qemu/hw/net/rtl8139.c
Paolo Bonzini eedfac6f38 hw/n*: pass owner to memory_region_init* functions
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2013-07-04 17:42:48 +02:00

3561 lines
102 KiB
C

/**
* QEMU RTL8139 emulation
*
* Copyright (c) 2006 Igor Kovalenko
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
* Modifications:
* 2006-Jan-28 Mark Malakanov : TSAD and CSCR implementation (for Windows driver)
*
* 2006-Apr-28 Juergen Lock : EEPROM emulation changes for FreeBSD driver
* HW revision ID changes for FreeBSD driver
*
* 2006-Jul-01 Igor Kovalenko : Implemented loopback mode for FreeBSD driver
* Corrected packet transfer reassembly routine for 8139C+ mode
* Rearranged debugging print statements
* Implemented PCI timer interrupt (disabled by default)
* Implemented Tally Counters, increased VM load/save version
* Implemented IP/TCP/UDP checksum task offloading
*
* 2006-Jul-04 Igor Kovalenko : Implemented TCP segmentation offloading
* Fixed MTU=1500 for produced ethernet frames
*
* 2006-Jul-09 Igor Kovalenko : Fixed TCP header length calculation while processing
* segmentation offloading
* Removed slirp.h dependency
* Added rx/tx buffer reset when enabling rx/tx operation
*
* 2010-Feb-04 Frediano Ziglio: Rewrote timer support using QEMU timer only
* when strictly needed (required for for
* Darwin)
* 2011-Mar-22 Benjamin Poirier: Implemented VLAN offloading
*/
/* For crc32 */
#include <zlib.h>
#include "hw/hw.h"
#include "hw/pci/pci.h"
#include "sysemu/dma.h"
#include "qemu/timer.h"
#include "net/net.h"
#include "hw/loader.h"
#include "sysemu/sysemu.h"
#include "qemu/iov.h"
/* debug RTL8139 card */
//#define DEBUG_RTL8139 1
#define PCI_FREQUENCY 33000000L
#define SET_MASKED(input, mask, curr) \
( ( (input) & ~(mask) ) | ( (curr) & (mask) ) )
/* arg % size for size which is a power of 2 */
#define MOD2(input, size) \
( ( input ) & ( size - 1 ) )
#define ETHER_ADDR_LEN 6
#define ETHER_TYPE_LEN 2
#define ETH_HLEN (ETHER_ADDR_LEN * 2 + ETHER_TYPE_LEN)
#define ETH_P_IP 0x0800 /* Internet Protocol packet */
#define ETH_P_8021Q 0x8100 /* 802.1Q VLAN Extended Header */
#define ETH_MTU 1500
#define VLAN_TCI_LEN 2
#define VLAN_HLEN (ETHER_TYPE_LEN + VLAN_TCI_LEN)
#if defined (DEBUG_RTL8139)
# define DPRINTF(fmt, ...) \
do { fprintf(stderr, "RTL8139: " fmt, ## __VA_ARGS__); } while (0)
#else
static inline GCC_FMT_ATTR(1, 2) int DPRINTF(const char *fmt, ...)
{
return 0;
}
#endif
/* Symbolic offsets to registers. */
enum RTL8139_registers {
MAC0 = 0, /* Ethernet hardware address. */
MAR0 = 8, /* Multicast filter. */
TxStatus0 = 0x10,/* Transmit status (Four 32bit registers). C mode only */
/* Dump Tally Conter control register(64bit). C+ mode only */
TxAddr0 = 0x20, /* Tx descriptors (also four 32bit). */
RxBuf = 0x30,
ChipCmd = 0x37,
RxBufPtr = 0x38,
RxBufAddr = 0x3A,
IntrMask = 0x3C,
IntrStatus = 0x3E,
TxConfig = 0x40,
RxConfig = 0x44,
Timer = 0x48, /* A general-purpose counter. */
RxMissed = 0x4C, /* 24 bits valid, write clears. */
Cfg9346 = 0x50,
Config0 = 0x51,
Config1 = 0x52,
FlashReg = 0x54,
MediaStatus = 0x58,
Config3 = 0x59,
Config4 = 0x5A, /* absent on RTL-8139A */
HltClk = 0x5B,
MultiIntr = 0x5C,
PCIRevisionID = 0x5E,
TxSummary = 0x60, /* TSAD register. Transmit Status of All Descriptors*/
BasicModeCtrl = 0x62,
BasicModeStatus = 0x64,
NWayAdvert = 0x66,
NWayLPAR = 0x68,
NWayExpansion = 0x6A,
/* Undocumented registers, but required for proper operation. */
FIFOTMS = 0x70, /* FIFO Control and test. */
CSCR = 0x74, /* Chip Status and Configuration Register. */
PARA78 = 0x78,
PARA7c = 0x7c, /* Magic transceiver parameter register. */
Config5 = 0xD8, /* absent on RTL-8139A */
/* C+ mode */
TxPoll = 0xD9, /* Tell chip to check Tx descriptors for work */
RxMaxSize = 0xDA, /* Max size of an Rx packet (8169 only) */
CpCmd = 0xE0, /* C+ Command register (C+ mode only) */
IntrMitigate = 0xE2, /* rx/tx interrupt mitigation control */
RxRingAddrLO = 0xE4, /* 64-bit start addr of Rx ring */
RxRingAddrHI = 0xE8, /* 64-bit start addr of Rx ring */
TxThresh = 0xEC, /* Early Tx threshold */
};
enum ClearBitMasks {
MultiIntrClear = 0xF000,
ChipCmdClear = 0xE2,
Config1Clear = (1<<7)|(1<<6)|(1<<3)|(1<<2)|(1<<1),
};
enum ChipCmdBits {
CmdReset = 0x10,
CmdRxEnb = 0x08,
CmdTxEnb = 0x04,
RxBufEmpty = 0x01,
};
/* C+ mode */
enum CplusCmdBits {
CPlusRxVLAN = 0x0040, /* enable receive VLAN detagging */
CPlusRxChkSum = 0x0020, /* enable receive checksum offloading */
CPlusRxEnb = 0x0002,
CPlusTxEnb = 0x0001,
};
/* Interrupt register bits, using my own meaningful names. */
enum IntrStatusBits {
PCIErr = 0x8000,
PCSTimeout = 0x4000,
RxFIFOOver = 0x40,
RxUnderrun = 0x20, /* Packet Underrun / Link Change */
RxOverflow = 0x10,
TxErr = 0x08,
TxOK = 0x04,
RxErr = 0x02,
RxOK = 0x01,
RxAckBits = RxFIFOOver | RxOverflow | RxOK,
};
enum TxStatusBits {
TxHostOwns = 0x2000,
TxUnderrun = 0x4000,
TxStatOK = 0x8000,
TxOutOfWindow = 0x20000000,
TxAborted = 0x40000000,
TxCarrierLost = 0x80000000,
};
enum RxStatusBits {
RxMulticast = 0x8000,
RxPhysical = 0x4000,
RxBroadcast = 0x2000,
RxBadSymbol = 0x0020,
RxRunt = 0x0010,
RxTooLong = 0x0008,
RxCRCErr = 0x0004,
RxBadAlign = 0x0002,
RxStatusOK = 0x0001,
};
/* Bits in RxConfig. */
enum rx_mode_bits {
AcceptErr = 0x20,
AcceptRunt = 0x10,
AcceptBroadcast = 0x08,
AcceptMulticast = 0x04,
AcceptMyPhys = 0x02,
AcceptAllPhys = 0x01,
};
/* Bits in TxConfig. */
enum tx_config_bits {
/* Interframe Gap Time. Only TxIFG96 doesn't violate IEEE 802.3 */
TxIFGShift = 24,
TxIFG84 = (0 << TxIFGShift), /* 8.4us / 840ns (10 / 100Mbps) */
TxIFG88 = (1 << TxIFGShift), /* 8.8us / 880ns (10 / 100Mbps) */
TxIFG92 = (2 << TxIFGShift), /* 9.2us / 920ns (10 / 100Mbps) */
TxIFG96 = (3 << TxIFGShift), /* 9.6us / 960ns (10 / 100Mbps) */
TxLoopBack = (1 << 18) | (1 << 17), /* enable loopback test mode */
TxCRC = (1 << 16), /* DISABLE appending CRC to end of Tx packets */
TxClearAbt = (1 << 0), /* Clear abort (WO) */
TxDMAShift = 8, /* DMA burst value (0-7) is shifted this many bits */
TxRetryShift = 4, /* TXRR value (0-15) is shifted this many bits */
TxVersionMask = 0x7C800000, /* mask out version bits 30-26, 23 */
};
/* Transmit Status of All Descriptors (TSAD) Register */
enum TSAD_bits {
TSAD_TOK3 = 1<<15, // TOK bit of Descriptor 3
TSAD_TOK2 = 1<<14, // TOK bit of Descriptor 2
TSAD_TOK1 = 1<<13, // TOK bit of Descriptor 1
TSAD_TOK0 = 1<<12, // TOK bit of Descriptor 0
TSAD_TUN3 = 1<<11, // TUN bit of Descriptor 3
TSAD_TUN2 = 1<<10, // TUN bit of Descriptor 2
TSAD_TUN1 = 1<<9, // TUN bit of Descriptor 1
TSAD_TUN0 = 1<<8, // TUN bit of Descriptor 0
TSAD_TABT3 = 1<<07, // TABT bit of Descriptor 3
TSAD_TABT2 = 1<<06, // TABT bit of Descriptor 2
TSAD_TABT1 = 1<<05, // TABT bit of Descriptor 1
TSAD_TABT0 = 1<<04, // TABT bit of Descriptor 0
TSAD_OWN3 = 1<<03, // OWN bit of Descriptor 3
TSAD_OWN2 = 1<<02, // OWN bit of Descriptor 2
TSAD_OWN1 = 1<<01, // OWN bit of Descriptor 1
TSAD_OWN0 = 1<<00, // OWN bit of Descriptor 0
};
/* Bits in Config1 */
enum Config1Bits {
Cfg1_PM_Enable = 0x01,
Cfg1_VPD_Enable = 0x02,
Cfg1_PIO = 0x04,
Cfg1_MMIO = 0x08,
LWAKE = 0x10, /* not on 8139, 8139A */
Cfg1_Driver_Load = 0x20,
Cfg1_LED0 = 0x40,
Cfg1_LED1 = 0x80,
SLEEP = (1 << 1), /* only on 8139, 8139A */
PWRDN = (1 << 0), /* only on 8139, 8139A */
};
/* Bits in Config3 */
enum Config3Bits {
Cfg3_FBtBEn = (1 << 0), /* 1 = Fast Back to Back */
Cfg3_FuncRegEn = (1 << 1), /* 1 = enable CardBus Function registers */
Cfg3_CLKRUN_En = (1 << 2), /* 1 = enable CLKRUN */
Cfg3_CardB_En = (1 << 3), /* 1 = enable CardBus registers */
Cfg3_LinkUp = (1 << 4), /* 1 = wake up on link up */
Cfg3_Magic = (1 << 5), /* 1 = wake up on Magic Packet (tm) */
Cfg3_PARM_En = (1 << 6), /* 0 = software can set twister parameters */
Cfg3_GNTSel = (1 << 7), /* 1 = delay 1 clock from PCI GNT signal */
};
/* Bits in Config4 */
enum Config4Bits {
LWPTN = (1 << 2), /* not on 8139, 8139A */
};
/* Bits in Config5 */
enum Config5Bits {
Cfg5_PME_STS = (1 << 0), /* 1 = PCI reset resets PME_Status */
Cfg5_LANWake = (1 << 1), /* 1 = enable LANWake signal */
Cfg5_LDPS = (1 << 2), /* 0 = save power when link is down */
Cfg5_FIFOAddrPtr = (1 << 3), /* Realtek internal SRAM testing */
Cfg5_UWF = (1 << 4), /* 1 = accept unicast wakeup frame */
Cfg5_MWF = (1 << 5), /* 1 = accept multicast wakeup frame */
Cfg5_BWF = (1 << 6), /* 1 = accept broadcast wakeup frame */
};
enum RxConfigBits {
/* rx fifo threshold */
RxCfgFIFOShift = 13,
RxCfgFIFONone = (7 << RxCfgFIFOShift),
/* Max DMA burst */
RxCfgDMAShift = 8,
RxCfgDMAUnlimited = (7 << RxCfgDMAShift),
/* rx ring buffer length */
RxCfgRcv8K = 0,
RxCfgRcv16K = (1 << 11),
RxCfgRcv32K = (1 << 12),
RxCfgRcv64K = (1 << 11) | (1 << 12),
/* Disable packet wrap at end of Rx buffer. (not possible with 64k) */
RxNoWrap = (1 << 7),
};
/* Twister tuning parameters from RealTek.
