't providing.
|
|
* This is essentially the same approach kvmtool uses.
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "qapi/error.h"
|
|
#include "hw/sysbus.h"
|
|
#include "hw/arm/arm.h"
|
|
#include "hw/arm/primecell.h"
|
|
#include "hw/arm/virt.h"
|
|
#include "hw/vfio/vfio-calxeda-xgmac.h"
|
|
#include "hw/vfio/vfio-amd-xgbe.h"
|
|
#include "hw/devices.h"
|
|
#include "net/net.h"
|
|
#include "sysemu/block-backend.h"
|
|
#include "sysemu/device_tree.h"
|
|
#include "sysemu/numa.h"
|
|
#include "sysemu/sysemu.h"
|
|
#include "sysemu/kvm.h"
|
|
#include "hw/compat.h"
|
|
#include "hw/loader.h"
|
|
#include "exec/address-spaces.h"
|
|
#include "qemu/bitops.h"
|
|
#include "qemu/error-report.h"
|
|
#include "hw/pci-host/gpex.h"
|
|
#include "hw/arm/sysbus-fdt.h"
|
|
#include "hw/platform-bus.h"
|
|
#include "hw/arm/fdt.h"
|
|
#include "hw/intc/arm_gic.h"
|
|
#include "hw/intc/arm_gicv3_common.h"
|
|
#include "kvm_arm.h"
|
|
#include "hw/smbios/smbios.h"
|
|
#include "qapi/visitor.h"
|
|
#include "standard-headers/linux/input.h"
|
|
|
|
#define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
|
|
static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
|
|
void *data) \
|
|
{ \
|
|
MachineClass *mc = MACHINE_CLASS(oc); \
|
|
virt_machine_##major##_##minor##_options(mc); \
|
|
mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
|
|
if (latest) { \
|
|
mc->alias = "virt"; \
|
|
} \
|
|
} \
|
|
static const TypeInfo machvirt_##major##_##minor##_info = { \
|
|
.name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
|
|
.parent = TYPE_VIRT_MACHINE, \
|
|
.instance_init = virt_##major##_##minor##_instance_init, \
|
|
.class_init = virt_##major##_##minor##_class_init, \
|
|
}; \
|
|
static void machvirt_machine_##major##_##minor##_init(void) \
|
|
{ \
|
|
type_register_static(&machvirt_##major##_##minor##_info); \
|
|
} \
|
|
type_init(machvirt_machine_##major##_##minor##_init);
|
|
|
|
#define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
|
|
DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
|
|
#define DEFINE_VIRT_MACHINE(major, minor) \
|
|
DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
|
|
|
|
|
|
/* Number of external interrupt lines to configure the GIC with */
|
|
#define NUM_IRQS 256
|
|
|
|
#define PLATFORM_BUS_NUM_IRQS 64
|
|
|
|
static ARMPlatformBusSystemParams platform_bus_params;
|
|
|
|
/* RAM limit in GB. Since VIRT_MEM starts at the 1GB mark, this means
|
|
* RAM can go up to the 256GB mark, leaving 256GB of the physical
|
|
* address space unallocated and free for future use between 256G and 512G.
|
|
* If we need to provide more RAM to VMs in the future then we need to:
|
|
* * allocate a second bank of RAM starting at 2TB and working up
|
|
* * fix the DT and ACPI table generation code in QEMU to correctly
|
|
* report two split lumps of RAM to the guest
|
|
* * fix KVM in the host kernel to allow guests with >40 bit address spaces
|
|
* (We don't want to fill all the way up to 512GB with RAM because
|
|
* we might want it for non-RAM purposes later. Conversely it seems
|
|
* reasonable to assume that anybody configuring a VM with a quarter
|
|
* of a terabyte of RAM will be doing it on a host with more than a
|
|
* terabyte of physical address space.)
|
|
*/
|
|
#define RAMLIMIT_GB 255
|
|
#define RAMLIMIT_BYTES (RAMLIMIT_GB * 1024ULL * 1024 * 1024)
|
|
|
|
/* Addresses and sizes of our components.
|
|
* 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
|
|
* 128MB..256MB is used for miscellaneous device I/O.
|
|
* 256MB..1GB is reserved for possible future PCI support (ie where the
|
|
* PCI memory window will go if we add a PCI host controller).
|
|
* 1GB and up is RAM (which may happily spill over into the
|
|
* high memory region beyond 4GB).
|
|
* This represents a compromise between how much RAM can be given to
|
|
* a 32 bit VM and leaving space for expansion and in particular for PCI.
|
|
* Note that devices should generally be placed at multiples of 0x10000,
|
|
* to accommodate guests using 64K pages.
|
|
*/
|
|
static const MemMapEntry a15memmap[] = {
|
|
/* Space up to 0x8000000 is reserved for a boot ROM */
|
|
[VIRT_FLASH] = { 0, 0x08000000 },
|
|
[VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 },
|
|
/* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
|
|
[VIRT_GIC_DIST] = { 0x08000000, 0x00010000 },
|
|
[VIRT_GIC_CPU] = { 0x08010000, 0x00010000 },
|
|
[VIRT_GIC_V2M] = { 0x08020000, 0x00001000 },
|
|
/* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
|
|
[VIRT_GIC_ITS] = { 0x08080000, 0x00020000 },
|
|
/* This redistributor space allows up to 2*64kB*123 CPUs */
|
|
[VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 },
|
|
[VIRT_UART] = { 0x09000000, 0x00001000 },
|
|
[VIRT_RTC] = { 0x09010000, 0x00001000 },
|
|
[VIRT_FW_CFG] = { 0x09020000, 0x00000018 },
|
|
[VIRT_GPIO] = { 0x09030000, 0x00001000 },
|
|
[VIRT_SECURE_UART] = { 0x09040000, 0x00001000 },
|
|
[VIRT_MMIO] = { 0x0a000000, 0x00000200 },
|
|
/* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
|
|
[VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 },
|
|
[VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 },
|
|
[VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 },
|
|
[VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 },
|
|
[VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 },
|
|
[VIRT_MEM] = { 0x40000000, RAMLIMIT_BYTES },
|
|
/* Second PCIe window, 512GB wide at the 512GB boundary */
|
|
[VIRT_PCIE_MMIO_HIGH] = { 0x8000000000ULL, 0x8000000000ULL },
|
|
};
|
|
|
|
static const int a15irqmap[] = {
|
|
[VIRT_UART] = 1,
|
|
[VIRT_RTC] = 2,
|
|
[VIRT_PCIE] = 3, /* ... to 6 */
|
|
[VIRT_GPIO] = 7,
|
|
[VIRT_SECURE_UART] = 8,
|
|
[VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
|
|
[VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
|
|
[VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
|
|
};
|
|
|
|
static const char *valid_cpus[] = {
|
|
ARM_CPU_TYPE_NAME("cortex-a15"),
|
|
ARM_CPU_TYPE_NAME("cortex-a53"),
|
|
ARM_CPU_TYPE_NAME("cortex-a57"),
|
|
ARM_CPU_TYPE_NAME("host"),
|
|
};
|
|
|
|
static bool cpu_type_valid(const char *cpu)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
|
|
if (strcmp(cpu, valid_cpus[i]) == 0) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static void create_fdt(VirtMachineState *vms)
|
|
{
|
|
void *fdt = create_device_tree(&vms->fdt_size);
|
|
|
|
if (!fdt) {
|
|
error_report("create_device_tree() failed");
|
|
exit(1);
|
|
}
|
|
|
|
vms->fdt = fdt;
|
|
|
|
/* Header */
|
|
qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
|
|
qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
|
|
qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
|
|
|
|
/*
|
|
* /chosen and /memory nodes must exist for load_dtb
|
|
* to fill in necessary properties later
|
|
*/
|
|
qemu_fdt_add_subnode(fdt, "/chosen");
|
|
qemu_fdt_add_subnode(fdt, "/memory");
|
|
qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
|
|
|
|
/* Clock node, for the benefit of the UART. The kernel device tree
|
|
* binding documentation claims the PL011 node clock properties are
|
|
* optional but in practice if you omit them the kernel refuses to
|
|
* probe for the device.
