qemu/ui/input-keymap.c
Gerd Hoffmann b771f470f3 kbd: add brazil kbd keys to qemu
The brazilian computer keyboard layout has two extra keys (compared to
the usual 105-key intl ps/2 keyboard).  This patch makes these two keys
known to qemu.

For historic reasons qemu has two ways to specify a key:  A QKeyCode
(name-based) or a number (ps/2 scancode based).  Therefore we have to
update multiple places to make new keys known to qemu:

  (1) The QKeyCode definition in qapi-schema.json
  (2) The QKeyCode <-> number mapping table in ui/input-keymap.c

This patch does just that.  With this patch applied you can send those
two keys to the guest using the send-key monitor command.

Cc: qemu-stable@nongnu.org
Signed-off-by: Gerd Hoffmann <kraxel@redhat.com>
Reviewed-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Daniel P. Berrange <berrange@redhat.com>
Reviewed-by: Michael Tokarev <mjt@tls.msk.ru>
2015-05-29 10:30:06 +02:00

203 lines
5.0 KiB
C

#include "sysemu/sysemu.h"
#include "ui/keymaps.h"
#include "ui/input.h"
static const int qcode_to_number[] = {
[Q_KEY_CODE_SHIFT] = 0x2a,
[Q_KEY_CODE_SHIFT_R] = 0x36,
[Q_KEY_CODE_ALT] = 0x38,
[Q_KEY_CODE_ALT_R] = 0xb8,
[Q_KEY_CODE_ALTGR] = 0x64,
[Q_KEY_CODE_ALTGR_R] = 0xe4,
[Q_KEY_CODE_CTRL] = 0x1d,
[Q_KEY_CODE_CTRL_R] = 0x9d,
[Q_KEY_CODE_META_L] = 0xdb,
[Q_KEY_CODE_META_R] = 0xdc,
[Q_KEY_CODE_MENU] = 0xdd,
[Q_KEY_CODE_ESC] = 0x01,
[Q_KEY_CODE_1] = 0x02,
[Q_KEY_CODE_2] = 0x03,
[Q_KEY_CODE_3] = 0x04,
[Q_KEY_CODE_4] = 0x05,
[Q_KEY_CODE_5] = 0x06,
[Q_KEY_CODE_6] = 0x07,
[Q_KEY_CODE_7] = 0x08,
[Q_KEY_CODE_8] = 0x09,
[Q_KEY_CODE_9] = 0x0a,
[Q_KEY_CODE_0] = 0x0b,
[Q_KEY_CODE_MINUS] = 0x0c,
[Q_KEY_CODE_EQUAL] = 0x0d,
[Q_KEY_CODE_BACKSPACE] = 0x0e,
[Q_KEY_CODE_TAB] = 0x0f,
[Q_KEY_CODE_Q] = 0x10,
[Q_KEY_CODE_W] = 0x11,
[Q_KEY_CODE_E] = 0x12,
[Q_KEY_CODE_R] = 0x13,
[Q_KEY_CODE_T] = 0x14,
[Q_KEY_CODE_Y] = 0x15,
[Q_KEY_CODE_U] = 0x16,
[Q_KEY_CODE_I] = 0x17,
[Q_KEY_CODE_O] = 0x18,
[Q_KEY_CODE_P] = 0x19,
[Q_KEY_CODE_BRACKET_LEFT] = 0x1a,
[Q_KEY_CODE_BRACKET_RIGHT] = 0x1b,
[Q_KEY_CODE_RET] = 0x1c,
[Q_KEY_CODE_A] = 0x1e,
[Q_KEY_CODE_S] = 0x1f,
[Q_KEY_CODE_D] = 0x20,
[Q_KEY_CODE_F] = 0x21,
[Q_KEY_CODE_G] = 0x22,
[Q_KEY_CODE_H] = 0x23,
[Q_KEY_CODE_J] = 0x24,
[Q_KEY_CODE_K] = 0x25,
[Q_KEY_CODE_L] = 0x26,
[Q_KEY_CODE_SEMICOLON] = 0x27,
[Q_KEY_CODE_APOSTROPHE] = 0x28,
[Q_KEY_CODE_GRAVE_ACCENT] = 0x29,
[Q_KEY_CODE_BACKSLASH] = 0x2b,
[Q_KEY_CODE_Z] = 0x2c,
[Q_KEY_CODE_X] = 0x2d,
[Q_KEY_CODE_C] = 0x2e,
[Q_KEY_CODE_V] = 0x2f,
[Q_KEY_CODE_B] = 0x30,
[Q_KEY_CODE_N] = 0x31,
[Q_KEY_CODE_M] = 0x32,
[Q_KEY_CODE_COMMA] = 0x33,
[Q_KEY_CODE_DOT] = 0x34,
[Q_KEY_CODE_SLASH] = 0x35,
[Q_KEY_CODE_ASTERISK] = 0x37,