Completely undocumented, but required to tune bad links on some boards. */
/*
enum CSCRBits {
CSCR_LinkOKBit = 0x0400,
CSCR_LinkChangeBit = 0x0800,
CSCR_LinkStatusBits = 0x0f000,
CSCR_LinkDownOffCmd = 0x003c0,
CSCR_LinkDownCmd = 0x0f3c0,
*/
enum CSCRBits {
CSCR_Testfun = 1<<15, /* 1 = Auto-neg speeds up internal timer, WO, def 0 */
CSCR_LD = 1<<9, /* Active low TPI link disable signal. When low, TPI still transmits link pulses and TPI stays in good link state. def 1*/
CSCR_HEART_BIT = 1<<8, /* 1 = HEART BEAT enable, 0 = HEART BEAT disable. HEART BEAT function is only valid in 10Mbps mode. def 1*/
CSCR_JBEN = 1<<7, /* 1 = enable jabber function. 0 = disable jabber function, def 1*/
CSCR_F_LINK_100 = 1<<6, /* Used to login force good link in 100Mbps for diagnostic purposes. 1 = DISABLE, 0 = ENABLE. def 1*/
CSCR_F_Connect = 1<<5, /* Assertion of this bit forces the disconnect function to be bypassed. def 0*/
CSCR_Con_status = 1<<3, /* This bit indicates the status of the connection. 1 = valid connected link detected; 0 = disconnected link detected. RO def 0*/
CSCR_Con_status_En = 1<<2, /* Assertion of this bit configures LED1 pin to indicate connection status. def 0*/
CSCR_PASS_SCR = 1<<0, /* Bypass Scramble, def 0*/
};
enum Cfg9346Bits {
Cfg9346_Normal = 0x00,
Cfg9346_Autoload = 0x40,
Cfg9346_Programming = 0x80,
Cfg9346_ConfigWrite = 0xC0,
};
typedef enum {
CH_8139 = 0,
CH_8139_K,
CH_8139A,
CH_8139A_G,
CH_8139B,
CH_8130,
CH_8139C,
CH_8100,
CH_8100B_8139D,
CH_8101,
} chip_t;
enum chip_flags {
HasHltClk = (1 << 0),
HasLWake = (1 << 1),
};
#define HW_REVID(b30, b29, b28, b27, b26, b23, b22) \
(b30<<30 | b29<<29 | b28<<28 | b27<<27 | b26<<26 | b23<<23 | b22<<22)
#define HW_REVID_MASK HW_REVID(1, 1, 1, 1, 1, 1, 1)
#define RTL8139_PCI_REVID_8139 0x10
#define RTL8139_PCI_REVID_8139CPLUS 0x20
#define RTL8139_PCI_REVID RTL8139_PCI_REVID_8139CPLUS
/* Size is 64 * 16bit words */
#define EEPROM_9346_ADDR_BITS 6
#define EEPROM_9346_SIZE (1 << EEPROM_9346_ADDR_BITS)
#define EEPROM_9346_ADDR_MASK (EEPROM_9346_SIZE - 1)
enum Chip9346Operation
{
Chip9346_op_mask = 0xc0, /* 10 zzzzzz */
Chip9346_op_read = 0x80, /* 10 AAAAAA */
Chip9346_op_write = 0x40, /* 01 AAAAAA D(15)..D(0) */
Chip9346_op_ext_mask = 0xf0, /* 11 zzzzzz */
Chip9346_op_write_enable = 0x30, /* 00 11zzzz */
Chip9346_op_write_all = 0x10, /* 00 01zzzz */
Chip9346_op_write_disable = 0x00, /* 00 00zzzz */
};
enum Chip9346Mode
{
Chip9346_none = 0,
Chip9346_enter_command_mode,
Chip9346_read_command,
Chip9346_data_read, /* from output register */
Chip9346_data_write, /* to input register, then to contents at specified address */
Chip9346_data_write_all, /* to input register, then filling contents */
};
typedef struct EEprom9346
{
uint16_t contents[EEPROM_9346_SIZE];
int mode;
uint32_t tick;
uint8_t address;
uint16_t input;
uint16_t output;
uint8_t eecs;
uint8_t eesk;
uint8_t eedi;
uint8_t eedo;
} EEprom9346;
typedef struct RTL8139TallyCounters
{
/* Tally counters */
uint64_t TxOk;
uint64_t RxOk;
uint64_t TxERR;
uint32_t RxERR;
uint16_t MissPkt;
uint16_t FAE;
uint32_t Tx1Col;
uint32_t TxMCol;
uint64_t RxOkPhy;
uint64_t RxOkBrd;
uint32_t RxOkMul;
uint16_t TxAbt;
uint16_t TxUndrn;
} RTL8139TallyCounters;
/* Clears all tally counters */
static void RTL8139TallyCounters_clear(RTL8139TallyCounters* counters);
typedef struct RTL8139State {
PCIDevice dev;
uint8_t phys[8]; /* mac address */
uint8_t mult[8]; /* multicast mask array */
uint32_t TxStatus[4]; /* TxStatus0 in C mode*/ /* also DTCCR[0] and DTCCR[1] in C+ mode */
uint32_t TxAddr[4]; /* TxAddr0 */
uint32_t RxBuf; /* Receive buffer */
uint32_t RxBufferSize;/* internal variable, receive ring buffer size in C mode */
uint32_t RxBufPtr;
uint32_t RxBufAddr;
uint16_t IntrStatus;
uint16_t IntrMask;
uint32_t TxConfig;
uint32_t RxConfig;
uint32_t RxMissed;
uint16_t CSCR;
uint8_t Cfg9346;
uint8_t Config0;
uint8_t Config1;
uint8_t Config3;
uint8_t Config4;
uint8_t Config5;
uint8_t clock_enabled;
uint8_t bChipCmdState;
uint16_t MultiIntr;
uint16_t BasicModeCtrl;
uint16_t BasicModeStatus;
uint16_t NWayAdvert;
uint16_t NWayLPAR;
uint16_t NWayExpansion;
uint16_t CpCmd;
uint8_t TxThresh;
NICState *nic;
NICConf conf;
/* C ring mode */
uint32_t currTxDesc;
/* C+ mode */
uint32_t cplus_enabled;
uint32_t currCPlusRxDesc;
uint32_t currCPlusTxDesc;
uint32_t RxRingAddrLO;
uint32_t RxRingAddrHI;
EEprom9346 eeprom;
uint32_t TCTR;
uint32_t TimerInt;
int64_t TCTR_base;
/* Tally counters */
RTL8139TallyCounters tally_counters;
/* Non-persistent data */
uint8_t *cplus_txbuffer;
int cplus_txbuffer_len;
int cplus_txbuffer_offset;
/* PCI interrupt timer */
QEMUTimer *timer;
int64_t TimerExpire;
MemoryRegion bar_io;
MemoryRegion bar_mem;
/* Support migration to/from old versions */
int rtl8139_mmio_io_addr_dummy;
} RTL8139State;
/* Writes tally counters to memory via DMA */
static void RTL8139TallyCounters_dma_write(RTL8139State *s, dma_addr_t tc_addr);
static void rtl8139_set_next_tctr_time(RTL8139State *s, int64_t current_time);
static void prom9346_decode_command(EEprom9346 *eeprom, uint8_t command)
{
DPRINTF("eeprom command 0x%02x\n", command);
switch (command & Chip9346_op_mask)
{
case Chip9346_op_read:
{
eeprom->address = command & EEPROM_9346_ADDR_MASK;
eeprom->output = eeprom->contents[eeprom->address];
eeprom->eedo = 0;
eeprom->tick = 0;
eeprom->mode = Chip9346_data_read;
DPRINTF("eeprom read from address 0x%02x data=0x%04x\n",
eeprom->address, eeprom->output);
}
break;
case Chip9346_op_write:
{
eeprom->address = command & EEPROM_9346_ADDR_MASK;
eeprom->input = 0;
eeprom->tick = 0;
eeprom->mode = Chip9346_none; /* Chip9346_data_write */
DPRINTF("eeprom begin write to address 0x%02x\n",
eeprom->address);
}
break;
default:
eeprom->mode = Chip9346_none;
switch (command & Chip9346_op_ext_mask)
{
case Chip9346_op_write_enable:
DPRINTF("eeprom write enabled\n");
break;
case Chip9346_op_write_all:
DPRINTF("eeprom begin write all\n");
break;
case Chip9346_op_write_disable:
DPRINTF("eeprom write disabled\n");
break;
}
break;
}
}
static void prom9346_shift_clock(EEprom9346 *eeprom)
{
int bit = eeprom->eedi?1:0;
++ eeprom->tick;
DPRINTF("eeprom: tick %d eedi=%d eedo=%d\n", eeprom->tick, eeprom->eedi,
eeprom->eedo);
switch (eeprom->mode)
{
case Chip9346_enter_command_mode:
if (bit)
{
eeprom->mode = Chip9346_read_command;
eeprom->tick = 0;
eeprom->input = 0;
DPRINTF("eeprom: +++ synchronized, begin command read\n");
}
break;
case Chip9346_read_command:
eeprom->input = (eeprom->input << 1) | (bit & 1);
if (eeprom->tick == 8)
{
prom9346_decode_command(eeprom, eeprom->input & 0xff);
}
break;
case Chip9346_data_read:
eeprom->eedo = (eeprom->output & 0x8000)?1:0;
eeprom->output <<= 1;
if (eeprom->tick == 16)
{
#if 1
// the FreeBSD drivers (rl and re) don't explicitly toggle
// CS between reads (or does setting Cfg9346 to 0 count too?),
// so we need to enter wait-for-command state here
eeprom->mode = Chip9346_enter_command_mode;
eeprom->input = 0;
eeprom->tick = 0;
DPRINTF("eeprom: +++ end of read, awaiting next command\n");
#else
// original behaviour
++eeprom->address;
eeprom->address &= EEPROM_9346_ADDR_MASK;
eeprom->output = eeprom->contents[eeprom->address];
eeprom->tick = 0;
DPRINTF("eeprom: +++ read next address 0x%02x data=0x%04x\n",
eeprom->address, eeprom->output);
#endif
}
break;
case Chip9346_data_write:
eeprom->input = (eeprom->input << 1) | (bit & 1);
if (eeprom->tick == 16)
{
DPRINTF("eeprom write to address 0x%02x data=0x%04x\n",
eeprom->address, eeprom->input);
eeprom->contents[eeprom->address] = eeprom->input;
eeprom->mode = Chip9346_none; /* waiting for next command after CS cycle */
eeprom->tick = 0;
eeprom->input = 0;
}
break;
case Chip9346_data_write_all:
eeprom->input = (eeprom->input << 1) | (bit & 1);
if (eeprom->tick == 16)
{
int i;
for (i = 0; i < EEPROM_9346_SIZE; i++)
{
eeprom->contents[i] = eeprom->input;
}
DPRINTF("eeprom filled with data=0x%04x\n", eeprom->input);
eeprom->mode = Chip9346_enter_command_mode;
eeprom->tick = 0;
eeprom->input = 0;
}
break;
default:
break;
}
}
static int prom9346_get_wire(RTL8139State *s)
{
EEprom9346 *eeprom = &s->eeprom;
if (!eeprom->eecs)
return 0;
return eeprom->eedo;
}
/* FIXME: This should be merged into/replaced by eeprom93xx.c. */
static void prom9346_set_wire(RTL8139State *s, int eecs, int eesk, int eedi)
{
EEprom9346 *eeprom = &s->eeprom;
uint8_t old_eecs = eeprom->eecs;
uint8_t old_eesk = eeprom->eesk;
eeprom->eecs = eecs;
eeprom->eesk = eesk;
eeprom->eedi = eedi;
DPRINTF("eeprom: +++ wires CS=%d SK=%d DI=%d DO=%d\n", eeprom->eecs,
eeprom->eesk, eeprom->eedi, eeprom->eedo);
if (!old_eecs && eecs)
{
/* Synchronize start */
eeprom->tick = 0;
eeprom->input = 0;
eeprom->output = 0;
eeprom->mode = Chip9346_enter_command_mode;
DPRINTF("=== eeprom: begin access, enter command mode\n");
}
if (!eecs)
{
DPRINTF("=== eeprom: end access\n");
return;
}
if (!old_eesk && eesk)
{
/* SK front rules */
prom9346_shift_clock(eeprom);
}
}
static void rtl8139_update_irq(RTL8139State *s)
{
int isr;
isr = (s->IntrStatus & s->IntrMask) & 0xffff;
DPRINTF("Set IRQ to %d (%04x %04x)\n", isr ? 1 : 0, s->IntrStatus,
s->IntrMask);
qemu_set_irq(s->dev.irq[0], (isr != 0));
}
static int rtl8139_RxWrap(RTL8139State *s)
{
/* wrapping enabled; assume 1.5k more buffer space if size < 65536 */
return (s->RxConfig & (1 << 7));
}
static int rtl8139_receiver_enabled(RTL8139State *s)
{
return s->bChipCmdState & CmdRxEnb;
}
static int rtl8139_transmitter_enabled(RTL8139State *s)
{
return s->bChipCmdState & CmdTxEnb;
}
static int rtl8139_cp_receiver_enabled(RTL8139State *s)
{
return s->CpCmd & CPlusRxEnb;
}
static int rtl8139_cp_transmitter_enabled(RTL8139State *s)
{
return s->CpCmd & CPlusTxEnb;
}
static void rtl8139_write_buffer(RTL8139State *s, const void *buf, int size)
{
if (s->RxBufAddr + size > s->RxBufferSize)
{
int wrapped = MOD2(s->RxBufAddr + size, s->RxBufferSize);
/* write packet data */
if (wrapped && !(s->RxBufferSize < 65536 && rtl8139_RxWrap(s)))
{
DPRINTF(">>> rx packet wrapped in buffer at %d\n", size - wrapped);
if (size > wrapped)
{
pci_dma_write(&s->dev, s->RxBuf + s->RxBufAddr,
buf, size-wrapped);
}
/* reset buffer pointer */
s->RxBufAddr = 0;
pci_dma_write(&s->dev, s->RxBuf + s->RxBufAddr,
buf + (size-wrapped), wrapped);
s->RxBufAddr = wrapped;
return;
}
}
/* non-wrapping path or overwrapping enabled */
pci_dma_write(&s->dev, s->RxBuf + s->RxBufAddr, buf, size);
s->RxBufAddr += size;
}
#define MIN_BUF_SIZE 60
static inline dma_addr_t rtl8139_addr64(uint32_t low, uint32_t high)
{
return low | ((uint64_t)high << 32);
}
/* Workaround for buggy guest driver such as linux who allocates rx
* rings after the receiver were enabled. */
static bool rtl8139_cp_rx_valid(RTL8139State *s)
{
return !(s->RxRingAddrLO == 0 && s->RxRingAddrHI == 0);
}
static int rtl8139_can_receive(NetClientState *nc)
{
RTL8139State *s = qemu_get_nic_opaque(nc);
int avail;
/* Receive (drop) packets if card is disabled. */
if (!s->clock_enabled)
return 1;
if (!rtl8139_receiver_enabled(s))
return 1;
if (rtl8139_cp_receiver_enabled(s) && rtl8139_cp_rx_valid(s)) {
/* ??? Flow control not implemented in c+ mode.