|
|
*/
|
|
vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
|
|
qemu_fdt_add_subnode(fdt, "/apb-pclk");
|
|
qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
|
|
qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
|
|
qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
|
|
qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
|
|
"clk24mhz");
|
|
qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
|
|
|
|
if (have_numa_distance) {
|
|
int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
|
|
uint32_t *matrix = g_malloc0(size);
|
|
int idx, i, j;
|
|
|
|
for (i = 0; i < nb_numa_nodes; i++) {
|
|
for (j = 0; j < nb_numa_nodes; j++) {
|
|
idx = (i * nb_numa_nodes + j) * 3;
|
|
matrix[idx + 0] = cpu_to_be32(i);
|
|
matrix[idx + 1] = cpu_to_be32(j);
|
|
matrix[idx + 2] = cpu_to_be32(numa_info[i].distance[j]);
|
|
}
|
|
}
|
|
|
|
qemu_fdt_add_subnode(fdt, "/distance-map");
|
|
qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
|
|
"numa-distance-map-v1");
|
|
qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
|
|
matrix, size);
|
|
g_free(matrix);
|
|
}
|
|
}
|
|
|
|
static void fdt_add_psci_node(const VirtMachineState *vms)
|
|
{
|
|
uint32_t cpu_suspend_fn;
|
|
uint32_t cpu_off_fn;
|
|
uint32_t cpu_on_fn;
|
|
uint32_t migrate_fn;
|
|
void *fdt = vms->fdt;
|
|
ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
|
|
const char *psci_method;
|
|
|
|
switch (vms->psci_conduit) {
|
|
case QEMU_PSCI_CONDUIT_DISABLED:
|
|
return;
|
|
case QEMU_PSCI_CONDUIT_HVC:
|
|
psci_method = "hvc";
|
|
break;
|
|
case QEMU_PSCI_CONDUIT_SMC:
|
|
psci_method = "smc";
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
qemu_fdt_add_subnode(fdt, "/psci");
|
|
if (armcpu->psci_version == 2) {
|
|
const char comp[] = "arm,psci-0.2\0arm,psci";
|
|
qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
|
|
|
|
cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
|
|
if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
|
|
cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
|
|
cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
|
|
migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
|
|
} else {
|
|
cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
|
|
cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
|
|
migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
|
|
}
|
|
} else {
|
|
qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
|
|
|
|
cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
|
|
cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
|
|
cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
|
|
migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
|
|
}
|
|
|
|
/* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
|
|
* to the instruction that should be used to invoke PSCI functions.
|
|
* However, the device tree binding uses 'method' instead, so that is
|
|
* what we should use here.
|
|
*/
|
|
qemu_fdt_setprop_string(fdt, "/psci", "method", psci_method);
|
|
|
|
qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
|
|
qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
|
|
qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
|
|
qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
|
|
}
|
|
|
|
static void fdt_add_timer_nodes(const VirtMachineState *vms)
|
|
{
|
|
/* On real hardware these interrupts are level-triggered.
|
|
* On KVM they were edge-triggered before host kernel version 4.4,
|
|
* and level-triggered afterwards.
|
|
* On emulated QEMU they are level-triggered.
|
|
*
|
|
* Getting the DTB info about them wrong is awkward for some
|
|
* guest kernels:
|
|
* pre-4.8 ignore the DT and leave the interrupt configured
|
|
* with whatever the GIC reset value (or the bootloader) left it at
|
|
* 4.8 before rc6 honour the incorrect data by programming it back
|
|
* into the GIC, causing problems
|
|
* 4.8rc6 and later ignore the DT and always write "level triggered"
|
|
* into the GIC
|
|
*
|
|
* For backwards-compatibility, virt-2.8 and earlier will continue
|
|
* to say these are edge-triggered, but later machines will report
|
|
* the correct information.
|
|
*/
|
|
ARMCPU *armcpu;
|
|
VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
|
|
uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
|
|
|
|
if (vmc->claim_edge_triggered_timers) {
|
|
irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
|
|
}
|
|
|
|
if (vms->gic_version == 2) {
|
|
irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
|
|
GIC_FDT_IRQ_PPI_CPU_WIDTH,
|
|
(1 << vms->smp_cpus) - 1);
|
|
}
|
|
|
|
qemu_fdt_add_subnode(vms->fdt, "/timer");
|
|
|
|
armcpu = ARM_CPU(qemu_get_cpu(0));
|
|
if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
|
|
const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
|
|
qemu_fdt_setprop(vms->fdt, "/timer", "compatible",
|
|
compat, sizeof(compat));
|
|
} else {
|
|
qemu_fdt_setprop_string(vms->fdt, "/timer", "compatible",
|
|
"arm,armv7-timer");
|
|
}
|
|
qemu_fdt_setprop(vms->fdt, "/timer", "always-on", NULL, 0);
|
|
qemu_fdt_setprop_cells(vms->fdt, "/timer", "interrupts",
|
|
GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
|
|
GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
|
|
GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
|
|
GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
|
|
}
|
|
|
|
static void fdt_add_cpu_nodes(const VirtMachineState *vms)
|
|
{
|
|
int cpu;
|
|
int addr_cells = 1;
|
|
const MachineState *ms = MACHINE(vms);
|
|
|
|
/*
|
|
* From Documentation/devicetree/bindings/arm/cpus.txt
|
|
* On ARM v8 64-bit systems value should be set to 2,
|
|
* that corresponds to the MPIDR_EL1 register size.
|
|
* If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
|
|
* in the system, #address-cells can be set to 1, since
|
|
* MPIDR_EL1[63:32] bits are not used for CPUs
|
|
* identification.
|
|
*
|
|
* Here we actually don't know whether our system is 32- or 64-bit one.
|
|
* The simplest way to go is to examine affinity IDs of all our CPUs. If
|
|
* at least one of them has Aff3 populated, we set #address-cells to 2.
|
|
*/
|
|
for (cpu = 0; cpu < vms->smp_cpus; cpu++) {
|
|
ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
|
|
|
|
if (armcpu->mp_affinity & ARM_AFF3_MASK) {
|
|
addr_cells = 2;
|
|
break;
|
|
}
|
|
}
|
|
|
|
qemu_fdt_add_subnode(vms->fdt, "/cpus");
|
|
qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#address-cells", addr_cells);
|
|
qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#size-cells", 0x0);
|
|
|
|
for (cpu = vms->smp_cpus - 1; cpu >= 0; cpu--) {
|
|
char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
|
|
ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
|
|
CPUState *cs = CPU(armcpu);
|
|
|
|
qemu_fdt_add_subnode(vms->fdt, nodename);
|
|
qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "cpu");
|
|
qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
|
|
armcpu->dtb_compatible);
|
|
|
|