[Q_KEY_CODE_SPC] = 0x39,
[Q_KEY_CODE_CAPS_LOCK] = 0x3a,
[Q_KEY_CODE_F1] = 0x3b,
[Q_KEY_CODE_F2] = 0x3c,
[Q_KEY_CODE_F3] = 0x3d,
[Q_KEY_CODE_F4] = 0x3e,
[Q_KEY_CODE_F5] = 0x3f,
[Q_KEY_CODE_F6] = 0x40,
[Q_KEY_CODE_F7] = 0x41,
[Q_KEY_CODE_F8] = 0x42,
[Q_KEY_CODE_F9] = 0x43,
[Q_KEY_CODE_F10] = 0x44,
[Q_KEY_CODE_NUM_LOCK] = 0x45,
[Q_KEY_CODE_SCROLL_LOCK] = 0x46,
[Q_KEY_CODE_KP_DIVIDE] = 0xb5,
[Q_KEY_CODE_KP_MULTIPLY] = 0x37,
[Q_KEY_CODE_KP_SUBTRACT] = 0x4a,
[Q_KEY_CODE_KP_ADD] = 0x4e,
[Q_KEY_CODE_KP_ENTER] = 0x9c,
[Q_KEY_CODE_KP_DECIMAL] = 0x53,
[Q_KEY_CODE_SYSRQ] = 0x54,
[Q_KEY_CODE_KP_0] = 0x52,
[Q_KEY_CODE_KP_1] = 0x4f,
[Q_KEY_CODE_KP_2] = 0x50,
[Q_KEY_CODE_KP_3] = 0x51,
[Q_KEY_CODE_KP_4] = 0x4b,
[Q_KEY_CODE_KP_5] = 0x4c,
[Q_KEY_CODE_KP_6] = 0x4d,
[Q_KEY_CODE_KP_7] = 0x47,
[Q_KEY_CODE_KP_8] = 0x48,
[Q_KEY_CODE_KP_9] = 0x49,
[Q_KEY_CODE_LESS] = 0x56,
[Q_KEY_CODE_F11] = 0x57,
[Q_KEY_CODE_F12] = 0x58,
[Q_KEY_CODE_PRINT] = 0xb7,
[Q_KEY_CODE_HOME] = 0xc7,
[Q_KEY_CODE_PGUP] = 0xc9,
[Q_KEY_CODE_PGDN] = 0xd1,
[Q_KEY_CODE_END] = 0xcf,
[Q_KEY_CODE_LEFT] = 0xcb,
[Q_KEY_CODE_UP] = 0xc8,
[Q_KEY_CODE_DOWN] = 0xd0,
[Q_KEY_CODE_RIGHT] = 0xcd,
[Q_KEY_CODE_INSERT] = 0xd2,
[Q_KEY_CODE_DELETE] = 0xd3,
[Q_KEY_CODE_RO] = 0x73,
[Q_KEY_CODE_KP_COMMA] = 0x7e,
[Q_KEY_CODE_MAX] = 0,
};
static int number_to_qcode[0x100];
int qemu_input_key_value_to_number(const KeyValue *value)
{
if (value->kind == KEY_VALUE_KIND_QCODE) {
return qcode_to_number[value->qcode];
} else {
assert(value->kind == KEY_VALUE_KIND_NUMBER);
return value->number;
}
}
int qemu_input_key_number_to_qcode(uint8_t nr)
{
static int first = true;
if (first) {
int qcode, number;
first = false;
for (qcode = 0; qcode < Q_KEY_CODE_MAX; qcode++) {
number = qcode_to_number[qcode];
assert(number < ARRAY_SIZE(number_to_qcode));
number_to_qcode[number] = qcode;
}
}
return number_to_qcode[nr];
}
int qemu_input_key_value_to_qcode(const KeyValue *value)
{
if (value->kind == KEY_VALUE_KIND_QCODE) {
return value->qcode;
} else {
assert(value->kind == KEY_VALUE_KIND_NUMBER);
return qemu_input_key_number_to_qcode(value->number);
}
}
int qemu_input_key_value_to_scancode(const KeyValue *value, bool down,
int *codes)
{
int keycode = qemu_input_key_value_to_number(value);
int count = 0;
if (value->kind == KEY_VALUE_KIND_QCODE &&
value->qcode == Q_KEY_CODE_PAUSE) {
/* specific case */
int v = down ? 0 : 0x80;
codes[count++] = 0xe1;
codes[count++] = 0x1d | v;
codes[count++] = 0x45 | v;
return count;
}
if (keycode & SCANCODE_GREY) {
codes[count++] = SCANCODE_EMUL0;
keycode &= ~SCANCODE_GREY;
}
if (!down) {
keycode |= SCANCODE_UP;
}
codes[count++] = keycode;
return count;
}