This is a hack to work around slirp deficiencies anyway. */
return 1;
} else {
avail = MOD2(s->RxBufferSize + s->RxBufPtr - s->RxBufAddr,
s->RxBufferSize);
return (avail == 0 || avail >= 1514 || (s->IntrMask & RxOverflow));
}
}
static ssize_t rtl8139_do_receive(NetClientState *nc, const uint8_t *buf, size_t size_, int do_interrupt)
{
RTL8139State *s = qemu_get_nic_opaque(nc);
/* size is the length of the buffer passed to the driver */
int size = size_;
const uint8_t *dot1q_buf = NULL;
uint32_t packet_header = 0;
uint8_t buf1[MIN_BUF_SIZE + VLAN_HLEN];
static const uint8_t broadcast_macaddr[6] =
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
DPRINTF(">>> received len=%d\n", size);
/* test if board clock is stopped */
if (!s->clock_enabled)
{
DPRINTF("stopped ==========================\n");
return -1;
}
/* first check if receiver is enabled */
if (!rtl8139_receiver_enabled(s))
{
DPRINTF("receiver disabled ================\n");
return -1;
}
/* XXX: check this */
if (s->RxConfig & AcceptAllPhys) {
/* promiscuous: receive all */
DPRINTF(">>> packet received in promiscuous mode\n");
} else {
if (!memcmp(buf, broadcast_macaddr, 6)) {
/* broadcast address */
if (!(s->RxConfig & AcceptBroadcast))
{
DPRINTF(">>> broadcast packet rejected\n");
/* update tally counter */
++s->tally_counters.RxERR;
return size;
}
packet_header |= RxBroadcast;
DPRINTF(">>> broadcast packet received\n");
/* update tally counter */
++s->tally_counters.RxOkBrd;
} else if (buf[0] & 0x01) {
/* multicast */
if (!(s->RxConfig & AcceptMulticast))
{
DPRINTF(">>> multicast packet rejected\n");
/* update tally counter */
++s->tally_counters.RxERR;
return size;
}
int mcast_idx = compute_mcast_idx(buf);
if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))))
{
DPRINTF(">>> multicast address mismatch\n");
/* update tally counter */
++s->tally_counters.RxERR;
return size;
}
packet_header |= RxMulticast;
DPRINTF(">>> multicast packet received\n");
/* update tally counter */
++s->tally_counters.RxOkMul;
} else if (s->phys[0] == buf[0] &&
s->phys[1] == buf[1] &&
s->phys[2] == buf[2] &&
s->phys[3] == buf[3] &&
s->phys[4] == buf[4] &&
s->phys[5] == buf[5]) {
/* match */
if (!(s->RxConfig & AcceptMyPhys))
{
DPRINTF(">>> rejecting physical address matching packet\n");
/* update tally counter */
++s->tally_counters.RxERR;
return size;
}
packet_header |= RxPhysical;
DPRINTF(">>> physical address matching packet received\n");
/* update tally counter */
++s->tally_counters.RxOkPhy;
} else {
DPRINTF(">>> unknown packet\n");
/* update tally counter */
++s->tally_counters.RxERR;
return size;
}
}
/* if too small buffer, then expand it
* Include some tailroom in case a vlan tag is later removed. */
if (size < MIN_BUF_SIZE + VLAN_HLEN) {
memcpy(buf1, buf, size);
memset(buf1 + size, 0, MIN_BUF_SIZE + VLAN_HLEN - size);
buf = buf1;
if (size < MIN_BUF_SIZE) {
size = MIN_BUF_SIZE;
}
}
if (rtl8139_cp_receiver_enabled(s))
{
if (!rtl8139_cp_rx_valid(s)) {
return size;
}
DPRINTF("in C+ Rx mode ================\n");
/* begin C+ receiver mode */
/* w0 ownership flag */
#define CP_RX_OWN (1<<31)
/* w0 end of ring flag */
#define CP_RX_EOR (1<<30)
/* w0 bits 0...12 : buffer size */
#define CP_RX_BUFFER_SIZE_MASK ((1<<13) - 1)
/* w1 tag available flag */
#define CP_RX_TAVA (1<<16)
/* w1 bits 0...15 : VLAN tag */
#define CP_RX_VLAN_TAG_MASK ((1<<16) - 1)
/* w2 low 32bit of Rx buffer ptr */
/* w3 high 32bit of Rx buffer ptr */
int descriptor = s->currCPlusRxDesc;
dma_addr_t cplus_rx_ring_desc;
cplus_rx_ring_desc = rtl8139_addr64(s->RxRingAddrLO, s->RxRingAddrHI);
cplus_rx_ring_desc += 16 * descriptor;
DPRINTF("+++ C+ mode reading RX descriptor %d from host memory at "
"%08x %08x = "DMA_ADDR_FMT"\n", descriptor, s->RxRingAddrHI,
s->RxRingAddrLO, cplus_rx_ring_desc);
uint32_t val, rxdw0,rxdw1,rxbufLO,rxbufHI;
pci_dma_read(&s->dev, cplus_rx_ring_desc, &val, 4);
rxdw0 = le32_to_cpu(val);
pci_dma_read(&s->dev, cplus_rx_ring_desc+4, &val, 4);
rxdw1 = le32_to_cpu(val);
pci_dma_read(&s->dev, cplus_rx_ring_desc+8, &val, 4);
rxbufLO = le32_to_cpu(val);
pci_dma_read(&s->dev, cplus_rx_ring_desc+12, &val, 4);
rxbufHI = le32_to_cpu(val);
DPRINTF("+++ C+ mode RX descriptor %d %08x %08x %08x %08x\n",
descriptor, rxdw0, rxdw1, rxbufLO, rxbufHI);
if (!(rxdw0 & CP_RX_OWN))
{
DPRINTF("C+ Rx mode : descriptor %d is owned by host\n",
descriptor);
s->IntrStatus |= RxOverflow;
++s->RxMissed;
/* update tally counter */
++s->tally_counters.RxERR;
++s->tally_counters.MissPkt;
rtl8139_update_irq(s);
return size_;
}
uint32_t rx_space = rxdw0 & CP_RX_BUFFER_SIZE_MASK;
/* write VLAN info to descriptor variables. */
if (s->CpCmd & CPlusRxVLAN && be16_to_cpup((uint16_t *)
&buf[ETHER_ADDR_LEN * 2]) == ETH_P_8021Q) {
dot1q_buf = &buf[ETHER_ADDR_LEN * 2];
size -= VLAN_HLEN;
/* if too small buffer, use the tailroom added duing expansion */
if (size < MIN_BUF_SIZE) {
size = MIN_BUF_SIZE;
}
rxdw1 &= ~CP_RX_VLAN_TAG_MASK;
/* BE + ~le_to_cpu()~ + cpu_to_le() = BE */
rxdw1 |= CP_RX_TAVA | le16_to_cpup((uint16_t *)
&dot1q_buf[ETHER_TYPE_LEN]);
DPRINTF("C+ Rx mode : extracted vlan tag with tci: ""%u\n",
be16_to_cpup((uint16_t *)&dot1q_buf[ETHER_TYPE_LEN]));
} else {
/* reset VLAN tag flag */
rxdw1 &= ~CP_RX_TAVA;
}
/* TODO: scatter the packet over available receive ring descriptors space */
if (size+4 > rx_space)
{
DPRINTF("C+ Rx mode : descriptor %d size %d received %d + 4\n",
descriptor, rx_space, size);
s->IntrStatus |= RxOverflow;
++s->RxMissed;
/* update tally counter */
++s->tally_counters.RxERR;
++s->tally_counters.MissPkt;
rtl8139_update_irq(s);
return size_;
}
dma_addr_t rx_addr = rtl8139_addr64(rxbufLO, rxbufHI);
/* receive/copy to target memory */
if (dot1q_buf) {
pci_dma_write(&s->dev, rx_addr, buf, 2 * ETHER_ADDR_LEN);
pci_dma_write(&s->dev, rx_addr + 2 * ETHER_ADDR_LEN,
buf + 2 * ETHER_ADDR_LEN + VLAN_HLEN,
size - 2 * ETHER_ADDR_LEN);
} else {
pci_dma_write(&s->dev, rx_addr, buf, size);
}
if (s->CpCmd & CPlusRxChkSum)
{
/* do some packet checksumming */
}
/* write checksum */
val = cpu_to_le32(crc32(0, buf, size_));
pci_dma_write(&s->dev, rx_addr+size, (uint8_t *)&val, 4);
/* first segment of received packet flag */
#define CP_RX_STATUS_FS (1<<29)
/* last segment of received packet flag */
#define CP_RX_STATUS_LS (1<<28)
/* multicast packet flag */
#define CP_RX_STATUS_MAR (1<<26)
/* physical-matching packet flag */
#define CP_RX_STATUS_PAM (1<<25)
/* broadcast packet flag */
#define CP_RX_STATUS_BAR (1<<24)
/* runt packet flag */
#define CP_RX_STATUS_RUNT (1<<19)
/* crc error flag */
#define CP_RX_STATUS_CRC (1<<18)
/* IP checksum error flag */
#define CP_RX_STATUS_IPF (1<<15)
/* UDP checksum error flag */
#define CP_RX_STATUS_UDPF (1<<14)
/* TCP checksum error flag */
#define CP_RX_STATUS_TCPF (1<<13)
/* transfer ownership to target */
rxdw0 &= ~CP_RX_OWN;
/* set first segment bit */
rxdw0 |= CP_RX_STATUS_FS;
/* set last segment bit */
rxdw0 |= CP_RX_STATUS_LS;
/* set received packet type flags */
if (packet_header & RxBroadcast)
rxdw0 |= CP_RX_STATUS_BAR;
if (packet_header & RxMulticast)
rxdw0 |= CP_RX_STATUS_MAR;
if (packet_header & RxPhysical)
rxdw0 |= CP_RX_STATUS_PAM;
/* set received size */
rxdw0 &= ~CP_RX_BUFFER_SIZE_MASK;
rxdw0 |= (size+4);
/* update ring data */
val = cpu_to_le32(rxdw0);
pci_dma_write(&s->dev, cplus_rx_ring_desc, (uint8_t *)&val, 4);
val = cpu_to_le32(rxdw1);
pci_dma_write(&s->dev, cplus_rx_ring_desc+4, (uint8_t *)&val, 4);
/* update tally counter */
++s->tally_counters.RxOk;
/* seek to next Rx descriptor */
if (rxdw0 & CP_RX_EOR)
{
s->currCPlusRxDesc = 0;
}
else
{
++s->currCPlusRxDesc;
}
DPRINTF("done C+ Rx mode ----------------\n");
}
else
{
DPRINTF("in ring Rx mode ================\n");
/* begin ring receiver mode */
int avail = MOD2(s->RxBufferSize + s->RxBufPtr - s->RxBufAddr, s->RxBufferSize);
/* if receiver buffer is empty then avail == 0 */
if (avail != 0 && size + 8 >= avail)
{
DPRINTF("rx overflow: rx buffer length %d head 0x%04x "
"read 0x%04x === available 0x%04x need 0x%04x\n",
s->RxBufferSize, s->RxBufAddr, s->RxBufPtr, avail, size + 8);
s->IntrStatus |= RxOverflow;
++s->RxMissed;
rtl8139_update_irq(s);
return size_;
}
packet_header |= RxStatusOK;
packet_header |= (((size+4) << 16) & 0xffff0000);
/* write header */
uint32_t val = cpu_to_le32(packet_header);
rtl8139_write_buffer(s, (uint8_t *)&val, 4);
rtl8139_write_buffer(s, buf, size);
/* write checksum */
val = cpu_to_le32(crc32(0, buf, size));
rtl8139_write_buffer(s, (uint8_t *)&val, 4);
/* correct buffer write pointer */
s->RxBufAddr = MOD2((s->RxBufAddr + 3) & ~0x3, s->RxBufferSize);
/* now we can signal we have received something */
DPRINTF("received: rx buffer length %d head 0x%04x read 0x%04x\n",
s->RxBufferSize, s->RxBufAddr, s->RxBufPtr);
}
s->IntrStatus |= RxOK;
if (do_interrupt)
{
rtl8139_update_irq(s);
}
return size_;
}
static ssize_t rtl8139_receive(NetClientState *nc, const uint8_t *buf, size_t size)
{
return rtl8139_do_receive(nc, buf, size, 1);
}
static void rtl8139_reset_rxring(RTL8139State *s, uint32_t bufferSize)
{
s->RxBufferSize = bufferSize;
s->RxBufPtr = 0;
s->RxBufAddr = 0;
}
static void rtl8139_reset(DeviceState *d)
{
RTL8139State *s = container_of(d, RTL8139State, dev.qdev);
int i;
/* restore MAC address */
memcpy(s->phys, s->conf.macaddr.a, 6);
/* reset interrupt mask */
s->IntrStatus = 0;
s->IntrMask = 0;
rtl8139_update_irq(s);
/* mark all status registers as owned by host */
for (i = 0; i < 4; ++i)
{
s->TxStatus[i] = TxHostOwns;
}
s->currTxDesc = 0;
s->currCPlusRxDesc = 0;
s->currCPlusTxDesc = 0;
s->RxRingAddrLO = 0;
s->RxRingAddrHI = 0;
s->RxBuf = 0;
rtl8139_reset_rxring(s, 8192);
/* ACK the reset */
s->TxConfig = 0;
#if 0
// s->TxConfig |= HW_REVID(1, 0, 0, 0, 0, 0, 0); // RTL-8139 HasHltClk
s->clock_enabled = 0;
#else
s->TxConfig |= HW_REVID(1, 1, 1, 0, 1, 1, 0); // RTL-8139C+ HasLWake
s->clock_enabled = 1;
#endif
s->bChipCmdState = CmdReset; /* RxBufEmpty bit is calculated on read from ChipCmd */;
/* set initial state data */
s->Config0 = 0x0; /* No boot ROM */
s->Config1 = 0xC; /* IO mapped and MEM mapped registers available */
s->Config3 = 0x1; /* fast back-to-back compatible */
s->Config5 = 0x0;
s->CSCR = CSCR_F_LINK_100 | CSCR_HEART_BIT | CSCR_LD;
s->CpCmd = 0x0; /* reset C+ mode */
s->cplus_enabled = 0;
// s->BasicModeCtrl = 0x3100; // 100Mbps, full duplex, autonegotiation
// s->BasicModeCtrl = 0x2100; // 100Mbps, full duplex
s->BasicModeCtrl = 0x1000; // autonegotiation