if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED
|
|
&& vms->smp_cpus > 1) {
|
|
qemu_fdt_setprop_string(vms->fdt, nodename,
|
|
"enable-method", "psci");
|
|
}
|
|
|
|
if (addr_cells == 2) {
|
|
qemu_fdt_setprop_u64(vms->fdt, nodename, "reg",
|
|
armcpu->mp_affinity);
|
|
} else {
|
|
qemu_fdt_setprop_cell(vms->fdt, nodename, "reg",
|
|
armcpu->mp_affinity);
|
|
}
|
|
|
|
if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
|
|
qemu_fdt_setprop_cell(vms->fdt, nodename, "numa-node-id",
|
|
ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
|
|
}
|
|
|
|
g_free(nodename);
|
|
}
|
|
}
|
|
|
|
static void fdt_add_its_gic_node(VirtMachineState *vms)
|
|
{
|
|
vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
|
|
qemu_fdt_add_subnode(vms->fdt, "/intc/its");
|
|
qemu_fdt_setprop_string(vms->fdt, "/intc/its", "compatible",
|
|
"arm,gic-v3-its");
|
|
qemu_fdt_setprop(vms->fdt, "/intc/its", "msi-controller", NULL, 0);
|
|
qemu_fdt_setprop_sized_cells(vms->fdt, "/intc/its", "reg",
|
|
2, vms->memmap[VIRT_GIC_ITS].base,
|
|
2, vms->memmap[VIRT_GIC_ITS].size);
|
|
qemu_fdt_setprop_cell(vms->fdt, "/intc/its", "phandle", vms->msi_phandle);
|
|
}
|
|
|
|
static void fdt_add_v2m_gic_node(VirtMachineState *vms)
|
|
{
|
|
vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
|
|
qemu_fdt_add_subnode(vms->fdt, "/intc/v2m");
|
|
qemu_fdt_setprop_string(vms->fdt, "/intc/v2m", "compatible",
|
|
"arm,gic-v2m-frame");
|
|
qemu_fdt_setprop(vms->fdt, "/intc/v2m", "msi-controller", NULL, 0);
|
|
qemu_fdt_setprop_sized_cells(vms->fdt, "/intc/v2m", "reg",
|
|
2, vms->memmap[VIRT_GIC_V2M].base,
|
|
2, vms->memmap[VIRT_GIC_V2M].size);
|
|
qemu_fdt_setprop_cell(vms->fdt, "/intc/v2m", "phandle", vms->msi_phandle);
|
|
}
|
|
|
|
static void fdt_add_gic_node(VirtMachineState *vms)
|
|
{
|
|
vms->gic_phandle = qemu_fdt_alloc_phandle(vms->fdt);
|
|
qemu_fdt_setprop_cell(vms->fdt, "/", "interrupt-parent", vms->gic_phandle);
|
|
|
|
qemu_fdt_add_subnode(vms->fdt, "/intc");
|
|
qemu_fdt_setprop_cell(vms->fdt, "/intc", "#interrupt-cells", 3);
|
|
qemu_fdt_setprop(vms->fdt, "/intc", "interrupt-controller", NULL, 0);
|
|
qemu_fdt_setprop_cell(vms->fdt, "/intc", "#address-cells", 0x2);
|
|
qemu_fdt_setprop_cell(vms->fdt, "/intc", "#size-cells", 0x2);
|
|
qemu_fdt_setprop(vms->fdt, "/intc", "ranges", NULL, 0);
|
|
if (vms->gic_version == 3) {
|
|
qemu_fdt_setprop_string(vms->fdt, "/intc", "compatible",
|
|
"arm,gic-v3");
|
|
qemu_fdt_setprop_sized_cells(vms->fdt, "/intc", "reg",
|
|
2, vms->memmap[VIRT_GIC_DIST].base,
|
|
2, vms->memmap[VIRT_GIC_DIST].size,
|
|
2, vms->memmap[VIRT_GIC_REDIST].base,
|
|
2, vms->memmap[VIRT_GIC_REDIST].size);
|
|
if (vms->virt) {
|
|
qemu_fdt_setprop_cells(vms->fdt, "/intc", "interrupts",
|
|
GIC_FDT_IRQ_TYPE_PPI, ARCH_GICV3_MAINT_IRQ,
|
|
GIC_FDT_IRQ_FLAGS_LEVEL_HI);
|
|
}
|
|
} else {
|
|
/* 'cortex-a15-gic' means 'GIC v2' */
|
|
qemu_fdt_setprop_string(vms->fdt, "/intc", "compatible",
|
|
"arm,cortex-a15-gic");
|
|
qemu_fdt_setprop_sized_cells(vms->fdt, "/intc", "reg",
|
|
2, vms->memmap[VIRT_GIC_DIST].base,
|
|
2, vms->memmap[VIRT_GIC_DIST].size,
|
|
2, vms->memmap[VIRT_GIC_CPU].base,
|
|
2, vms->memmap[VIRT_GIC_CPU].size);
|
|
}
|
|
|
|
qemu_fdt_setprop_cell(vms->fdt, "/intc", "phandle", vms->gic_phandle);
|
|
}
|
|
|
|
static void fdt_add_pmu_nodes(const VirtMachineState *vms)
|
|
{
|
|
CPUState *cpu;
|
|
ARMCPU *armcpu;
|
|
uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
|
|
|
|
CPU_FOREACH(cpu) {
|
|
armcpu = ARM_CPU(cpu);
|
|
if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
|
|
return;
|
|
}
|
|
if (kvm_enabled()) {
|
|
if (kvm_irqchip_in_kernel()) {
|
|
kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ));
|
|
}
|
|
kvm_arm_pmu_init(cpu);
|
|
}
|
|
}
|
|
|
|
if (vms->gic_version == 2) {
|
|
irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
|
|
GIC_FDT_IRQ_PPI_CPU_WIDTH,
|
|
(1 << vms->smp_cpus) - 1);
|
|
}
|
|
|
|
armcpu = ARM_CPU(qemu_get_cpu(0));
|
|
qemu_fdt_add_subnode(vms->fdt, "/pmu");
|
|
if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
|
|
const char compat[] = "arm,armv8-pmuv3";
|
|
qemu_fdt_setprop(vms->fdt, "/pmu", "compatible",
|
|
compat, sizeof(compat));
|
|
qemu_fdt_setprop_cells(vms->fdt, "/pmu", "interrupts",
|
|
GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
|
|
}
|
|
}
|
|
|
|
static void create_its(VirtMachineState *vms, DeviceState *gicdev)
|
|
{
|
|
const char *itsclass = its_class_name();
|
|
DeviceState *dev;
|
|
|
|
if (!itsclass) {
|
|
/* Do nothing if not supported */
|
|
return;
|
|
}
|
|
|
|
dev = qdev_create(NULL, itsclass);
|
|
|
|
object_property_set_link(OBJECT(dev), OBJECT(gicdev), "parent-gicv3",
|
|
&error_abort);
|
|
qdev_init_nofail(dev);
|
|
sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
|
|
|
|
fdt_add_its_gic_node(vms);
|
|
}
|
|
|
|
static void create_v2m(VirtMachineState *vms, qemu_irq *pic)
|
|
{
|
|
int i;
|
|
int irq = vms->irqmap[VIRT_GIC_V2M];
|
|
DeviceState *dev;
|
|
|
|
dev = qdev_create(NULL, "arm-gicv2m");
|
|
sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
|
|
qdev_prop_set_uint32(dev, "base-spi", irq);
|
|
qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
|
|
qdev_init_nofail(dev);
|
|
|
|
for (i = 0; i < NUM_GICV2M_SPIS; i++) {
|
|
sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
|
|
}
|
|
|
|
fdt_add_v2m_gic_node(vms);
|
|
}
|
|
|
|
static void create_gic(VirtMachineState *vms, qemu_irq *pic)
|
|
{
|
|
/* We create a standalone GIC */
|
|
DeviceState *gicdev;
|
|
SysBusDevice *gicbusdev;
|
|
const char *gictype;
|
|
int type = vms->gic_version, i;
|
|
|
|
gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
|
|
|
|
gicdev = qdev_create(NULL, gictype);
|
|
qdev_prop_set_uint32(gicdev, "revision", type);
|
|
qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
|
|
/* Note that the num-irq property counts both internal and external
|
|
* interrupts; there are always 32 of the former (mandated by GIC spec).
|
|
*/
|
|
qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
|
|
if (!kvm_irqchip_in_kernel()) {
|
|
qdev_prop_set_bit(gicdev, "has-security-extensions", vms->secure);
|
|
}
|
|
qdev_init_nofail(gicdev);
|
|
gicbusdev = SYS_BUS_DEVICE(gicdev);
|
|
sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
|
|
if (type == 3) {
|
|
sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
|
|
} else {
|
|
sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
|
|
}
|
|
|
|
/* Wire the outputs from each CPU's generic timer and the GICv3
|
|
* maintenance interrupt signal to the appropriate GIC PPI inputs,
|
|
* and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
|
|
*/
|
|
for (i = 0; i < smp_cpus; i++) {
|
|
DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
|
|
int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
|
|
int irq;
|
|
/* Mapping from the output timer irq lines from the CPU to the
|
|
* GIC PPI inputs we use for the virt board.
|
|
*/
|
|
const int timer_irq[] = {
|
|
[GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
|
|
[GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
|
|
[GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ,
|
|
[GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ,
|
|
};
|
|
|
|
for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
|
|
qdev_connect_gpio_out(cpudev, irq,
|
|
qdev_get_gpio_in(gicdev,
|
|
ppibase + timer_irq[irq]));
|
|
}
|
|
|
|
qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 0,
|
|
qdev_get_gpio_in(gicdev, ppibase
|
|
+ ARCH_GICV3_MAINT_IRQ));
|
|
qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
|
|
qdev_get_gpio_in(gicdev, ppibase
|
|
+ VIRTUAL_PMU_IRQ));
|
|
|
|
sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
|
|
sysbus_connect_irq(gicbusdev, i + smp_cpus,
|
|
qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
|
|
sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
|
|
qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
|
|
sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
|
|
qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
|
|
}
|
|
|
|
for (i = 0; i < NUM_IRQS; i++) {
|
|
pic[i] = qdev_get_gpio_in(gicdev, i);
|
|
}
|
|
|
|
fdt_add_gic_node(vms);
|
|
|
|
if (type == 3 && vms->its) {
|
|
create_its(vms, gicdev);
|
|
} else if (type == 2) {
|
|
create_v2m(vms, pic);
|
|
}
|
|
}
|
|
|
|
static void create_uart(const VirtMachineState *vms, qemu_irq *pic, int uart,
|
|
MemoryRegion *mem, Chardev *chr)
|
|
{
|
|
char *nodename;
|
|
hwaddr base = vms->memmap[uart].base;
|
|
hwaddr size = vms->memmap[uart].size;
|
|
int irq = vms->irqmap[uart];
|
|
const char compat[] = "arm,pl011\0arm,primecell";
|
|
const char clocknames[] = "uartclk\0apb_pclk";
|
|
DeviceState *dev = qdev_create(NULL, "pl011");
|
|
SysBusDevice *s = SYS_BUS_DEVICE(dev);
|
|
|
|
qdev_prop_set_chr(dev, "chardev", chr);
|
|
qdev_init_nofail(dev);
|
|
memory_region_add_subregion(mem, base,
|
|
sysbus_mmio_get_region(s, 0));
|
|
sysbus_connect_irq(s, 0, pic[irq]);
|
|
|
|
nodename = g_strdup_printf("/pl011@%" PRIx64, base);
|
|
qemu_fdt_add_subnode(vms->fdt, nodename);
|
|
/* Note that we can't use setprop_string because of the embedded NUL */
|
|
qemu_fdt_setprop(vms->fdt, nodename, "compatible",
|
|
compat, sizeof(compat));
|
|
qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
|
|
2, base, 2, size);
|
|
qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
|
|
GIC_FDT_IRQ_TYPE_SPI, irq,
|
|
GIC_FDT_IRQ_FLAGS_LEVEL_HI);
|
|
qemu_fdt_setprop_cells(vms->fdt, nodename, "clocks",
|
|
vms->clock_phandle, vms->clock_phandle);
|
|
qemu_fdt_setprop(vms->fdt, nodename, "clock-names",
|
|
clocknames, sizeof(clocknames));
|
|
|
|
if (uart == VIRT_UART) {
|
|
qemu_fdt_setprop_string(vms->fdt, "/chosen", "stdout-path", nodename);
|
|
} else {
|
|
/* Mark as not usable by the normal world */
|
|
qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
|
|
qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
|
|
}
|
|
|
|
g_free(nodename);
|
|
}
|
|
|
|
static void create_rtc(const VirtMachineState *vms, qemu_irq *pic)
|
|
{
|
|
char *nodename;
|
|
hwaddr base = vms->memmap[VIRT_RTC].base;
|
|
hwaddr size = vms->memmap[VIRT_RTC].size;
|
|
int irq = vms->irqmap[VIRT_RTC];
|
|
const char compat[] = "arm,pl031\0arm,primecell";
|
|
|
|
sysbus_create_simple("pl031", base, pic[irq]);
|
|
|
|
nodename = g_strdup_printf("/pl031@%" PRIx64, base);
|
|
qemu_fdt_add_subnode(vms->fdt, nodename);
|
|
qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
|
|
qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
|
|
2, base, 2, size);
|
|
qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
|
|
GIC_FDT_IRQ_TYPE_SPI, irq,
|
|
GIC_FDT_IRQ_FLAGS_LEVEL_HI);
|
|
qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
|
|
qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
|
|
g_free(nodename);
|
|
}
|
|
|
|
static DeviceState *gpio_key_dev;
|
|
static void virt_powerdown_req(Notifier *n, void *opaque)
|
|
{
|
|
/* use gpio Pin 3 for power button event */
|
|
qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
|
|
}
|
|
|
|
static Notifier virt_system_powerdown_notifier = {
|
|
.notify = virt_powerdown_req
|
|
};
|
|
|
|
static void create_gpio(const VirtMachineState *vms, qemu_irq *pic)
|
|
{
|
|
char *nodename;
|
|
DeviceState *pl061_dev;
|
|
hwaddr base = vms->memmap[VIRT_GPIO].base;
|
|
hwaddr size = vms->memmap[VIRT_GPIO].size;
|
|
int irq = vms->irqmap[VIRT_GPIO];
|
|
const char compat[] = "arm,pl061\0arm,primecell";
|
|
|
|
pl061_dev = sysbus_create_simple("pl061", base, pic[irq]);
|
|
|
|
uint32_t phandle = qemu_fdt_alloc_phandle(vms->fdt);
|
|
nodename = g_strdup_printf("/pl061@%" PRIx64, base);
|
|
qemu_fdt_add_subnode(vms->fdt, nodename);
|
|
qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
|
|
2, base, 2, size);
|
|
qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
|
|
qemu_fdt_setprop_cell(vms->fdt, nodename, "#gpio-cells", 2);
|
|
qemu_fdt_setprop(vms->fdt, nodename, "gpio-controller", NULL, 0);
|
|
qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
|
|
GIC_FDT_IRQ_TYPE_SPI, irq,
|
|
GIC_FDT_IRQ_FLAGS_LEVEL_HI);
|
|
qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
|
|
qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
|
|
qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", phandle);
|
|
|
|
gpio_key_dev = sysbus_create_simple("gpio-key", -1,
|
|
qdev_get_gpio_in(pl061_dev, 3));
|
|
qemu_fdt_add_subnode(vms->fdt, "/gpio-keys");
|
|
qemu_fdt_setprop_string(vms->fdt, "/gpio-keys", "compatible", "gpio-keys");
|
|
qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#size-cells", 0);
|
|
qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#address-cells", 1);
|
|
|
|
qemu_fdt_add_subnode(vms->fdt, "/gpio-keys/poweroff");
|
|
qemu_fdt_setprop_string(vms->fdt, "/gpio-keys/poweroff",
|
|
"label", "GPIO Key Poweroff");
|
|
qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys/poweroff", "linux,code",
|
|
KEY_POWER);
|
|
qemu_fdt_setprop_cells(vms->fdt, "/gpio-keys/poweroff",
|
|
"gpios", phandle, 3, 0);
|
|
|
|
/* connect powerdown request */
|
|
qemu_register_powerdown_notifier(&virt_system_powerdown_notifier);
|
|
|
|
g_free(nodename);
|
|
}
|
|
|
|
static void create_virtio_devices(const VirtMachineState *vms, qemu_irq *pic)
|
|
{
|
|
int i;
|
|
hwaddr size = vms->memmap[VIRT_MMIO].size;
|
|
|
|
/* We create the transports in forwards order. Since qbus_realize()
|
|
* prepends (not appends) new child buses, the incrementing loop below will
|
|
* create a list of virtio-mmio buses with decreasing base addresses.
|
|
*
|
|
* When a -device option is processed from the command line,
|
|
* qbus_find_recursive() picks the next free virtio-mmio bus in forwards
|
|
* order. The upshot is that -device options in increasing command line
|
|
* order are mapped to virtio-mmio buses with decreasing base addresses.
|
|
*
|
|
* When this code was originally written, that arrangement ensured that the
|
|
* guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
|
|
* the first -device on the command line. (The end-to-end order is a
|
|
* function of this loop, qbus_realize(), qbus_find_recursive(), and the
|
|
* guest kernel's name-to-address assignment strategy.)
|
|
*
|
|
* Meanwhile, the kernel's traversal seems to have been reversed; see eg.
|
|
* the message, if not necessarily the code, of commit 70161ff336.
|
|
* Therefore the loop now establishes the inverse of the original intent.
|
|
*
|
|
* Unfortunately, we can't counteract the kernel change by reversing the
|
|
* loop; it would break existing command lines.
|
|
*
|
|
* In any case, the kernel makes no guarantee about the stability of
|
|
* enumeration order of virtio devices (as demonstrated by it changing
|
|
* between kernel versions). For reliable and stable identification
|
|
* of disks users must use UUIDs or similar mechanisms.
|
|
*/
|
|
for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
|
|
int irq = vms->irqmap[VIRT_MMIO] + i;
|
|
hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
|
|
|
|
sysbus_create_simple("virtio-mmio", base, pic[irq]);
|
|
}
|
|
|
|
/* We add dtb nodes in reverse order so that they appear in the finished
|
|
* device tree lowest address first.
|
|
*
|
|
* Note that this mapping is independent of the loop above. The previous
|
|
* loop influences virtio device to virtio transport assignment, whereas
|
|
* this loop controls how virtio transports are laid out in the dtb.
|
|
*/
|
|
for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
|
|
char *nodename;
|
|
int irq = vms->irqmap[VIRT_MMIO] + i;
|
|
hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
|
|
|
|
nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
|
|
qemu_fdt_add_subnode(vms->fdt, nodename);
|
|
qemu_fdt_setprop_string(vms->fdt, nodename,
|
|
"compatible", "virtio,mmio");
|
|
qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
|
|
2, base, 2, size);
|
|
qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
|
|
GIC_FDT_IRQ_TYPE_SPI, irq,
|
|
GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
|
|
qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
|
|
g_free(nodename);
|
|
}
|
|
}
|
|
|
|
static void create_one_flash(const char *name, hwaddr flashbase,
|
|
hwaddr flashsize, const char *file,
|
|
MemoryRegion *sysmem)
|
|
{
|
|
/* Create and map a single flash device. We use the same
|
|
* parameters as the flash devices on the Versatile Express board.