s->BasicModeStatus = 0x7809;
//s->BasicModeStatus |= 0x0040; /* UTP medium */
s->BasicModeStatus |= 0x0020; /* autonegotiation completed */
/* preserve link state */
s->BasicModeStatus |= qemu_get_queue(s->nic)->link_down ? 0 : 0x04;
s->NWayAdvert = 0x05e1; /* all modes, full duplex */
s->NWayLPAR = 0x05e1; /* all modes, full duplex */
s->NWayExpansion = 0x0001; /* autonegotiation supported */
/* also reset timer and disable timer interrupt */
s->TCTR = 0;
s->TimerInt = 0;
s->TCTR_base = 0;
/* reset tally counters */
RTL8139TallyCounters_clear(&s->tally_counters);
}
static void RTL8139TallyCounters_clear(RTL8139TallyCounters* counters)
{
counters->TxOk = 0;
counters->RxOk = 0;
counters->TxERR = 0;
counters->RxERR = 0;
counters->MissPkt = 0;
counters->FAE = 0;
counters->Tx1Col = 0;
counters->TxMCol = 0;
counters->RxOkPhy = 0;
counters->RxOkBrd = 0;
counters->RxOkMul = 0;
counters->TxAbt = 0;
counters->TxUndrn = 0;
}
static void RTL8139TallyCounters_dma_write(RTL8139State *s, dma_addr_t tc_addr)
{
RTL8139TallyCounters *tally_counters = &s->tally_counters;
uint16_t val16;
uint32_t val32;
uint64_t val64;
val64 = cpu_to_le64(tally_counters->TxOk);
pci_dma_write(&s->dev, tc_addr + 0, (uint8_t *)&val64, 8);
val64 = cpu_to_le64(tally_counters->RxOk);
pci_dma_write(&s->dev, tc_addr + 8, (uint8_t *)&val64, 8);
val64 = cpu_to_le64(tally_counters->TxERR);
pci_dma_write(&s->dev, tc_addr + 16, (uint8_t *)&val64, 8);
val32 = cpu_to_le32(tally_counters->RxERR);
pci_dma_write(&s->dev, tc_addr + 24, (uint8_t *)&val32, 4);
val16 = cpu_to_le16(tally_counters->MissPkt);
pci_dma_write(&s->dev, tc_addr + 28, (uint8_t *)&val16, 2);
val16 = cpu_to_le16(tally_counters->FAE);
pci_dma_write(&s->dev, tc_addr + 30, (uint8_t *)&val16, 2);
val32 = cpu_to_le32(tally_counters->Tx1Col);
pci_dma_write(&s->dev, tc_addr + 32, (uint8_t *)&val32, 4);
val32 = cpu_to_le32(tally_counters->TxMCol);
pci_dma_write(&s->dev, tc_addr + 36, (uint8_t *)&val32, 4);
val64 = cpu_to_le64(tally_counters->RxOkPhy);
pci_dma_write(&s->dev, tc_addr + 40, (uint8_t *)&val64, 8);
val64 = cpu_to_le64(tally_counters->RxOkBrd);
pci_dma_write(&s->dev, tc_addr + 48, (uint8_t *)&val64, 8);
val32 = cpu_to_le32(tally_counters->RxOkMul);
pci_dma_write(&s->dev, tc_addr + 56, (uint8_t *)&val32, 4);
val16 = cpu_to_le16(tally_counters->TxAbt);
pci_dma_write(&s->dev, tc_addr + 60, (uint8_t *)&val16, 2);
val16 = cpu_to_le16(tally_counters->TxUndrn);
pci_dma_write(&s->dev, tc_addr + 62, (uint8_t *)&val16, 2);
}
/* Loads values of tally counters from VM state file */
static const VMStateDescription vmstate_tally_counters = {
.name = "tally_counters",
.version_id = 1,
.minimum_version_id = 1,
.minimum_version_id_old = 1,
.fields = (VMStateField []) {
VMSTATE_UINT64(TxOk, RTL8139TallyCounters),
VMSTATE_UINT64(RxOk, RTL8139TallyCounters),
VMSTATE_UINT64(TxERR, RTL8139TallyCounters),
VMSTATE_UINT32(RxERR, RTL8139TallyCounters),
VMSTATE_UINT16(MissPkt, RTL8139TallyCounters),
VMSTATE_UINT16(FAE, RTL8139TallyCounters),
VMSTATE_UINT32(Tx1Col, RTL8139TallyCounters),
VMSTATE_UINT32(TxMCol, RTL8139TallyCounters),
VMSTATE_UINT64(RxOkPhy, RTL8139TallyCounters),
VMSTATE_UINT64(RxOkBrd, RTL8139TallyCounters),
VMSTATE_UINT16(TxAbt, RTL8139TallyCounters),
VMSTATE_UINT16(TxUndrn, RTL8139TallyCounters),
VMSTATE_END_OF_LIST()
}
};
static void rtl8139_ChipCmd_write(RTL8139State *s, uint32_t val)
{
val &= 0xff;
DPRINTF("ChipCmd write val=0x%08x\n", val);
if (val & CmdReset)
{
DPRINTF("ChipCmd reset\n");
rtl8139_reset(&s->dev.qdev);
}
if (val & CmdRxEnb)
{
DPRINTF("ChipCmd enable receiver\n");
s->currCPlusRxDesc = 0;
}
if (val & CmdTxEnb)
{
DPRINTF("ChipCmd enable transmitter\n");
s->currCPlusTxDesc = 0;
}
/* mask unwritable bits */
val = SET_MASKED(val, 0xe3, s->bChipCmdState);
/* Deassert reset pin before next read */
val &= ~CmdReset;
s->bChipCmdState = val;
}
static int rtl8139_RxBufferEmpty(RTL8139State *s)
{
int unread = MOD2(s->RxBufferSize + s->RxBufAddr - s->RxBufPtr, s->RxBufferSize);
if (unread != 0)
{
DPRINTF("receiver buffer data available 0x%04x\n", unread);
return 0;
}
DPRINTF("receiver buffer is empty\n");
return 1;
}
static uint32_t rtl8139_ChipCmd_read(RTL8139State *s)
{
uint32_t ret = s->bChipCmdState;
if (rtl8139_RxBufferEmpty(s))
ret |= RxBufEmpty;
DPRINTF("ChipCmd read val=0x%04x\n", ret);
return ret;
}
static void rtl8139_CpCmd_write(RTL8139State *s, uint32_t val)
{
val &= 0xffff;
DPRINTF("C+ command register write(w) val=0x%04x\n", val);
s->cplus_enabled = 1;
/* mask unwritable bits */
val = SET_MASKED(val, 0xff84, s->CpCmd);
s->CpCmd = val;
}
static uint32_t rtl8139_CpCmd_read(RTL8139State *s)
{
uint32_t ret = s->CpCmd;
DPRINTF("C+ command register read(w) val=0x%04x\n", ret);
return ret;
}
static void rtl8139_IntrMitigate_write(RTL8139State *s, uint32_t val)
{
DPRINTF("C+ IntrMitigate register write(w) val=0x%04x\n", val);
}
static uint32_t rtl8139_IntrMitigate_read(RTL8139State *s)
{
uint32_t ret = 0;
DPRINTF("C+ IntrMitigate register read(w) val=0x%04x\n", ret);
return ret;
}
static int rtl8139_config_writable(RTL8139State *s)
{
if ((s->Cfg9346 & Chip9346_op_mask) == Cfg9346_ConfigWrite)
{
return 1;
}
DPRINTF("Configuration registers are write-protected\n");
return 0;
}
static void rtl8139_BasicModeCtrl_write(RTL8139State *s, uint32_t val)
{
val &= 0xffff;
DPRINTF("BasicModeCtrl register write(w) val=0x%04x\n", val);
/* mask unwritable bits */
uint32_t mask = 0x4cff;
if (1 || !rtl8139_config_writable(s))
{
/* Speed setting and autonegotiation enable bits are read-only */
mask |= 0x3000;
/* Duplex mode setting is read-only */
mask |= 0x0100;
}
val = SET_MASKED(val, mask, s->BasicModeCtrl);
s->BasicModeCtrl = val;
}
static uint32_t rtl8139_BasicModeCtrl_read(RTL8139State *s)
{
uint32_t ret = s->BasicModeCtrl;
DPRINTF("BasicModeCtrl register read(w) val=0x%04x\n", ret);
return ret;
}
static void rtl8139_BasicModeStatus_write(RTL8139State *s, uint32_t val)
{
val &= 0xffff;
DPRINTF("BasicModeStatus register write(w) val=0x%04x\n", val);
/* mask unwritable bits */
val = SET_MASKED(val, 0xff3f, s->BasicModeStatus);
s->BasicModeStatus = val;
}
static uint32_t rtl8139_BasicModeStatus_read(RTL8139State *s)
{
uint32_t ret = s->BasicModeStatus;
DPRINTF("BasicModeStatus register read(w) val=0x%04x\n", ret);
return ret;
}
static void rtl8139_Cfg9346_write(RTL8139State *s, uint32_t val)
{
val &= 0xff;
DPRINTF("Cfg9346 write val=0x%02x\n", val);
/* mask unwritable bits */
val = SET_MASKED(val, 0x31, s->Cfg9346);
uint32_t opmode = val & 0xc0;
uint32_t eeprom_val = val & 0xf;
if (opmode == 0x80) {
/* eeprom access */
int eecs = (eeprom_val & 0x08)?1:0;
int eesk = (eeprom_val & 0x04)?1:0;
int eedi = (eeprom_val & 0x02)?1:0;
prom9346_set_wire(s, eecs, eesk, eedi);
} else if (opmode == 0x40) {
/* Reset. */
val = 0;
rtl8139_reset(&s->dev.qdev);
}
s->Cfg9346 = val;
}
static uint32_t rtl8139_Cfg9346_read(RTL8139State *s)
{
uint32_t ret = s->Cfg9346;
uint32_t opmode = ret & 0xc0;
if (opmode == 0x80)
{
/* eeprom access */
int eedo = prom9346_get_wire(s);
if (eedo)
{
ret |= 0x01;
}
else
{
ret &= ~0x01;
}
}
DPRINTF("Cfg9346 read val=0x%02x\n", ret);
return ret;
}
static void rtl8139_Config0_write(RTL8139State *s, uint32_t val)
{
val &= 0xff;
DPRINTF("Config0 write val=0x%02x\n", val);
if (!rtl8139_config_writable(s)) {
return;
}
/* mask unwritable bits */
val = SET_MASKED(val, 0xf8, s->Config0);
s->Config0 = val;
}
static uint32_t rtl8139_Config0_read(RTL8139State *s)
{
uint32_t ret = s->Config0;
DPRINTF("Config0 read val=0x%02x\n", ret);
return ret;
}
static void rtl8139_Config1_write(RTL8139State *s, uint32_t val)
{
val &= 0xff;
DPRINTF("Config1 write val=0x%02x\n", val);
if (!rtl8139_config_writable(s)) {
return;
}
/* mask unwritable bits */
val = SET_MASKED(val, 0xC, s->Config1);
s->Config1 = val;
}
static uint32_t rtl8139_Config1_read(RTL8139State *s)
{
uint32_t ret = s->Config1;
DPRINTF("Config1 read val=0x%02x\n", ret);
return ret;
}
static void rtl8139_Config3_write(RTL8139State *s, uint32_t val)
{
val &= 0xff;
DPRINTF("Config3 write val=0x%02x\n", val);
if (!rtl8139_config_writable(s)) {
return;
}
/* mask unwritable bits */
val = SET_MASKED(val, 0x8F, s->Config3);
s->Config3 = val;
}
static uint32_t rtl8139_Config3_read(RTL8139State *s)
{
uint32_t ret = s->Config3;
DPRINTF("Config3 read val=0x%02x\n", ret);
return ret;
}
static void rtl8139_Config4_write(RTL8139State *s, uint32_t val)
{
val &= 0xff;
DPRINTF("Config4 write val=0x%02x\n", val);
if (!rtl8139_config_writable(s)) {
return;
}
/* mask unwritable bits */
val = SET_MASKED(val, 0x0a, s->Config4);
s->Config4 = val;
}
static uint32_t rtl8139_Config4_read(RTL8139State *s)
{
uint32_t ret = s->Config4;
DPRINTF("Config4 read val=0x%02x\n", ret);
return ret;
}
static void rtl8139_Config5_write(RTL8139State *s, uint32_t val)
{
val &= 0xff;
DPRINTF("Config5 write val=0x%02x\n", val);
/* mask unwritable bits */
val = SET_MASKED(val, 0x80, s->Config5);
s->Config5 = val;
}
static uint32_t rtl8139_Config5_read(RTL8139State *s)
{
uint32_t ret = s->Config5;
DPRINTF("Config5 read val=0x%02x\n", ret);
return ret;
}
static void rtl8139_TxConfig_write(RTL8139State *s, uint32_t val)
{
if (!rtl8139_transmitter_enabled(s))
{
DPRINTF("transmitter disabled; no TxConfig write val=0x%08x\n", val);
return;
}
DPRINTF("TxConfig write val=0x%08x\n", val);
val = SET_MASKED(val, TxVersionMask | 0x8070f80f, s->TxConfig);
s->TxConfig = val;
}
static void rtl8139_TxConfig_writeb(RTL8139State *s, uint32_t val)
{
DPRINTF("RTL8139C TxConfig via write(b) val=0x%02x\n", val);
uint32_t tc = s->TxConfig;
tc &= 0xFFFFFF00;
tc |= (val & 0x000000FF);
rtl8139_TxConfig_write(s, tc);
}
static uint32_t rtl8139_TxConfig_read(RTL8139State *s)
{
uint32_t ret = s->TxConfig;
DPRINTF("TxConfig read val=0x%04x\n", ret);
return ret;
}
static void rtl8139_RxConfig_write(RTL8139State *s, uint32_t val)
{
DPRINTF("RxConfig write val=0x%08x\n", val);
/* mask unwritable bits */
val = SET_MASKED(val, 0xf0fc0040, s->RxConfig);
s->RxConfig = val;
/* reset buffer size and read/write pointers */
rtl8139_reset_rxring(s, 8192 << ((s->RxConfig >> 11) & 0x3));
DPRINTF("RxConfig write reset buffer size to %d\n", s->RxBufferSize);
}
static uint32_t rtl8139_RxConfig_read(RTL8139State *s)
{
uint32_t ret = s->RxConfig;
DPRINTF("RxConfig read val=0x%08x\n", ret);
return ret;
}
static void rtl8139_transfer_frame(RTL8139State *s, uint8_t *buf, int size,
int do_interrupt, const uint8_t *dot1q_buf)
{
struct iovec *iov = NULL;