|
|
*/
|
|
DriveInfo *dinfo = drive_get_next(IF_PFLASH);
|
|
DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
|
|
SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
|
|
const uint64_t sectorlength = 256 * 1024;
|
|
|
|
if (dinfo) {
|
|
qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
|
|
&error_abort);
|
|
}
|
|
|
|
qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength);
|
|
qdev_prop_set_uint64(dev, "sector-length", sectorlength);
|
|
qdev_prop_set_uint8(dev, "width", 4);
|
|
qdev_prop_set_uint8(dev, "device-width", 2);
|
|
qdev_prop_set_bit(dev, "big-endian", false);
|
|
qdev_prop_set_uint16(dev, "id0", 0x89);
|
|
qdev_prop_set_uint16(dev, "id1", 0x18);
|
|
qdev_prop_set_uint16(dev, "id2", 0x00);
|
|
qdev_prop_set_uint16(dev, "id3", 0x00);
|
|
qdev_prop_set_string(dev, "name", name);
|
|
qdev_init_nofail(dev);
|
|
|
|
memory_region_add_subregion(sysmem, flashbase,
|
|
sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0));
|
|
|
|
if (file) {
|
|
char *fn;
|
|
int image_size;
|
|
|
|
if (drive_get(IF_PFLASH, 0, 0)) {
|
|
error_report("The contents of the first flash device may be "
|
|
"specified with -bios or with -drive if=pflash... "
|
|
"but you cannot use both options at once");
|
|
exit(1);
|
|
}
|
|
fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, file);
|
|
if (!fn) {
|
|
error_report("Could not find ROM image '%s'", file);
|
|
exit(1);
|
|
}
|
|
image_size = load_image_mr(fn, sysbus_mmio_get_region(sbd, 0));
|
|
g_free(fn);
|
|
if (image_size < 0) {
|
|
error_report("Could not load ROM image '%s'", file);
|
|
exit(1);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void create_flash(const VirtMachineState *vms,
|
|
MemoryRegion *sysmem,
|
|
MemoryRegion *secure_sysmem)
|
|
{
|
|
/* Create two flash devices to fill the VIRT_FLASH space in the memmap.
|
|
* Any file passed via -bios goes in the first of these.
|
|
* sysmem is the system memory space. secure_sysmem is the secure view
|
|
* of the system, and the first flash device should be made visible only
|
|
* there. The second flash device is visible to both secure and nonsecure.
|
|
* If sysmem == secure_sysmem this means there is no separate Secure
|
|
* address space and both flash devices are generally visible.
|
|
*/
|
|
hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
|
|
hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
|
|
char *nodename;
|
|
|
|
create_one_flash("virt.flash0", flashbase, flashsize,
|
|
bios_name, secure_sysmem);
|
|
create_one_flash("virt.flash1", flashbase + flashsize, flashsize,
|
|
NULL, sysmem);
|
|
|
|
if (sysmem == secure_sysmem) {
|
|
/* Report both flash devices as a single node in the DT */
|
|
nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
|
|
qemu_fdt_add_subnode(vms->fdt, nodename);
|
|
qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
|
|
qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
|
|
2, flashbase, 2, flashsize,
|
|
2, flashbase + flashsize, 2, flashsize);
|
|
qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
|
|
g_free(nodename);
|
|
} else {
|
|
/* Report the devices as separate nodes so we can mark one as
|
|
* only visible to the secure world.
|
|
*/
|
|
nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
|
|
qemu_fdt_add_subnode(vms->fdt, nodename);
|
|
qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
|
|
qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
|
|
2, flashbase, 2, flashsize);
|
|
qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
|
|
qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
|
|
qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
|
|
g_free(nodename);
|
|
|
|
nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
|
|
qemu_fdt_add_subnode(vms->fdt, nodename);
|
|
qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
|
|
qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
|
|
2, flashbase + flashsize, 2, flashsize);
|
|
qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
|
|
g_free(nodename);
|
|
}
|
|
}
|
|
|
|
static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
|
|
{
|
|
hwaddr base = vms->memmap[VIRT_FW_CFG].base;
|
|
hwaddr size = vms->memmap[VIRT_FW_CFG].size;
|
|
FWCfgState *fw_cfg;
|
|
char *nodename;
|
|
|
|
fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
|
|
fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)smp_cpus);
|
|
|
|
nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
|
|
qemu_fdt_add_subnode(vms->fdt, nodename);
|
|
qemu_fdt_setprop_string(vms->fdt, nodename,
|
|
"compatible", "qemu,fw-cfg-mmio");
|
|
qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
|
|
2, base, 2, size);
|
|
qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
|
|
g_free(nodename);
|
|
return fw_cfg;
|
|
}
|
|
|
|
static void create_pcie_irq_map(const VirtMachineState *vms,
|
|
uint32_t gic_phandle,
|
|
int first_irq, const char *nodename)
|
|
{
|
|
int devfn, pin;
|
|
uint32_t full_irq_map[4 * 4 * 10] = { 0 };
|
|
uint32_t *irq_map = full_irq_map;
|
|
|
|
for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
|
|
for (pin = 0; pin < 4; pin++) {
|
|
int irq_type = GIC_FDT_IRQ_TYPE_SPI;
|
|
int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
|
|
int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
|
|
int i;
|
|
|
|
uint32_t map[] = {
|
|
devfn << 8, 0, 0, /* devfn */
|
|
pin + 1, /* PCI pin */
|
|
gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
|
|
|
|
/* Convert map to big endian */
|
|
for (i = 0; i < 10; i++) {
|
|
irq_map[i] = cpu_to_be32(map[i]);
|
|
}
|
|
irq_map += 10;
|
|
}
|
|
}
|
|
|
|
qemu_fdt_setprop(vms->fdt, nodename, "interrupt-map",
|
|
full_irq_map, sizeof(full_irq_map));
|
|
|
|
qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupt-map-mask",
|
|
0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
|
|
0x7 /* PCI irq */);
|
|
}
|
|
|
|
static void create_pcie(const VirtMachineState *vms, qemu_irq *pic)
|
|
{
|
|
hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
|
|
hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
|
|
hwaddr base_mmio_high = vms->memmap[VIRT_PCIE_MMIO_HIGH].base;
|
|
hwaddr size_mmio_high = vms->memmap[VIRT_PCIE_MMIO_HIGH].size;
|
|
hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
|
|
hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
|
|
hwaddr base_ecam = vms->memmap[VIRT_PCIE_ECAM].base;
|
|
hwaddr size_ecam = vms->memmap[VIRT_PCIE_ECAM].size;
|
|
hwaddr base = base_mmio;
|
|
int nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
|
|
int irq = vms->irqmap[VIRT_PCIE];
|
|
MemoryRegion *mmio_alias;
|
|
MemoryRegion *mmio_reg;
|
|
MemoryRegion *ecam_alias;
|
|
MemoryRegion *ecam_reg;
|
|
DeviceState *dev;
|
|
char *nodename;
|
|
int i;
|
|
PCIHostState *pci;
|
|
|
|
dev = qdev_create(NULL, TYPE_GPEX_HOST);
|
|
qdev_init_nofail(dev);
|
|
|
|
/* Map only the first size_ecam bytes of ECAM space */
|
|
ecam_alias = g_new0(MemoryRegion, 1);
|
|
ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
|
|
memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
|
|
ecam_reg, 0, size_ecam);
|
|
memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
|
|
|
|
/* Map the MMIO window into system address space so as to expose
|
|
* the section of PCI MMIO space which starts at the same base address
|
|
* (ie 1:1 mapping for that part of PCI MMIO space visible through
|
|
* the window).