if (!size)
{
DPRINTF("+++ empty ethernet frame\n");
return;
}
if (dot1q_buf && size >= ETHER_ADDR_LEN * 2) {
iov = (struct iovec[3]) {
{ .iov_base = buf, .iov_len = ETHER_ADDR_LEN * 2 },
{ .iov_base = (void *) dot1q_buf, .iov_len = VLAN_HLEN },
{ .iov_base = buf + ETHER_ADDR_LEN * 2,
.iov_len = size - ETHER_ADDR_LEN * 2 },
};
}
if (TxLoopBack == (s->TxConfig & TxLoopBack))
{
size_t buf2_size;
uint8_t *buf2;
if (iov) {
buf2_size = iov_size(iov, 3);
buf2 = g_malloc(buf2_size);
iov_to_buf(iov, 3, 0, buf2, buf2_size);
buf = buf2;
}
DPRINTF("+++ transmit loopback mode\n");
rtl8139_do_receive(qemu_get_queue(s->nic), buf, size, do_interrupt);
if (iov) {
g_free(buf2);
}
}
else
{
if (iov) {
qemu_sendv_packet(qemu_get_queue(s->nic), iov, 3);
} else {
qemu_send_packet(qemu_get_queue(s->nic), buf, size);
}
}
}
static int rtl8139_transmit_one(RTL8139State *s, int descriptor)
{
if (!rtl8139_transmitter_enabled(s))
{
DPRINTF("+++ cannot transmit from descriptor %d: transmitter "
"disabled\n", descriptor);
return 0;
}
if (s->TxStatus[descriptor] & TxHostOwns)
{
DPRINTF("+++ cannot transmit from descriptor %d: owned by host "
"(%08x)\n", descriptor, s->TxStatus[descriptor]);
return 0;
}
DPRINTF("+++ transmitting from descriptor %d\n", descriptor);
int txsize = s->TxStatus[descriptor] & 0x1fff;
uint8_t txbuffer[0x2000];
DPRINTF("+++ transmit reading %d bytes from host memory at 0x%08x\n",
txsize, s->TxAddr[descriptor]);
pci_dma_read(&s->dev, s->TxAddr[descriptor], txbuffer, txsize);
/* Mark descriptor as transferred */
s->TxStatus[descriptor] |= TxHostOwns;
s->TxStatus[descriptor] |= TxStatOK;
rtl8139_transfer_frame(s, txbuffer, txsize, 0, NULL);
DPRINTF("+++ transmitted %d bytes from descriptor %d\n", txsize,
descriptor);
/* update interrupt */
s->IntrStatus |= TxOK;
rtl8139_update_irq(s);
return 1;
}
/* structures and macros for task offloading */
typedef struct ip_header
{
uint8_t ip_ver_len; /* version and header length */
uint8_t ip_tos; /* type of service */
uint16_t ip_len; /* total length */
uint16_t ip_id; /* identification */
uint16_t ip_off; /* fragment offset field */
uint8_t ip_ttl; /* time to live */
uint8_t ip_p; /* protocol */
uint16_t ip_sum; /* checksum */
uint32_t ip_src,ip_dst; /* source and dest address */
} ip_header;
#define IP_HEADER_VERSION_4 4
#define IP_HEADER_VERSION(ip) ((ip->ip_ver_len >> 4)&0xf)
#define IP_HEADER_LENGTH(ip) (((ip->ip_ver_len)&0xf) << 2)
typedef struct tcp_header
{
uint16_t th_sport; /* source port */
uint16_t th_dport; /* destination port */
uint32_t th_seq; /* sequence number */
uint32_t th_ack; /* acknowledgement number */
uint16_t th_offset_flags; /* data offset, reserved 6 bits, TCP protocol flags */
uint16_t th_win; /* window */
uint16_t th_sum; /* checksum */
uint16_t th_urp; /* urgent pointer */
} tcp_header;
typedef struct udp_header
{
uint16_t uh_sport; /* source port */
uint16_t uh_dport; /* destination port */
uint16_t uh_ulen; /* udp length */
uint16_t uh_sum; /* udp checksum */
} udp_header;
typedef struct ip_pseudo_header
{
uint32_t ip_src;
uint32_t ip_dst;
uint8_t zeros;
uint8_t ip_proto;
uint16_t ip_payload;
} ip_pseudo_header;
#define IP_PROTO_TCP 6
#define IP_PROTO_UDP 17
#define TCP_HEADER_DATA_OFFSET(tcp) (((be16_to_cpu(tcp->th_offset_flags) >> 12)&0xf) << 2)
#define TCP_FLAGS_ONLY(flags) ((flags)&0x3f)
#define TCP_HEADER_FLAGS(tcp) TCP_FLAGS_ONLY(be16_to_cpu(tcp->th_offset_flags))
#define TCP_HEADER_CLEAR_FLAGS(tcp, off) ((tcp)->th_offset_flags &= cpu_to_be16(~TCP_FLAGS_ONLY(off)))
#define TCP_FLAG_FIN 0x01
#define TCP_FLAG_PUSH 0x08
/* produces ones' complement sum of data */
static uint16_t ones_complement_sum(uint8_t *data, size_t len)
{
uint32_t result = 0;
for (; len > 1; data+=2, len-=2)
{
result += *(uint16_t*)data;
}
/* add the remainder byte */
if (len)
{
uint8_t odd[2] = {*data, 0};
result += *(uint16_t*)odd;
}
while (result>>16)
result = (result & 0xffff) + (result >> 16);
return result;
}
static uint16_t ip_checksum(void *data, size_t len)
{
return ~ones_complement_sum((uint8_t*)data, len);
}
static int rtl8139_cplus_transmit_one(RTL8139State *s)
{
if (!rtl8139_transmitter_enabled(s))
{
DPRINTF("+++ C+ mode: transmitter disabled\n");
return 0;
}
if (!rtl8139_cp_transmitter_enabled(s))
{
DPRINTF("+++ C+ mode: C+ transmitter disabled\n");
return 0 ;
}
int descriptor = s->currCPlusTxDesc;
dma_addr_t cplus_tx_ring_desc = rtl8139_addr64(s->TxAddr[0], s->TxAddr[1]);
/* Normal priority ring */
cplus_tx_ring_desc += 16 * descriptor;
DPRINTF("+++ C+ mode reading TX descriptor %d from host memory at "
"%08x %08x = 0x"DMA_ADDR_FMT"\n", descriptor, s->TxAddr[1],
s->TxAddr[0], cplus_tx_ring_desc);
uint32_t val, txdw0,txdw1,txbufLO,txbufHI;
pci_dma_read(&s->dev, cplus_tx_ring_desc, (uint8_t *)&val, 4);
txdw0 = le32_to_cpu(val);
pci_dma_read(&s->dev, cplus_tx_ring_desc+4, (uint8_t *)&val, 4);
txdw1 = le32_to_cpu(val);
pci_dma_read(&s->dev, cplus_tx_ring_desc+8, (uint8_t *)&val, 4);
txbufLO = le32_to_cpu(val);
pci_dma_read(&s->dev, cplus_tx_ring_desc+12, (uint8_t *)&val, 4);
txbufHI = le32_to_cpu(val);
DPRINTF("+++ C+ mode TX descriptor %d %08x %08x %08x %08x\n", descriptor,
txdw0, txdw1, txbufLO, txbufHI);
/* w0 ownership flag */
#define CP_TX_OWN (1<<31)
/* w0 end of ring flag */
#define CP_TX_EOR (1<<30)
/* first segment of received packet flag */
#define CP_TX_FS (1<<29)
/* last segment of received packet flag */
#define CP_TX_LS (1<<28)
/* large send packet flag */
#define CP_TX_LGSEN (1<<27)
/* large send MSS mask, bits 16...25 */
#define CP_TC_LGSEN_MSS_MASK ((1 << 12) - 1)
/* IP checksum offload flag */
#define CP_TX_IPCS (1<<18)
/* UDP checksum offload flag */
#define CP_TX_UDPCS (1<<17)
/* TCP checksum offload flag */
#define CP_TX_TCPCS (1<<16)
/* w0 bits 0...15 : buffer size */
#define CP_TX_BUFFER_SIZE (1<<16)
#define CP_TX_BUFFER_SIZE_MASK (CP_TX_BUFFER_SIZE - 1)
/* w1 add tag flag */
#define CP_TX_TAGC (1<<17)
/* w1 bits 0...15 : VLAN tag (big endian) */
#define CP_TX_VLAN_TAG_MASK ((1<<16) - 1)
/* w2 low 32bit of Rx buffer ptr */
/* w3 high 32bit of Rx buffer ptr */
/* set after transmission */
/* FIFO underrun flag */
#define CP_TX_STATUS_UNF (1<<25)
/* transmit error summary flag, valid if set any of three below */
#define CP_TX_STATUS_TES (1<<23)
/* out-of-window collision flag */
#define CP_TX_STATUS_OWC (1<<22)
/* link failure flag */
#define CP_TX_STATUS_LNKF (1<<21)
/* excessive collisions flag */
#define CP_TX_STATUS_EXC (1<<20)
if (!(txdw0 & CP_TX_OWN))
{
DPRINTF("C+ Tx mode : descriptor %d is owned by host\n", descriptor);
return 0 ;
}
DPRINTF("+++ C+ Tx mode : transmitting from descriptor %d\n", descriptor);
if (txdw0 & CP_TX_FS)
{
DPRINTF("+++ C+ Tx mode : descriptor %d is first segment "
"descriptor\n", descriptor);
/* reset internal buffer offset */
s->cplus_txbuffer_offset = 0;
}
int txsize = txdw0 & CP_TX_BUFFER_SIZE_MASK;
dma_addr_t tx_addr = rtl8139_addr64(txbufLO, txbufHI);
/* make sure we have enough space to assemble the packet */
if (!s->cplus_txbuffer)
{
s->cplus_txbuffer_len = CP_TX_BUFFER_SIZE;
s->cplus_txbuffer = g_malloc(s->cplus_txbuffer_len);
s->cplus_txbuffer_offset = 0;
DPRINTF("+++ C+ mode transmission buffer allocated space %d\n",
s->cplus_txbuffer_len);
}
if (s->cplus_txbuffer_offset + txsize >= s->cplus_txbuffer_len)
{
/* The spec didn't tell the maximum size, stick to CP_TX_BUFFER_SIZE */
txsize = s->cplus_txbuffer_len - s->cplus_txbuffer_offset;
DPRINTF("+++ C+ mode transmission buffer overrun, truncated descriptor"
"length to %d\n", txsize);
}
if (!s->cplus_txbuffer)
{
/* out of memory */
DPRINTF("+++ C+ mode transmiter failed to reallocate %d bytes\n",
s->cplus_txbuffer_len);
/* update tally counter */
++s->tally_counters.TxERR;
++s->tally_counters.TxAbt;
return 0;
}
/* append more data to the packet */
DPRINTF("+++ C+ mode transmit reading %d bytes from host memory at "
DMA_ADDR_FMT" to offset %d\n", txsize, tx_addr,
s->cplus_txbuffer_offset);
pci_dma_read(&s->dev, tx_addr,
s->cplus_txbuffer + s->cplus_txbuffer_offset, txsize);
s->cplus_txbuffer_offset += txsize;
/* seek to next Rx descriptor */
if (txdw0 & CP_TX_EOR)
{
s->currCPlusTxDesc = 0;
}
else
{
++s->currCPlusTxDesc;
if (s->currCPlusTxDesc >= 64)
s->currCPlusTxDesc = 0;
}
/* transfer ownership to target */
txdw0 &= ~CP_RX_OWN;
/* reset error indicator bits */
txdw0 &= ~CP_TX_STATUS_UNF;
txdw0 &= ~CP_TX_STATUS_TES;
txdw0 &= ~CP_TX_STATUS_OWC;
txdw0 &= ~CP_TX_STATUS_LNKF;
txdw0 &= ~CP_TX_STATUS_EXC;
/* update ring data */
val = cpu_to_le32(txdw0);
pci_dma_write(&s->dev, cplus_tx_ring_desc, (uint8_t *)&val, 4);
/* Now decide if descriptor being processed is holding the last segment of packet */
if (txdw0 & CP_TX_LS)
{
uint8_t dot1q_buffer_space[VLAN_HLEN];
uint16_t *dot1q_buffer;
DPRINTF("+++ C+ Tx mode : descriptor %d is last segment descriptor\n",
descriptor);
/* can transfer fully assembled packet */
uint8_t *saved_buffer = s->cplus_txbuffer;
int saved_size = s->cplus_txbuffer_offset;
int saved_buffer_len = s->cplus_txbuffer_len;
/* create vlan tag */
if (txdw1 & CP_TX_TAGC) {
/* the vlan tag is in BE byte order in the descriptor
* BE + le_to_cpu() + ~swap()~ = cpu */
DPRINTF("+++ C+ Tx mode : inserting vlan tag with ""tci: %u\n",
bswap16(txdw1 & CP_TX_VLAN_TAG_MASK));
dot1q_buffer = (uint16_t *) dot1q_buffer_space;
dot1q_buffer[0] = cpu_to_be16(ETH_P_8021Q);
/* BE + le_to_cpu() + ~cpu_to_le()~ = BE */
dot1q_buffer[1] = cpu_to_le16(txdw1 & CP_TX_VLAN_TAG_MASK);
} else {
dot1q_buffer = NULL;
}
/* reset the card space to protect from recursive call */
s->cplus_txbuffer = NULL;
s->cplus_txbuffer_offset = 0;
s->cplus_txbuffer_len = 0;
if (txdw0 & (CP_TX_IPCS | CP_TX_UDPCS | CP_TX_TCPCS | CP_TX_LGSEN))
{
DPRINTF("+++ C+ mode offloaded task checksum\n");
/* ip packet header */
ip_header *ip = NULL;
int hlen = 0;
uint8_t ip_protocol = 0;
uint16_t ip_data_len = 0;
uint8_t *eth_payload_data = NULL;
size_t eth_payload_len = 0;
int proto = be16_to_cpu(*(uint16_t *)(saved_buffer + 12));
if (proto == ETH_P_IP)
{
DPRINTF("+++ C+ mode has IP packet\n");
/* not aligned */
eth_payload_data = saved_buffer + ETH_HLEN;
eth_payload_len = saved_size - ETH_HLEN;
ip = (ip_header*)eth_payload_data;
if (IP_HEADER_VERSION(ip) != IP_HEADER_VERSION_4) {
DPRINTF("+++ C+ mode packet has bad IP version %d "
"expected %d\n", IP_HEADER_VERSION(ip),
IP_HEADER_VERSION_4);
ip = NULL;
} else {
hlen = IP_HEADER_LENGTH(ip);
ip_protocol = ip->ip_p;
ip_data_len = be16_to_cpu(ip->ip_len) - hlen;