|
|
*/
|
|
mmio_alias = g_new0(MemoryRegion, 1);
|
|
mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
|
|
memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
|
|
mmio_reg, base_mmio, size_mmio);
|
|
memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
|
|
|
|
if (vms->highmem) {
|
|
/* Map high MMIO space */
|
|
MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
|
|
|
|
memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
|
|
mmio_reg, base_mmio_high, size_mmio_high);
|
|
memory_region_add_subregion(get_system_memory(), base_mmio_high,
|
|
high_mmio_alias);
|
|
}
|
|
|
|
/* Map IO port space */
|
|
sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
|
|
|
|
for (i = 0; i < GPEX_NUM_IRQS; i++) {
|
|
sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
|
|
gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
|
|
}
|
|
|
|
pci = PCI_HOST_BRIDGE(dev);
|
|
if (pci->bus) {
|
|
for (i = 0; i < nb_nics; i++) {
|
|
NICInfo *nd = &nd_table[i];
|
|
|
|
if (!nd->model) {
|
|
nd->model = g_strdup("virtio");
|
|
}
|
|
|
|
pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
|
|
}
|
|
}
|
|
|
|
nodename = g_strdup_printf("/pcie@%" PRIx64, base);
|
|
qemu_fdt_add_subnode(vms->fdt, nodename);
|
|
qemu_fdt_setprop_string(vms->fdt, nodename,
|
|
"compatible", "pci-host-ecam-generic");
|
|
qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "pci");
|
|
qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 3);
|
|
qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 2);
|
|
qemu_fdt_setprop_cells(vms->fdt, nodename, "bus-range", 0,
|
|
nr_pcie_buses - 1);
|
|
qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
|
|
|
|
if (vms->msi_phandle) {
|
|
qemu_fdt_setprop_cells(vms->fdt, nodename, "msi-parent",
|
|
vms->msi_phandle);
|
|
}
|
|
|
|
qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
|
|
2, base_ecam, 2, size_ecam);
|
|
|
|
if (vms->highmem) {
|
|
qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
|
|
1, FDT_PCI_RANGE_IOPORT, 2, 0,
|
|
2, base_pio, 2, size_pio,
|
|
1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
|
|
2, base_mmio, 2, size_mmio,
|
|
1, FDT_PCI_RANGE_MMIO_64BIT,
|
|
2, base_mmio_high,
|
|
2, base_mmio_high, 2, size_mmio_high);
|
|
} else {
|
|
qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
|
|
1, FDT_PCI_RANGE_IOPORT, 2, 0,
|
|
2, base_pio, 2, size_pio,
|
|
1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
|
|
2, base_mmio, 2, size_mmio);
|
|
}
|
|
|
|
qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 1);
|
|
create_pcie_irq_map(vms, vms->gic_phandle, irq, nodename);
|
|
|
|
g_free(nodename);
|
|
}
|
|
|
|
static void create_platform_bus(VirtMachineState *vms, qemu_irq *pic)
|
|
{
|
|
DeviceState *dev;
|
|
SysBusDevice *s;
|
|
int i;
|
|
ARMPlatformBusFDTParams *fdt_params = g_new(ARMPlatformBusFDTParams, 1);
|
|
MemoryRegion *sysmem = get_system_memory();
|
|
|
|
platform_bus_params.platform_bus_base = vms->memmap[VIRT_PLATFORM_BUS].base;
|
|
platform_bus_params.platform_bus_size = vms->memmap[VIRT_PLATFORM_BUS].size;
|
|
platform_bus_params.platform_bus_first_irq = vms->irqmap[VIRT_PLATFORM_BUS];
|
|
platform_bus_params.platform_bus_num_irqs = PLATFORM_BUS_NUM_IRQS;
|
|
|
|
fdt_params->system_params = &platform_bus_params;
|
|
fdt_params->binfo = &vms->bootinfo;
|
|
fdt_params->intc = "/intc";
|
|
/*
|
|
* register a machine init done notifier that creates the device tree
|
|
* nodes of the platform bus and its children dynamic sysbus devices
|
|
*/
|
|
arm_register_platform_bus_fdt_creator(fdt_params);
|
|
|
|
dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE);
|
|
dev->id = TYPE_PLATFORM_BUS_DEVICE;
|
|
qdev_prop_set_uint32(dev, "num_irqs",
|
|
platform_bus_params.platform_bus_num_irqs);
|
|
qdev_prop_set_uint32(dev, "mmio_size",
|
|
platform_bus_params.platform_bus_size);
|
|
qdev_init_nofail(dev);
|
|
s = SYS_BUS_DEVICE(dev);
|
|
|
|
for (i = 0; i < platform_bus_params.platform_bus_num_irqs; i++) {
|
|
int irqn = platform_bus_params.platform_bus_first_irq + i;
|
|
sysbus_connect_irq(s, i, pic[irqn]);
|
|
}
|
|
|
|
memory_region_add_subregion(sysmem,
|
|
platform_bus_params.platform_bus_base,
|
|
sysbus_mmio_get_region(s, 0));
|
|
}
|
|
|
|
static void create_secure_ram(VirtMachineState *vms,
|
|
MemoryRegion *secure_sysmem)
|
|
{
|
|
MemoryRegion *secram = g_new(MemoryRegion, 1);
|
|
char *nodename;
|
|
hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
|
|
hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
|
|
|
|
memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
|
|
&error_fatal);
|
|
memory_region_add_subregion(secure_sysmem, base, secram);
|
|
|
|
nodename = g_strdup_printf("/secram@%" PRIx64, base);
|
|
qemu_fdt_add_subnode(vms->fdt, nodename);
|
|
qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "memory");
|
|
qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, base, 2, size);
|
|
qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
|
|
qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
|
|
|
|
g_free(nodename);
|
|
}
|
|
|
|
static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
|
|
{
|
|
const VirtMachineState *board = container_of(binfo, VirtMachineState,
|
|
bootinfo);
|
|
|
|
*fdt_size = board->fdt_size;
|
|
return board->fdt;
|
|
}
|
|
|
|
static void virt_build_smbios(VirtMachineState *vms)
|
|
{
|
|
uint8_t *smbios_tables, *smbios_anchor;
|
|
size_t smbios_tables_len, smbios_anchor_len;
|
|
const char *product = "QEMU Virtual Machine";
|
|
|
|
if (!vms->fw_cfg) {
|
|
return;
|
|
}
|
|
|
|
if (kvm_enabled()) {
|
|
product = "KVM Virtual Machine";
|
|
}
|
|
|
|
smbios_set_defaults("QEMU", product,
|
|
"1.0", false, true, SMBIOS_ENTRY_POINT_30);
|
|
|
|
smbios_get_tables(NULL, 0, &smbios_tables, &smbios_tables_len,
|
|
&smbios_anchor, &smbios_anchor_len);
|
|
|
|
if (smbios_anchor) {
|
|
fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
|
|
smbios_tables, smbios_tables_len);
|
|
fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
|
|
smbios_anchor, smbios_anchor_len);
|
|
}
|
|
}
|
|
|
|
static
|
|
void virt_machine_done(Notifier *notifier, void *data)
|
|
{
|
|
VirtMachineState *vms = container_of(notifier, VirtMachineState,
|
|
machine_done);
|
|
|
|
virt_acpi_setup(vms);
|
|
virt_build_smbios(vms);
|
|
}
|
|
|
|
static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
|
|
{
|
|
uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
|
|
VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
|
|
|
|
if (!vmc->disallow_affinity_adjustment) {
|
|
/* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
|
|
* GIC's target-list limitations. 32-bit KVM hosts currently
|
|
* always create clusters of 4 CPUs, but that is expected to
|
|
* change when they gain support for gicv3. When KVM is enabled
|
|
* it will override the changes we make here, therefore our
|
|
* purposes are to make TCG consistent (with 64-bit KVM hosts)
|
|
* and to improve SGI efficiency.
|
|
*/
|
|
if (vms->gic_version == 3) {
|
|
clustersz = GICV3_TARGETLIST_BITS;
|
|
} else {
|
|
clustersz = GIC_TARGETLIST_BITS;
|
|
}
|
|
}
|
|
return arm_cpu_mp_affinity(idx, clustersz);
|
|
}
|
|
|
|
static void machvirt_init(MachineState *machine)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(machine);
|
|
VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
|
|
MachineClass *mc = MACHINE_GET_CLASS(machine);
|
|
const CPUArchIdList *possible_cpus;
|
|
qemu_irq pic[NUM_IRQS];
|
|
MemoryRegion *sysmem = get_system_memory();
|
|
MemoryRegion *secure_sysmem = NULL;
|
|
int n, virt_max_cpus;
|
|
MemoryRegion *ram = g_new(MemoryRegion, 1);
|
|
bool firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0);
|
|
|
|
/* We can probe only here because during property set
|
|
* KVM is not available yet
|
|
*/
|
|
if (!vms->gic_version) {
|
|
if (!kvm_enabled()) {
|
|
error_report("gic-version=host requires KVM");
|
|
exit(1);
|
|
}
|
|
|
|
vms->gic_version = kvm_arm_vgic_probe();
|
|
if (!vms->gic_version) {
|
|
error_report("Unable to determine GIC version supported by host");
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
if (!cpu_type_valid(machine->cpu_type)) {
|
|
error_report("mach-virt: CPU type %s not supported", machine->cpu_type);
|
|
exit(1);
|
|
}
|
|
|
|
/* If we have an EL3 boot ROM then the assumption is that it will
|
|
* implement PSCI itself, so disable QEMU's internal implementation
|
|
* so it doesn't get in the way. Instead of starting secondary
|
|
* CPUs in PSCI powerdown state we will start them all running and
|
|
* let the boot ROM sort them out.
|
|
* The usual case is that we do use QEMU's PSCI implementation;
|
|
* if the guest has EL2 then we will use SMC as the conduit,
|
|
* and otherwise we will use HVC (for backwards compatibility and
|
|
* because if we're using KVM then we must use HVC).
|
|
*/
|
|
if (vms->secure && firmware_loaded) {
|
|
vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
|
|
} else if (vms->virt) {
|
|
vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
|
|
} else {
|
|
vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
|
|
}
|
|
|
|
/* The maximum number of CPUs depends on the GIC version, or on how
|
|
* many redistributors we can fit into the memory map.