}
}
if (ip)
{
if (txdw0 & CP_TX_IPCS)
{
DPRINTF("+++ C+ mode need IP checksum\n");
if (hlen<sizeof(ip_header) || hlen>eth_payload_len) {/* min header length */
/* bad packet header len */
/* or packet too short */
}
else
{
ip->ip_sum = 0;
ip->ip_sum = ip_checksum(ip, hlen);
DPRINTF("+++ C+ mode IP header len=%d checksum=%04x\n",
hlen, ip->ip_sum);
}
}
if ((txdw0 & CP_TX_LGSEN) && ip_protocol == IP_PROTO_TCP)
{
int large_send_mss = (txdw0 >> 16) & CP_TC_LGSEN_MSS_MASK;
DPRINTF("+++ C+ mode offloaded task TSO MTU=%d IP data %d "
"frame data %d specified MSS=%d\n", ETH_MTU,
ip_data_len, saved_size - ETH_HLEN, large_send_mss);
int tcp_send_offset = 0;
int send_count = 0;
/* maximum IP header length is 60 bytes */
uint8_t saved_ip_header[60];
/* save IP header template; data area is used in tcp checksum calculation */
memcpy(saved_ip_header, eth_payload_data, hlen);
/* a placeholder for checksum calculation routine in tcp case */
uint8_t *data_to_checksum = eth_payload_data + hlen - 12;
// size_t data_to_checksum_len = eth_payload_len - hlen + 12;
/* pointer to TCP header */
tcp_header *p_tcp_hdr = (tcp_header*)(eth_payload_data + hlen);
int tcp_hlen = TCP_HEADER_DATA_OFFSET(p_tcp_hdr);
/* ETH_MTU = ip header len + tcp header len + payload */
int tcp_data_len = ip_data_len - tcp_hlen;
int tcp_chunk_size = ETH_MTU - hlen - tcp_hlen;
DPRINTF("+++ C+ mode TSO IP data len %d TCP hlen %d TCP "
"data len %d TCP chunk size %d\n", ip_data_len,
tcp_hlen, tcp_data_len, tcp_chunk_size);
/* note the cycle below overwrites IP header data,
but restores it from saved_ip_header before sending packet */
int is_last_frame = 0;
for (tcp_send_offset = 0; tcp_send_offset < tcp_data_len; tcp_send_offset += tcp_chunk_size)
{
uint16_t chunk_size = tcp_chunk_size;
/* check if this is the last frame */
if (tcp_send_offset + tcp_chunk_size >= tcp_data_len)
{
is_last_frame = 1;
chunk_size = tcp_data_len - tcp_send_offset;
}
DPRINTF("+++ C+ mode TSO TCP seqno %08x\n",
be32_to_cpu(p_tcp_hdr->th_seq));
/* add 4 TCP pseudoheader fields */
/* copy IP source and destination fields */
memcpy(data_to_checksum, saved_ip_header + 12, 8);
DPRINTF("+++ C+ mode TSO calculating TCP checksum for "
"packet with %d bytes data\n", tcp_hlen +
chunk_size);
if (tcp_send_offset)
{
memcpy((uint8_t*)p_tcp_hdr + tcp_hlen, (uint8_t*)p_tcp_hdr + tcp_hlen + tcp_send_offset, chunk_size);
}
/* keep PUSH and FIN flags only for the last frame */
if (!is_last_frame)
{
TCP_HEADER_CLEAR_FLAGS(p_tcp_hdr, TCP_FLAG_PUSH|TCP_FLAG_FIN);
}
/* recalculate TCP checksum */
ip_pseudo_header *p_tcpip_hdr = (ip_pseudo_header *)data_to_checksum;
p_tcpip_hdr->zeros = 0;
p_tcpip_hdr->ip_proto = IP_PROTO_TCP;
p_tcpip_hdr->ip_payload = cpu_to_be16(tcp_hlen + chunk_size);
p_tcp_hdr->th_sum = 0;
int tcp_checksum = ip_checksum(data_to_checksum, tcp_hlen + chunk_size + 12);
DPRINTF("+++ C+ mode TSO TCP checksum %04x\n",
tcp_checksum);
p_tcp_hdr->th_sum = tcp_checksum;
/* restore IP header */
memcpy(eth_payload_data, saved_ip_header, hlen);
/* set IP data length and recalculate IP checksum */
ip->ip_len = cpu_to_be16(hlen + tcp_hlen + chunk_size);
/* increment IP id for subsequent frames */
ip->ip_id = cpu_to_be16(tcp_send_offset/tcp_chunk_size + be16_to_cpu(ip->ip_id));
ip->ip_sum = 0;
ip->ip_sum = ip_checksum(eth_payload_data, hlen);
DPRINTF("+++ C+ mode TSO IP header len=%d "
"checksum=%04x\n", hlen, ip->ip_sum);
int tso_send_size = ETH_HLEN + hlen + tcp_hlen + chunk_size;
DPRINTF("+++ C+ mode TSO transferring packet size "
"%d\n", tso_send_size);
rtl8139_transfer_frame(s, saved_buffer, tso_send_size,
0, (uint8_t *) dot1q_buffer);
/* add transferred count to TCP sequence number */
p_tcp_hdr->th_seq = cpu_to_be32(chunk_size + be32_to_cpu(p_tcp_hdr->th_seq));
++send_count;
}
/* Stop sending this frame */
saved_size = 0;
}
else if (txdw0 & (CP_TX_TCPCS|CP_TX_UDPCS))
{
DPRINTF("+++ C+ mode need TCP or UDP checksum\n");
/* maximum IP header length is 60 bytes */
uint8_t saved_ip_header[60];
memcpy(saved_ip_header, eth_payload_data, hlen);
uint8_t *data_to_checksum = eth_payload_data + hlen - 12;
// size_t data_to_checksum_len = eth_payload_len - hlen + 12;
/* add 4 TCP pseudoheader fields */
/* copy IP source and destination fields */
memcpy(data_to_checksum, saved_ip_header + 12, 8);
if ((txdw0 & CP_TX_TCPCS) && ip_protocol == IP_PROTO_TCP)
{
DPRINTF("+++ C+ mode calculating TCP checksum for "
"packet with %d bytes data\n", ip_data_len);
ip_pseudo_header *p_tcpip_hdr = (ip_pseudo_header *)data_to_checksum;
p_tcpip_hdr->zeros = 0;
p_tcpip_hdr->ip_proto = IP_PROTO_TCP;
p_tcpip_hdr->ip_payload = cpu_to_be16(ip_data_len);
tcp_header* p_tcp_hdr = (tcp_header *) (data_to_checksum+12);
p_tcp_hdr->th_sum = 0;
int tcp_checksum = ip_checksum(data_to_checksum, ip_data_len + 12);
DPRINTF("+++ C+ mode TCP checksum %04x\n",
tcp_checksum);
p_tcp_hdr->th_sum = tcp_checksum;
}
else if ((txdw0 & CP_TX_UDPCS) && ip_protocol == IP_PROTO_UDP)
{
DPRINTF("+++ C+ mode calculating UDP checksum for "
"packet with %d bytes data\n", ip_data_len);
ip_pseudo_header *p_udpip_hdr = (ip_pseudo_header *)data_to_checksum;
p_udpip_hdr->zeros = 0;
p_udpip_hdr->ip_proto = IP_PROTO_UDP;
p_udpip_hdr->ip_payload = cpu_to_be16(ip_data_len);
udp_header *p_udp_hdr = (udp_header *) (data_to_checksum+12);
p_udp_hdr->uh_sum = 0;
int udp_checksum = ip_checksum(data_to_checksum, ip_data_len + 12);
DPRINTF("+++ C+ mode UDP checksum %04x\n",
udp_checksum);
p_udp_hdr->uh_sum = udp_checksum;
}
/* restore IP header */
memcpy(eth_payload_data, saved_ip_header, hlen);
}
}
}
/* update tally counter */
++s->tally_counters.TxOk;
DPRINTF("+++ C+ mode transmitting %d bytes packet\n", saved_size);
rtl8139_transfer_frame(s, saved_buffer, saved_size, 1,
(uint8_t *) dot1q_buffer);
/* restore card space if there was no recursion and reset offset */
if (!s->cplus_txbuffer)
{
s->cplus_txbuffer = saved_buffer;
s->cplus_txbuffer_len = saved_buffer_len;
s->cplus_txbuffer_offset = 0;
}
else
{
g_free(saved_buffer);
}
}
else
{
DPRINTF("+++ C+ mode transmission continue to next descriptor\n");
}
return 1;
}
static void rtl8139_cplus_transmit(RTL8139State *s)
{
int txcount = 0;
while (rtl8139_cplus_transmit_one(s))
{
++txcount;
}
/* Mark transfer completed */
if (!txcount)
{
DPRINTF("C+ mode : transmitter queue stalled, current TxDesc = %d\n",
s->currCPlusTxDesc);
}
else
{
/* update interrupt status */
s->IntrStatus |= TxOK;
rtl8139_update_irq(s);
}
}
static void rtl8139_transmit(RTL8139State *s)
{
int descriptor = s->currTxDesc, txcount = 0;
/*while*/
if (rtl8139_transmit_one(s, descriptor))
{
++s->currTxDesc;
s->currTxDesc %= 4;
++txcount;
}
/* Mark transfer completed */
if (!txcount)
{
DPRINTF("transmitter queue stalled, current TxDesc = %d\n",
s->currTxDesc);
}
}
static void rtl8139_TxStatus_write(RTL8139State *s, uint32_t txRegOffset, uint32_t val)
{
int descriptor = txRegOffset/4;
/* handle C+ transmit mode register configuration */
if (s->cplus_enabled)
{
DPRINTF("RTL8139C+ DTCCR write offset=0x%x val=0x%08x "
"descriptor=%d\n", txRegOffset, val, descriptor);
/* handle Dump Tally Counters command */
s->TxStatus[descriptor] = val;
if (descriptor == 0 && (val & 0x8))
{
hwaddr tc_addr = rtl8139_addr64(s->TxStatus[0] & ~0x3f, s->TxStatus[1]);
/* dump tally counters to specified memory location */
RTL8139TallyCounters_dma_write(s, tc_addr);
/* mark dump completed */
s->TxStatus[0] &= ~0x8;
}
return;
}
DPRINTF("TxStatus write offset=0x%x val=0x%08x descriptor=%d\n",
txRegOffset, val, descriptor);
/* mask only reserved bits */
val &= ~0xff00c000; /* these bits are reset on write */
val = SET_MASKED(val, 0x00c00000, s->TxStatus[descriptor]);
s->TxStatus[descriptor] = val;
/* attempt to start transmission */
rtl8139_transmit(s);
}
static uint32_t rtl8139_TxStatus_TxAddr_read(RTL8139State *s, uint32_t regs[],
uint32_t base, uint8_t addr,
int size)
{
uint32_t reg = (addr - base) / 4;
uint32_t offset = addr & 0x3;
uint32_t ret = 0;
if (addr & (size - 1)) {
DPRINTF("not implemented read for TxStatus/TxAddr "
"addr=0x%x size=0x%x\n", addr, size);
return ret;
}
switch (size) {
case 1: /* fall through */
case 2: /* fall through */
case 4:
ret = (regs[reg] >> offset * 8) & (((uint64_t)1 << (size * 8)) - 1);
DPRINTF("TxStatus/TxAddr[%d] read addr=0x%x size=0x%x val=0x%08x\n",
reg, addr, size, ret);
break;
default:
DPRINTF("unsupported size 0x%x of TxStatus/TxAddr reading\n", size);
break;
}
return ret;
}
static uint16_t rtl8139_TSAD_read(RTL8139State *s)
{
uint16_t ret = 0;
/* Simulate TSAD, it is read only anyway */
ret = ((s->TxStatus[3] & TxStatOK )?TSAD_TOK3:0)
|((s->TxStatus[2] & TxStatOK )?TSAD_TOK2:0)
|((s->TxStatus[1] & TxStatOK )?TSAD_TOK1:0)
|((s->TxStatus[0] & TxStatOK )?TSAD_TOK0:0)
|((s->TxStatus[3] & TxUnderrun)?TSAD_TUN3:0)
|((s->TxStatus[2] & TxUnderrun)?TSAD_TUN2:0)
|((s->TxStatus[1] & TxUnderrun)?TSAD_TUN1:0)
|((s->TxStatus[0] & TxUnderrun)?TSAD_TUN0:0)
|((s->TxStatus[3] & TxAborted )?TSAD_TABT3:0)
|((s->TxStatus[2] & TxAborted )?TSAD_TABT2:0)
|((s->TxStatus[1] & TxAborted )?TSAD_TABT1:0)
|((s->TxStatus[0] & TxAborted )?TSAD_TABT0:0)
|((s->TxStatus[3] & TxHostOwns )?TSAD_OWN3:0)
|((s->TxStatus[2] & TxHostOwns )?TSAD_OWN2:0)
|((s->TxStatus[1] & TxHostOwns )?TSAD_OWN1:0)
|((s->TxStatus[0] & TxHostOwns )?TSAD_OWN0:0) ;
DPRINTF("TSAD read val=0x%04x\n", ret);
return ret;
}
static uint16_t rtl8139_CSCR_read(RTL8139State *s)
{
uint16_t ret = s->CSCR;
DPRINTF("CSCR read val=0x%04x\n", ret);
return ret;
}
static void rtl8139_TxAddr_write(RTL8139State *s, uint32_t txAddrOffset, uint32_t val)
{
DPRINTF("TxAddr write offset=0x%x val=0x%08x\n", txAddrOffset, val);
s->TxAddr[txAddrOffset/4] = val;
}
static uint32_t rtl8139_TxAddr_read(RTL8139State *s, uint32_t txAddrOffset)
{
uint32_t ret = s->TxAddr[txAddrOffset/4];
DPRINTF("TxAddr read offset=0x%x val=0x%08x\n", txAddrOffset, ret);
return ret;
}
static void rtl8139_RxBufPtr_write(RTL8139State *s, uint32_t val)
{
DPRINTF("RxBufPtr write val=0x%04x\n", val);
/* this value is off by 16 */
s->RxBufPtr = MOD2(val + 0x10, s->RxBufferSize);
/* more buffer space may be available so try to receive */
qemu_flush_queued_packets(qemu_get_queue(s->nic));
DPRINTF(" CAPR write: rx buffer length %d head 0x%04x read 0x%04x\n",
s->RxBufferSize, s->RxBufAddr, s->RxBufPtr);
}
static uint32_t rtl8139_RxBufPtr_read(RTL8139State *s)
{
/* this value is off by 16 */
uint32_t ret = s->RxBufPtr - 0x10;
DPRINTF("RxBufPtr read val=0x%04x\n", ret);