|
|
*/
|
|
if (vms->gic_version == 3) {
|
|
virt_max_cpus = vms->memmap[VIRT_GIC_REDIST].size / 0x20000;
|
|
} else {
|
|
virt_max_cpus = GIC_NCPU;
|
|
}
|
|
|
|
if (max_cpus > virt_max_cpus) {
|
|
error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
|
|
"supported by machine 'mach-virt' (%d)",
|
|
max_cpus, virt_max_cpus);
|
|
exit(1);
|
|
}
|
|
|
|
vms->smp_cpus = smp_cpus;
|
|
|
|
if (machine->ram_size > vms->memmap[VIRT_MEM].size) {
|
|
error_report("mach-virt: cannot model more than %dGB RAM", RAMLIMIT_GB);
|
|
exit(1);
|
|
}
|
|
|
|
if (vms->virt && kvm_enabled()) {
|
|
error_report("mach-virt: KVM does not support providing "
|
|
"Virtualization extensions to the guest CPU");
|
|
exit(1);
|
|
}
|
|
|
|
if (vms->secure) {
|
|
if (kvm_enabled()) {
|
|
error_report("mach-virt: KVM does not support Security extensions");
|
|
exit(1);
|
|
}
|
|
|
|
/* The Secure view of the world is the same as the NonSecure,
|
|
* but with a few extra devices. Create it as a container region
|
|
* containing the system memory at low priority; any secure-only
|
|
* devices go in at higher priority and take precedence.
|
|
*/
|
|
secure_sysmem = g_new(MemoryRegion, 1);
|
|
memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
|
|
UINT64_MAX);
|
|
memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
|
|
}
|
|
|
|
create_fdt(vms);
|
|
|
|
possible_cpus = mc->possible_cpu_arch_ids(machine);
|
|
for (n = 0; n < possible_cpus->len; n++) {
|
|
Object *cpuobj;
|
|
CPUState *cs;
|
|
|
|
if (n >= smp_cpus) {
|
|
break;
|
|
}
|
|
|
|
cpuobj = object_new(possible_cpus->cpus[n].type);
|
|
object_property_set_int(cpuobj, possible_cpus->cpus[n].arch_id,
|
|
"mp-affinity", NULL);
|
|
|
|
cs = CPU(cpuobj);
|
|
cs->cpu_index = n;
|
|
|
|
numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
|
|
&error_fatal);
|
|
|
|
if (!vms->secure) {
|
|
object_property_set_bool(cpuobj, false, "has_el3", NULL);
|
|
}
|
|
|
|
if (!vms->virt && object_property_find(cpuobj, "has_el2", NULL)) {
|
|
object_property_set_bool(cpuobj, false, "has_el2", NULL);
|
|
}
|
|
|
|
if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) {
|
|
object_property_set_int(cpuobj, vms->psci_conduit,
|
|
"psci-conduit", NULL);
|
|
|
|
/* Secondary CPUs start in PSCI powered-down state */
|
|
if (n > 0) {
|
|
object_property_set_bool(cpuobj, true,
|
|
"start-powered-off", NULL);
|
|
}
|
|
}
|
|
|
|
if (vmc->no_pmu && object_property_find(cpuobj, "pmu", NULL)) {
|
|
object_property_set_bool(cpuobj, false, "pmu", NULL);
|
|
}
|
|
|
|
if (object_property_find(cpuobj, "reset-cbar", NULL)) {
|
|
object_property_set_int(cpuobj, vms->memmap[VIRT_CPUPERIPHS].base,
|
|
"reset-cbar", &error_abort);
|
|
}
|
|
|
|
object_property_set_link(cpuobj, OBJECT(sysmem), "memory",
|
|
&error_abort);
|
|
if (vms->secure) {
|
|
object_property_set_link(cpuobj, OBJECT(secure_sysmem),
|
|
"secure-memory", &error_abort);
|
|
}
|
|
|
|
object_property_set_bool(cpuobj, true, "realized", NULL);
|
|
object_unref(cpuobj);
|
|
}
|
|
fdt_add_timer_nodes(vms);
|
|
fdt_add_cpu_nodes(vms);
|
|
fdt_add_psci_node(vms);
|
|
|
|
memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
|
|
machine->ram_size);
|
|
memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, ram);
|
|
|
|
create_flash(vms, sysmem, secure_sysmem ? secure_sysmem : sysmem);
|
|
|
|
create_gic(vms, pic);
|
|
|
|
fdt_add_pmu_nodes(vms);
|
|
|
|
create_uart(vms, pic, VIRT_UART, sysmem, serial_hds[0]);
|
|
|
|
if (vms->secure) {
|
|
create_secure_ram(vms, secure_sysmem);
|
|
create_uart(vms, pic, VIRT_SECURE_UART, secure_sysmem, serial_hds[1]);
|
|
}
|
|
|
|
create_rtc(vms, pic);
|
|
|
|
create_pcie(vms, pic);
|
|
|
|
create_gpio(vms, pic);
|
|
|
|
/* Create mmio transports, so the user can create virtio backends
|
|
* (which will be automatically plugged in to the transports). If
|
|
* no backend is created the transport will just sit harmlessly idle.
|
|
*/
|
|
create_virtio_devices(vms, pic);
|
|
|
|
vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
|
|
rom_set_fw(vms->fw_cfg);
|
|
|
|
vms->machine_done.notify = virt_machine_done;
|
|
qemu_add_machine_init_done_notifier(&vms->machine_done);
|
|
|
|
vms->bootinfo.ram_size = machine->ram_size;
|
|
vms->bootinfo.kernel_filename = machine->kernel_filename;
|
|
vms->bootinfo.kernel_cmdline = machine->kernel_cmdline;
|
|
vms->bootinfo.initrd_filename = machine->initrd_filename;
|
|
vms->bootinfo.nb_cpus = smp_cpus;
|
|
vms->bootinfo.board_id = -1;
|
|
vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
|
|
vms->bootinfo.get_dtb = machvirt_dtb;
|
|
vms->bootinfo.firmware_loaded = firmware_loaded;
|
|
arm_load_kernel(ARM_CPU(first_cpu), &vms->bootinfo);
|
|
|
|
/*
|
|
* arm_load_kernel machine init done notifier registration must
|
|
* happen before the platform_bus_create call. In this latter,
|
|
* another notifier is registered which adds platform bus nodes.
|
|
* Notifiers are executed in registration reverse order.
|
|
*/
|
|
create_platform_bus(vms, pic);
|
|
}
|
|
|
|
static bool virt_get_secure(Object *obj, Error **errp)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(obj);
|
|
|
|
return vms->secure;
|
|
}
|
|
|
|
static void virt_set_secure(Object *obj, bool value, Error **errp)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(obj);
|
|
|
|
vms->secure = value;
|
|
}
|
|
|
|
static bool virt_get_virt(Object *obj, Error **errp)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(obj);
|
|
|
|
return vms->virt;
|
|
}
|
|
|
|
static void virt_set_virt(Object *obj, bool value, Error **errp)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(obj);
|
|
|
|
vms->virt = value;
|
|
}
|
|
|
|
static bool virt_get_highmem(Object *obj, Error **errp)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(obj);
|
|
|
|
return vms->highmem;
|
|
}
|
|
|
|
static void virt_set_highmem(Object *obj, bool value, Error **errp)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(obj);
|
|
|
|
vms->highmem = value;
|
|
}
|
|
|
|
static bool virt_get_its(Object *obj, Error **errp)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(obj);
|
|
|
|
return vms->its;
|
|
}
|
|
|
|
static void virt_set_its(Object *obj, bool value, Error **errp)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(obj);
|
|
|
|
vms->its = value;
|
|
}
|
|
|
|
static char *virt_get_gic_version(Object *obj, Error **errp)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(obj);
|
|
const char *val = vms->gic_version == 3 ? "3" : "2";
|
|
|
|
return g_strdup(val);
|
|
}
|
|
|
|
static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(obj);
|
|
|
|
if (!strcmp(value, "3")) {
|
|
vms->gic_version = 3;
|
|
} else if (!strcmp(value, "2")) {
|
|
vms->gic_version = 2;
|
|
} else if (!strcmp(value, "host")) {
|
|
vms->gic_version = 0; /* Will probe later */
|
|
} else {
|
|
error_setg(errp, "Invalid gic-version value");
|
|
error_append_hint(errp, "Valid values are 3, 2, host.\n");
|
|
}
|
|
}
|
|
|
|
static CpuInstanceProperties
|
|
virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
|
|
{
|
|
MachineClass *mc = MACHINE_GET_CLASS(ms);
|
|
const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
|
|
|
|
assert(cpu_index < possible_cpus->len);
|
|
return possible_cpus->cpus[cpu_index].props;
|
|
}
|
|
|
|
static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx)
|
|
{
|
|
return idx % nb_numa_nodes;
|
|
}
|
|
|
|
static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
|
|
{
|
|
int n;
|
|
VirtMachineState *vms = VIRT_MACHINE(ms);
|
|
|
|
if (ms->possible_cpus) {
|
|
assert(ms->possible_cpus->len == max_cpus);
|
|
return ms->possible_cpus;
|
|
}
|
|
|
|
ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
|
|
sizeof(CPUArchId) * max_cpus);
|
|
ms->possible_cpus->len = max_cpus;
|
|
for (n = 0; n < ms->possible_cpus->len; n++) {
|
|
ms->possible_cpus->cpus[n].type = ms->cpu_type;
|
|
ms->possible_cpus->cpus[n].arch_id =
|
|
virt_cpu_mp_affinity(vms, n);
|
|
ms->possible_cpus->cpus[n].props.has_thread_id = true;
|
|
ms->possible_cpus->cpus[n].props.thread_id = n;
|
|
}
|
|
return ms->possible_cpus;
|
|
}
|
|
|
|
static void virt_machine_class_init(ObjectClass *oc, void *data)
|
|
{
|
|
MachineClass *mc = MACHINE_CLASS(oc);
|
|
|
|
mc->init = machvirt_init;
|
|
/* Start max_cpus at the maximum QEMU supports. We'll further restrict
|
|
* it later in machvirt_init, where we have more information about the
|
|
* configuration of the particular instance.
|
|
*/
|
|
mc->max_cpus = 255;
|
|
machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC);
|
|
machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE);
|
|
mc->block_default_type = IF_VIRTIO;
|
|
mc->no_cdrom = 1;
|
|
mc->pci_allow_0_address = true;
|
|
/* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
|
|
mc->minimum_page_bits = 12;
|
|
mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
|
|
mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
|
|
mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
|
|
mc->get_default_cpu_node_id = virt_get_default_cpu_node_id;
|
|
}
|
|
|
|
static const TypeInfo virt_machine_info = {
|
|
.name = TYPE_VIRT_MACHINE,
|
|
.parent = TYPE_MACHINE,
|
|
.abstract = true,
|
|
.instance_size = sizeof(VirtMachineState),
|
|
.class_size = sizeof(VirtMachineClass),
|
|
.class_init = virt_machine_class_init,
|
|
};
|
|
|
|
static void machvirt_machine_init(void)
|
|
{
|
|
type_register_static(&virt_machine_info);
|
|
}
|
|
type_init(machvirt_machine_init);
|
|
|
|
static void virt_2_12_instance_init(Object *obj)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(obj);
|
|
VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
|
|
|
|
/* EL3 is disabled by default on virt: this makes us consistent
|
|
* between KVM and TCG for this board, and it also allows us to
|
|
* boot UEFI blobs which assume no TrustZone support.
|
|
*/
|
|
vms->secure = false;
|
|
object_property_add_bool(obj, "secure", virt_get_secure,
|
|
virt_set_secure, NULL);
|
|
object_property_set_description(obj, "secure",
|
|
"Set on/off to enable/disable the ARM "
|
|
"Security Extensions (TrustZone)",
|
|
NULL);
|
|
|
|
/* EL2 is also disabled by default, for similar reasons */
|
|
vms->virt = false;
|
|
object_property_add_bool(obj, "virtualization", virt_get_virt,
|
|
virt_set_virt, NULL);
|
|
object_property_set_description(obj, "virtualization",
|
|
"Set on/off to enable/disable emulating a "
|
|
"guest CPU which implements the ARM "
|
|
"Virtualization Extensions",
|
|
NULL);
|
|
|
|
/* High memory is enabled by default */
|
|
vms->highmem = true;
|
|
object_property_add_bool(obj, "highmem", virt_get_highmem,
|
|
virt_set_highmem, NULL);
|
|
object_property_set_description(obj, "highmem",
|
|
"Set on/off to enable/disable using "
|
|
"physical address space above 32 bits",
|
|
NULL);
|
|
/* Default GIC type is v2 */
|
|
vms->gic_version = 2;
|
|
object_property_add_str(obj, "gic-version", virt_get_gic_version,
|
|
virt_set_gic_version, NULL);
|
|
object_property_set_description(obj, "gic-version",
|
|
"Set GIC version. "
|
|
"Valid values are 2, 3 and host", NULL);
|
|
|
|
if (vmc->no_its) {
|
|
vms->its = false;
|
|
} else {
|
|
/* Default allows ITS instantiation */
|
|
vms->its = true;
|
|
object_property_add_bool(obj, "its", virt_get_its,
|
|
virt_set_its, NULL);
|
|
object_property_set_description(obj, "its",
|
|
"Set on/off to enable/disable "
|
|
"ITS instantiation",
|
|
NULL);
|
|
}
|
|
|
|
vms->memmap = a15memmap;
|
|
vms->irqmap = a15irqmap;
|
|
}
|
|
|
|
static void virt_machine_2_12_options(MachineClass *mc)
|
|
{
|
|
}
|
|
DEFINE_VIRT_MACHINE_AS_LATEST(2, 12)
|
|
|
|
#define VIRT_COMPAT_2_11 \
|
|
HW_COMPAT_2_11
|
|
|
|
static void virt_2_11_instance_init(Object *obj)
|
|
{
|
|
virt_2_12_instance_init(obj);
|
|
}
|
|
|
|
static void virt_machine_2_11_options(MachineClass *mc)
|
|
{
|
|
virt_machine_2_12_options(mc);
|
|
SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_11);
|
|
}
|
|
DEFINE_VIRT_MACHINE(2, 11)
|
|
|
|
#define VIRT_COMPAT_2_10 \
|
|
HW_COMPAT_2_10
|
|
|
|
static void virt_2_10_instance_init(Object *obj)
|
|
{
|
|
virt_2_11_instance_init(obj);
|
|
}
|
|
|
|
static void virt_machine_2_10_options(MachineClass *mc)
|
|
{
|
|
virt_machine_2_11_options(mc);
|
|
SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_10);
|
|
}
|
|
DEFINE_VIRT_MACHINE(2, 10)
|
|
|
|
#define VIRT_COMPAT_2_9 \
|
|
HW_COMPAT_2_9
|
|
|
|
static void virt_2_9_instance_init(Object *obj)
|
|
{
|
|
virt_2_10_instance_init(obj);
|
|
}
|
|
|
|
static void virt_machine_2_9_options(MachineClass *mc)
|
|
{
|
|
virt_machine_2_10_options(mc);
|
|
SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_9);
|
|
}
|
|
DEFINE_VIRT_MACHINE(2, 9)
|
|
|
|
#define VIRT_COMPAT_2_8 \
|
|
HW_COMPAT_2_8
|
|
|
|
static void virt_2_8_instance_init(Object *obj)
|
|
{
|
|
virt_2_9_instance_init(obj);
|
|
}
|
|
|
|
static void virt_machine_2_8_options(MachineClass *mc)
|
|
{
|
|
VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
|
|
|
|
virt_machine_2_9_options(mc);
|
|
SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_8);
|
|
/* For 2.8 and earlier we falsely claimed in the DT that
|
|
* our timers were edge-triggered, not level-triggered.
|
|
*/
|
|
vmc->claim_edge_triggered_timers = true;
|
|
}
|
|
DEFINE_VIRT_MACHINE(2, 8)
|
|
|
|
#define VIRT_COMPAT_2_7 \
|
|
HW_COMPAT_2_7
|
|
|
|
static void virt_2_7_instance_init(Object *obj)
|
|
{
|
|
virt_2_8_instance_init(obj);
|
|
}
|
|
|
|
static void virt_machine_2_7_options(MachineClass *mc)
|
|
{
|
|
VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
|
|
|
|
virt_machine_2_8_options(mc);
|
|
SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_7);
|
|
/* ITS was introduced with 2.8 */
|
|
vmc->no_its = true;
|
|
/* Stick with 1K pages for migration compatibility */
|
|
mc->minimum_page_bits = 0;
|
|
}
|
|
DEFINE_VIRT_MACHINE(2, 7)
|
|
|
|
#define VIRT_COMPAT_2_6 \
|
|
HW_COMPAT_2_6
|
|
|
|
static void virt_2_6_instance_init(Object *obj)
|
|
{
|
|
virt_2_7_instance_init(obj);
|
|
}
|
|
|
|
static void virt_machine_2_6_options(MachineClass *mc)
|
|
{
|
|
VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
|
|
|
|
virt_machine_2_7_options(mc);
|
|
SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_6);
|
|
vmc->disallow_affinity_adjustment = true;
|
|
/* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
|
|
vmc->no_pmu = true;
|
|
}
|
|
DEFINE_VIRT_MACHINE(2, 6)
|