return ret;
}
static uint32_t rtl8139_RxBufAddr_read(RTL8139State *s)
{
/* this value is NOT off by 16 */
uint32_t ret = s->RxBufAddr;
DPRINTF("RxBufAddr read val=0x%04x\n", ret);
return ret;
}
static void rtl8139_RxBuf_write(RTL8139State *s, uint32_t val)
{
DPRINTF("RxBuf write val=0x%08x\n", val);
s->RxBuf = val;
/* may need to reset rxring here */
}
static uint32_t rtl8139_RxBuf_read(RTL8139State *s)
{
uint32_t ret = s->RxBuf;
DPRINTF("RxBuf read val=0x%08x\n", ret);
return ret;
}
static void rtl8139_IntrMask_write(RTL8139State *s, uint32_t val)
{
DPRINTF("IntrMask write(w) val=0x%04x\n", val);
/* mask unwritable bits */
val = SET_MASKED(val, 0x1e00, s->IntrMask);
s->IntrMask = val;
rtl8139_set_next_tctr_time(s, qemu_get_clock_ns(vm_clock));
rtl8139_update_irq(s);
}
static uint32_t rtl8139_IntrMask_read(RTL8139State *s)
{
uint32_t ret = s->IntrMask;
DPRINTF("IntrMask read(w) val=0x%04x\n", ret);
return ret;
}
static void rtl8139_IntrStatus_write(RTL8139State *s, uint32_t val)
{
DPRINTF("IntrStatus write(w) val=0x%04x\n", val);
#if 0
/* writing to ISR has no effect */
return;
#else
uint16_t newStatus = s->IntrStatus & ~val;
/* mask unwritable bits */
newStatus = SET_MASKED(newStatus, 0x1e00, s->IntrStatus);
/* writing 1 to interrupt status register bit clears it */
s->IntrStatus = 0;
rtl8139_update_irq(s);
s->IntrStatus = newStatus;
/*
* Computing if we miss an interrupt here is not that correct but
* considered that we should have had already an interrupt
* and probably emulated is slower is better to assume this resetting was
* done before testing on previous rtl8139_update_irq lead to IRQ losing
*/
rtl8139_set_next_tctr_time(s, qemu_get_clock_ns(vm_clock));
rtl8139_update_irq(s);
#endif
}
static uint32_t rtl8139_IntrStatus_read(RTL8139State *s)
{
rtl8139_set_next_tctr_time(s, qemu_get_clock_ns(vm_clock));
uint32_t ret = s->IntrStatus;
DPRINTF("IntrStatus read(w) val=0x%04x\n", ret);
#if 0
/* reading ISR clears all interrupts */
s->IntrStatus = 0;
rtl8139_update_irq(s);
#endif
return ret;
}
static void rtl8139_MultiIntr_write(RTL8139State *s, uint32_t val)
{
DPRINTF("MultiIntr write(w) val=0x%04x\n", val);
/* mask unwritable bits */
val = SET_MASKED(val, 0xf000, s->MultiIntr);
s->MultiIntr = val;
}
static uint32_t rtl8139_MultiIntr_read(RTL8139State *s)
{
uint32_t ret = s->MultiIntr;
DPRINTF("MultiIntr read(w) val=0x%04x\n", ret);
return ret;
}
static void rtl8139_io_writeb(void *opaque, uint8_t addr, uint32_t val)
{
RTL8139State *s = opaque;
switch (addr)
{
case MAC0 ... MAC0+5:
s->phys[addr - MAC0] = val;
break;
case MAC0+6 ... MAC0+7:
/* reserved */
break;
case MAR0 ... MAR0+7:
s->mult[addr - MAR0] = val;
break;
case ChipCmd:
rtl8139_ChipCmd_write(s, val);
break;
case Cfg9346:
rtl8139_Cfg9346_write(s, val);
break;
case TxConfig: /* windows driver sometimes writes using byte-lenth call */
rtl8139_TxConfig_writeb(s, val);
break;
case Config0:
rtl8139_Config0_write(s, val);
break;
case Config1:
rtl8139_Config1_write(s, val);
break;
case Config3:
rtl8139_Config3_write(s, val);
break;
case Config4:
rtl8139_Config4_write(s, val);
break;
case Config5:
rtl8139_Config5_write(s, val);
break;
case MediaStatus:
/* ignore */
DPRINTF("not implemented write(b) to MediaStatus val=0x%02x\n",
val);
break;
case HltClk:
DPRINTF("HltClk write val=0x%08x\n", val);
if (val == 'R')
{
s->clock_enabled = 1;
}
else if (val == 'H')
{
s->clock_enabled = 0;
}
break;
case TxThresh:
DPRINTF("C+ TxThresh write(b) val=0x%02x\n", val);
s->TxThresh = val;
break;
case TxPoll:
DPRINTF("C+ TxPoll write(b) val=0x%02x\n", val);
if (val & (1 << 7))
{
DPRINTF("C+ TxPoll high priority transmission (not "
"implemented)\n");
//rtl8139_cplus_transmit(s);
}
if (val & (1 << 6))
{
DPRINTF("C+ TxPoll normal priority transmission\n");
rtl8139_cplus_transmit(s);
}
break;
default:
DPRINTF("not implemented write(b) addr=0x%x val=0x%02x\n", addr,
val);
break;
}
}
static void rtl8139_io_writew(void *opaque, uint8_t addr, uint32_t val)
{
RTL8139State *s = opaque;
switch (addr)
{
case IntrMask:
rtl8139_IntrMask_write(s, val);
break;
case IntrStatus:
rtl8139_IntrStatus_write(s, val);
break;
case MultiIntr:
rtl8139_MultiIntr_write(s, val);
break;
case RxBufPtr:
rtl8139_RxBufPtr_write(s, val);
break;
case BasicModeCtrl:
rtl8139_BasicModeCtrl_write(s, val);
break;
case BasicModeStatus:
rtl8139_BasicModeStatus_write(s, val);
break;
case NWayAdvert:
DPRINTF("NWayAdvert write(w) val=0x%04x\n", val);
s->NWayAdvert = val;
break;
case NWayLPAR:
DPRINTF("forbidden NWayLPAR write(w) val=0x%04x\n", val);
break;
case NWayExpansion:
DPRINTF("NWayExpansion write(w) val=0x%04x\n", val);
s->NWayExpansion = val;
break;
case CpCmd:
rtl8139_CpCmd_write(s, val);
break;
case IntrMitigate:
rtl8139_IntrMitigate_write(s, val);
break;
default:
DPRINTF("ioport write(w) addr=0x%x val=0x%04x via write(b)\n",
addr, val);
rtl8139_io_writeb(opaque, addr, val & 0xff);
rtl8139_io_writeb(opaque, addr + 1, (val >> 8) & 0xff);
break;
}
}
static void rtl8139_set_next_tctr_time(RTL8139State *s, int64_t current_time)
{
int64_t pci_time, next_time;
uint32_t low_pci;
DPRINTF("entered rtl8139_set_next_tctr_time\n");
if (s->TimerExpire && current_time >= s->TimerExpire) {
s->IntrStatus |= PCSTimeout;
rtl8139_update_irq(s);
}
/* Set QEMU timer only if needed that is
* - TimerInt <> 0 (we have a timer)
* - mask = 1 (we want an interrupt timer)
* - irq = 0 (irq is not already active)
* If any of above change we need to compute timer again
* Also we must check if timer is passed without QEMU timer
*/
s->TimerExpire = 0;
if (!s->TimerInt) {
return;
}
pci_time = muldiv64(current_time - s->TCTR_base, PCI_FREQUENCY,
get_ticks_per_sec());
low_pci = pci_time & 0xffffffff;
pci_time = pci_time - low_pci + s->TimerInt;
if (low_pci >= s->TimerInt) {
pci_time += 0x100000000LL;
}
next_time = s->TCTR_base + muldiv64(pci_time, get_ticks_per_sec(),
PCI_FREQUENCY);
s->TimerExpire = next_time;
if ((s->IntrMask & PCSTimeout) != 0 && (s->IntrStatus & PCSTimeout) == 0) {
qemu_mod_timer(s->timer, next_time);
}
}
static void rtl8139_io_writel(void *opaque, uint8_t addr, uint32_t val)
{
RTL8139State *s = opaque;
switch (addr)
{
case RxMissed:
DPRINTF("RxMissed clearing on write\n");
s->RxMissed = 0;
break;
case TxConfig:
rtl8139_TxConfig_write(s, val);
break;
case RxConfig:
rtl8139_RxConfig_write(s, val);
break;
case TxStatus0 ... TxStatus0+4*4-1:
rtl8139_TxStatus_write(s, addr-TxStatus0, val);
break;
case TxAddr0 ... TxAddr0+4*4-1:
rtl8139_TxAddr_write(s, addr-TxAddr0, val);
break;
case RxBuf:
rtl8139_RxBuf_write(s, val);
break;
case RxRingAddrLO:
DPRINTF("C+ RxRing low bits write val=0x%08x\n", val);
s->RxRingAddrLO = val;
break;
case RxRingAddrHI:
DPRINTF("C+ RxRing high bits write val=0x%08x\n", val);
s->RxRingAddrHI = val;
break;
case Timer:
DPRINTF("TCTR Timer reset on write\n");
s->TCTR_base = qemu_get_clock_ns(vm_clock);
rtl8139_set_next_tctr_time(s, s->TCTR_base);
break;
case FlashReg:
DPRINTF("FlashReg TimerInt write val=0x%08x\n", val);
if (s->TimerInt != val) {
s->TimerInt = val;
rtl8139_set_next_tctr_time(s, qemu_get_clock_ns(vm_clock));
}
break;
default:
DPRINTF("ioport write(l) addr=0x%x val=0x%08x via write(b)\n",
addr, val);
rtl8139_io_writeb(opaque, addr, val & 0xff);
rtl8139_io_writeb(opaque, addr + 1, (val >> 8) & 0xff);
rtl8139_io_writeb(opaque, addr + 2, (val >> 16) & 0xff);
rtl8139_io_writeb(opaque, addr + 3, (val >> 24) & 0xff);
break;
}
}
static uint32_t rtl8139_io_readb(void *opaque, uint8_t addr)
{
RTL8139State *s = opaque;
int ret;
switch (addr)
{
case MAC0 ... MAC0+5:
ret = s->phys[addr - MAC0];
break;
case MAC0+6 ... MAC0+7:
ret = 0;
break;
case MAR0 ... MAR0+7:
ret = s->mult[addr - MAR0];
break;
case TxStatus0 ... TxStatus0+4*4-1:
ret = rtl8139_TxStatus_TxAddr_read(s, s->TxStatus, TxStatus0,
addr, 1);
break;
case ChipCmd:
ret = rtl8139_ChipCmd_read(s);
break;
case Cfg9346:
ret = rtl8139_Cfg9346_read(s);
break;
case Config0:
ret = rtl8139_Config0_read(s);
break;
case Config1:
ret = rtl8139_Config1_read(s);
break;
case Config3:
ret = rtl8139_Config3_read(s);
break;
case Config4:
ret = rtl8139_Config4_read(s);
break;
case Config5:
ret = rtl8139_Config5_read(s);
break;
case MediaStatus:
/* The LinkDown bit of MediaStatus is inverse with link status */
ret = 0xd0 | (~s->BasicModeStatus & 0x04);
DPRINTF("MediaStatus read 0x%x\n", ret);
break;
case HltClk:
ret = s->clock_enabled;
DPRINTF("HltClk read 0x%x\n", ret);
break;
case PCIRevisionID:
ret = RTL8139_PCI_REVID;
DPRINTF("PCI Revision ID read 0x%x\n", ret);
break;
case TxThresh:
ret = s->TxThresh;
DPRINTF("C+ TxThresh read(b) val=0x%02x\n", ret);
break;
case 0x43: /* Part of TxConfig register. Windows driver tries to read it */
ret = s->TxConfig >> 24;
DPRINTF("RTL8139C TxConfig at 0x43 read(b) val=0x%02x\n", ret);
break;
default:
DPRINTF("not implemented read(b) addr=0x%x\n", addr);
ret = 0;
break;
}
return ret;
}
static uint32_t rtl8139_io_readw(void *opaque, uint8_t addr)
{
RTL8139State *s = opaque;
uint32_t ret;
switch (addr)
{
case TxAddr0 ... TxAddr0+4*4-1:
ret = rtl8139_TxStatus_TxAddr_read(s, s->TxAddr, TxAddr0, addr, 2);
break;
case IntrMask:
ret = rtl8139_IntrMask_read(s);
break;
case IntrStatus:
ret = rtl8139_IntrStatus_read(s);
break;
case MultiIntr:
ret = rtl8139_MultiIntr_read(s);
break;
case RxBufPtr:
ret = rtl8139_RxBufPtr_read(s);
break;
case RxBufAddr:
ret = rtl8139_RxBufAddr_read(s);
break;
case BasicModeCtrl:
ret = rtl8139_BasicModeCtrl_read(s);
break;
case BasicModeStatus:
ret = rtl8139_BasicModeStatus_read(s);
break;
case NWayAdvert:
ret = s->NWayAdvert;
DPRINTF("NWayAdvert read(w) val=0x%04x\n", ret);
break;
case NWayLPAR:
ret = s->NWayLPAR;
DPRINTF("NWayLPAR read(w) val=0x%04x\n", ret);
break;
case NWayExpansion:
ret = s->NWayExpansion;
DPRINTF("NWayExpansion read(w) val=0x%04x\n", ret);
break;
case CpCmd:
ret = rtl8139_CpCmd_read(s);
break;
case IntrMitigate:
ret = rtl8139_IntrMitigate_read(s);
break;
case TxSummary:
ret = rtl8139_TSAD_read(s);
break;
case CSCR:
ret = rtl8139_CSCR_read(s);
break;
default:
DPRINTF("ioport read(w) addr=0x%x via read(b)\n", addr);
ret = rtl8139_io_readb(opaque, addr);
ret |= rtl8139_io_readb(opaque, addr + 1) << 8;
DPRINTF("ioport read(w) addr=0x%x val=0x%04x\n", addr, ret);
break;
}
return ret;
}
static uint32_t rtl8139_io_readl(void *opaque, uint8_t addr)
{
RTL8139State *s = opaque;
uint32_t ret;
switch (addr)
{
case RxMissed:
ret = s->RxMissed;
DPRINTF("RxMissed read val=0x%08x\n", ret);
break;
case TxConfig:
ret = rtl8139_TxConfig_read(s);
break;
case RxConfig:
ret = rtl8139_RxConfig_read(s);
break;
case TxStatus0 ... TxStatus0+4*4-1:
ret = rtl8139_TxStatus_TxAddr_read(s, s->TxStatus, TxStatus0,
addr, 4);
break;
case TxAddr0 ... TxAddr0+4*4-1:
ret = rtl8139_TxAddr_read(s, addr-TxAddr0);
break;
case RxBuf:
ret = rtl8139_RxBuf_read(s);
break;
case RxRingAddrLO:
ret = s->RxRingAddrLO;
DPRINTF("C+ RxRing low bits read val=0x%08x\n", ret);
break;
case RxRingAddrHI:
ret = s->RxRingAddrHI;
DPRINTF("C+ RxRing high bits read val=0x%08x\n", ret);
break;
case Timer:
ret = muldiv64(qemu_get_clock_ns(vm_clock) - s->TCTR_base,
PCI_FREQUENCY, get_ticks_per_sec());
DPRINTF("TCTR Timer read val=0x%08x\n", ret);
break;
case FlashReg:
ret = s->TimerInt;
DPRINTF("FlashReg TimerInt read val=0x%08x\n", ret);
break;
default:
DPRINTF("ioport read(l) addr=0x%x via read(b)\n", addr);
ret = rtl8139_io_readb(opaque, addr);
ret |= rtl8139_io_readb(opaque, addr + 1) << 8;
ret |= rtl8139_io_readb(opaque, addr + 2) << 16;
ret |= rtl8139_io_readb(opaque, addr + 3) << 24;
DPRINTF("read(l) addr=0x%x val=%08x\n", addr, ret);
break;
}
return ret;
}
/* */
static void rtl8139_mmio_writeb(void *opaque, hwaddr addr, uint32_t val)
{
rtl8139_io_writeb(opaque, addr & 0xFF, val);
}
static void rtl8139_mmio_writew(void *opaque, hwaddr addr, uint32_t val)
{
rtl8139_io_writew(opaque, addr & 0xFF, val);
}
static void rtl8139_mmio_writel(void *opaque, hwaddr addr, uint32_t val)
{
rtl8139_io_writel(opaque, addr & 0xFF, val);
}
static uint32_t rtl8139_mmio_readb(void *opaque, hwaddr addr)
{
return rtl8139_io_readb(opaque, addr & 0xFF);
}
static uint32_t rtl8139_mmio_readw(void *opaque, hwaddr addr)
{
uint32_t val = rtl8139_io_readw(opaque, addr & 0xFF);
return val;
}
static uint32_t rtl8139_mmio_readl(void *opaque, hwaddr addr)
{
uint32_t val = rtl8139_io_readl(opaque, addr & 0xFF);
return val;
}
static int rtl8139_post_load(void *opaque, int version_id)
{
RTL8139State* s = opaque;
rtl8139_set_next_tctr_time(s, qemu_get_clock_ns(vm_clock));
if (version_id < 4) {
s->cplus_enabled = s->CpCmd != 0;
}
/* nc.link_down can't be migrated, so infer link_down according
* to link status bit in BasicModeStatus */
qemu_get_queue(s->nic)->link_down = (s->BasicModeStatus & 0x04) == 0;
return 0;
}
static bool rtl8139_hotplug_ready_needed(void *opaque)
{
return qdev_machine_modified();
}
static const VMStateDescription vmstate_rtl8139_hotplug_ready ={
.name = "rtl8139/hotplug_ready",
.version_id = 1,
.minimum_version_id = 1,
.minimum_version_id_old = 1,
.fields = (VMStateField []) {
VMSTATE_END_OF_LIST()
}
};
static void rtl8139_pre_save(void *opaque)
{
RTL8139State* s = opaque;
int64_t current_time = qemu_get_clock_ns(vm_clock);
/* set IntrStatus correctly */
rtl8139_set_next_tctr_time(s, current_time);
s->TCTR = muldiv64(current_time - s->TCTR_base, PCI_FREQUENCY,
get_ticks_per_sec());
s->rtl8139_mmio_io_addr_dummy = 0;
}
static const VMStateDescription vmstate_rtl8139 = {
.name = "rtl8139",
.version_id = 4,
.minimum_version_id = 3,
.minimum_version_id_old = 3,
.post_load = rtl8139_post_load,
.pre_save = rtl8139_pre_save,
.fields = (VMStateField []) {
VMSTATE_PCI_DEVICE(dev, RTL8139State),
VMSTATE_PARTIAL_BUFFER(phys, RTL8139State, 6),
VMSTATE_BUFFER(mult, RTL8139State),
VMSTATE_UINT32_ARRAY(TxStatus, RTL8139State, 4),
VMSTATE_UINT32_ARRAY(TxAddr, RTL8139State, 4),
VMSTATE_UINT32(RxBuf, RTL8139State),
VMSTATE_UINT32(RxBufferSize, RTL8139State),
VMSTATE_UINT32(RxBufPtr, RTL8139State),
VMSTATE_UINT32(RxBufAddr, RTL8139State),
VMSTATE_UINT16(IntrStatus, RTL8139State),
VMSTATE_UINT16(IntrMask, RTL8139State),
VMSTATE_UINT32(TxConfig, RTL8139State),
VMSTATE_UINT32(RxConfig, RTL8139State),
VMSTATE_UINT32(RxMissed, RTL8139State),
VMSTATE_UINT16(CSCR, RTL8139State),
VMSTATE_UINT8(Cfg9346, RTL8139State),
VMSTATE_UINT8(Config0, RTL8139State),
VMSTATE_UINT8(Config1, RTL8139State),
VMSTATE_UINT8(Config3, RTL8139State),
VMSTATE_UINT8(Config4, RTL8139State),
VMSTATE_UINT8(Config5, RTL8139State),
VMSTATE_UINT8(clock_enabled, RTL8139State),
VMSTATE_UINT8(bChipCmdState, RTL8139State),
VMSTATE_UINT16(MultiIntr, RTL8139State),
VMSTATE_UINT16(BasicModeCtrl, RTL8139State),
VMSTATE_UINT16(BasicModeStatus, RTL8139State),
VMSTATE_UINT16(NWayAdvert, RTL8139State),
VMSTATE_UINT16(NWayLPAR, RTL8139State),
VMSTATE_UINT16(NWayExpansion, RTL8139State),
VMSTATE_UINT16(CpCmd, RTL8139State),
VMSTATE_UINT8(TxThresh, RTL8139State),
VMSTATE_UNUSED(4),
VMSTATE_MACADDR(conf.macaddr, RTL8139State),
VMSTATE_INT32(rtl8139_mmio_io_addr_dummy, RTL8139State),
VMSTATE_UINT32(currTxDesc, RTL8139State),
VMSTATE_UINT32(currCPlusRxDesc, RTL8139State),
VMSTATE_UINT32(currCPlusTxDesc, RTL8139State),
VMSTATE_UINT32(RxRingAddrLO, RTL8139State),
VMSTATE_UINT32(RxRingAddrHI, RTL8139State),
VMSTATE_UINT16_ARRAY(eeprom.contents, RTL8139State, EEPROM_9346_SIZE),
VMSTATE_INT32(eeprom.mode, RTL8139State),
VMSTATE_UINT32(eeprom.tick, RTL8139State),
VMSTATE_UINT8(eeprom.address, RTL8139State),
VMSTATE_UINT16(eeprom.input, RTL8139State),
VMSTATE_UINT16(eeprom.output, RTL8139State),
VMSTATE_UINT8(eeprom.eecs, RTL8139State),
VMSTATE_UINT8(eeprom.eesk, RTL8139State),
VMSTATE_UINT8(eeprom.eedi, RTL8139State),
VMSTATE_UINT8(eeprom.eedo, RTL8139State),
VMSTATE_UINT32(TCTR, RTL8139State),
VMSTATE_UINT32(TimerInt, RTL8139State),
VMSTATE_INT64(TCTR_base, RTL8139State),
VMSTATE_STRUCT(tally_counters, RTL8139State, 0,
vmstate_tally_counters, RTL8139TallyCounters),
VMSTATE_UINT32_V(cplus_enabled, RTL8139State, 4),
VMSTATE_END_OF_LIST()
},
.subsections = (VMStateSubsection []) {
{
.vmsd = &vmstate_rtl8139_hotplug_ready,
.needed = rtl8139_hotplug_ready_needed,
}, {
/* empty */
}
}
};
/***********************************************************/
/* PCI RTL8139 definitions */
static void rtl8139_ioport_write(void *opaque, hwaddr addr,
uint64_t val, unsigned size)
{
switch (size) {
case 1:
rtl8139_io_writeb(opaque, addr, val);
break;
case 2:
rtl8139_io_writew(opaque, addr, val);
break;
case 4:
rtl8139_io_writel(opaque, addr, val);
break;
}
}
static uint64_t rtl8139_ioport_read(void *opaque, hwaddr addr,
unsigned size)
{
switch (size) {
case 1:
return rtl8139_io_readb(opaque, addr);
case 2:
return rtl8139_io_readw(opaque, addr);
case 4:
return rtl8139_io_readl(opaque, addr);
}
return -1;
}
static const MemoryRegionOps rtl8139_io_ops = {
.read = rtl8139_ioport_read,
.write = rtl8139_ioport_write,
.impl = {
.min_access_size = 1,
.max_access_size = 4,
},
.endianness = DEVICE_LITTLE_ENDIAN,
};
static const MemoryRegionOps rtl8139_mmio_ops = {
.old_mmio = {
.read = {
rtl8139_mmio_readb,
rtl8139_mmio_readw,
rtl8139_mmio_readl,
},
.write = {
rtl8139_mmio_writeb,
rtl8139_mmio_writew,
rtl8139_mmio_writel,
},
},
.endianness = DEVICE_LITTLE_ENDIAN,
};
static void rtl8139_timer(void *opaque)
{
RTL8139State *s = opaque;
if (!s->clock_enabled)
{
DPRINTF(">>> timer: clock is not running\n");
return;
}
s->IntrStatus |= PCSTimeout;
rtl8139_update_irq(s);
rtl8139_set_next_tctr_time(s, qemu_get_clock_ns(vm_clock));
}
static void rtl8139_cleanup(NetClientState *nc)
{
RTL8139State *s = qemu_get_nic_opaque(nc);
s->nic = NULL;
}
static void pci_rtl8139_uninit(PCIDevice *dev)
{
RTL8139State *s = DO_UPCAST(RTL8139State, dev, dev);
memory_region_destroy(&s->bar_io);
memory_region_destroy(&s->bar_mem);
if (s->cplus_txbuffer) {
g_free(s->cplus_txbuffer);
s->cplus_txbuffer = NULL;
}
qemu_del_timer(s->timer);
qemu_free_timer(s->timer);
qemu_del_nic(s->nic);
}
static void rtl8139_set_link_status(NetClientState *nc)
{
RTL8139State *s = qemu_get_nic_opaque(nc);
if (nc->link_down) {
s->BasicModeStatus &= ~0x04;
} else {
s->BasicModeStatus |= 0x04;
}
s->IntrStatus |= RxUnderrun;
rtl8139_update_irq(s);
}
static NetClientInfo net_rtl8139_info = {
.type = NET_CLIENT_OPTIONS_KIND_NIC,
.size = sizeof(NICState),
.can_receive = rtl8139_can_receive,
.receive = rtl8139_receive,
.cleanup = rtl8139_cleanup,
.link_status_changed = rtl8139_set_link_status,
};
static int pci_rtl8139_init(PCIDevice *dev)
{
RTL8139State * s = DO_UPCAST(RTL8139State, dev, dev);
uint8_t *pci_conf;
pci_conf = s->dev.config;
pci_conf[PCI_INTERRUPT_PIN] = 1; /* interrupt pin A */
/* TODO: start of capability list, but no capability
* list bit in status register, and offset 0xdc seems unused. */
pci_conf[PCI_CAPABILITY_LIST] = 0xdc;
memory_region_init_io(&s->bar_io, OBJECT(s), &rtl8139_io_ops, s,
"rtl8139", 0x100);
memory_region_init_io(&s->bar_mem, OBJECT(s), &rtl8139_mmio_ops, s,
"rtl8139", 0x100);
pci_register_bar(&s->dev, 0, PCI_BASE_ADDRESS_SPACE_IO, &s->bar_io);
pci_register_bar(&s->dev, 1, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->bar_mem);
qemu_macaddr_default_if_unset(&s->conf.macaddr);
/* prepare eeprom */
s->eeprom.contents[0] = 0x8129;
#if 1
/* PCI vendor and device ID should be mirrored here */
s->eeprom.contents[1] = PCI_VENDOR_ID_REALTEK;
s->eeprom.contents[2] = PCI_DEVICE_ID_REALTEK_8139;
#endif
s->eeprom.contents[7] = s->conf.macaddr.a[0] | s->conf.macaddr.a[1] << 8;
s->eeprom.contents[8] = s->conf.macaddr.a[2] | s->conf.macaddr.a[3] << 8;
s->eeprom.contents[9] = s->conf.macaddr.a[4] | s->conf.macaddr.a[5] << 8;
s->nic = qemu_new_nic(&net_rtl8139_info, &s->conf,
object_get_typename(OBJECT(dev)), dev->qdev.id, s);
qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a);
s->cplus_txbuffer = NULL;
s->cplus_txbuffer_len = 0;
s->cplus_txbuffer_offset = 0;
s->TimerExpire = 0;
s->timer = qemu_new_timer_ns(vm_clock, rtl8139_timer, s);
rtl8139_set_next_tctr_time(s, qemu_get_clock_ns(vm_clock));
add_boot_device_path(s->conf.bootindex, &dev->qdev, "/ethernet-phy@0");
return 0;
}
static Property rtl8139_properties[] = {
DEFINE_NIC_PROPERTIES(RTL8139State, conf),
DEFINE_PROP_END_OF_LIST(),
};
static void rtl8139_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
k->init = pci_rtl8139_init;
k->exit = pci_rtl8139_uninit;
k->romfile = "efi-rtl8139.rom";
k->vendor_id = PCI_VENDOR_ID_REALTEK;
k->device_id = PCI_DEVICE_ID_REALTEK_8139;
k->revision = RTL8139_PCI_REVID; /* >=0x20 is for 8139C+ */
k->class_id = PCI_CLASS_NETWORK_ETHERNET;
dc->reset = rtl8139_reset;
dc->vmsd = &vmstate_rtl8139;
dc->props = rtl8139_properties;
}
static const TypeInfo rtl8139_info = {
.name = "rtl8139",
.parent = TYPE_PCI_DEVICE,
.instance_size = sizeof(RTL8139State),
.class_init = rtl8139_class_init,
};
static void rtl8139_register_types(void)
{
type_register_static(&rtl8139_info);
}
type_init(rtl8139_register_types)