90e5add6f2
Create an operations structure so that the libqos interface can be architecture agnostic, and create a pc-specific interface to functions like qtest_boot. Move the libqos object in the Makefile from being ahci-test only to being linked with all tests that utilize the libqos features. Signed-off-by: John Snow <jsnow@redhat.com> Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Message-id: 1421698563-6977-8-git-send-email-jsnow@redhat.com Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
1229 lines
39 KiB
C
1229 lines
39 KiB
C
/*
|
|
* AHCI test cases
|
|
*
|
|
* Copyright (c) 2014 John Snow <jsnow@redhat.com>
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
|
|
#include <stdint.h>
|
|
#include <string.h>
|
|
#include <stdio.h>
|
|
#include <getopt.h>
|
|
#include <glib.h>
|
|
|
|
#include "libqtest.h"
|
|
#include "libqos/libqos-pc.h"
|
|
#include "libqos/ahci.h"
|
|
#include "libqos/pci-pc.h"
|
|
#include "libqos/malloc-pc.h"
|
|
|
|
#include "qemu-common.h"
|
|
#include "qemu/host-utils.h"
|
|
|
|
#include "hw/pci/pci_ids.h"
|
|
#include "hw/pci/pci_regs.h"
|
|
|
|
/* Test-specific defines. */
|
|
#define TEST_IMAGE_SIZE (64 * 1024 * 1024)
|
|
|
|
/*** Globals ***/
|
|
static QGuestAllocator *guest_malloc;
|
|
static QPCIBus *pcibus;
|
|
static uint64_t barsize;
|
|
static char tmp_path[] = "/tmp/qtest.XXXXXX";
|
|
static bool ahci_pedantic;
|
|
static uint32_t ahci_fingerprint;
|
|
|
|
/*** IO macros for the AHCI memory registers. ***/
|
|
#define AHCI_READ(OFST) qpci_io_readl(ahci, hba_base + (OFST))
|
|
#define AHCI_WRITE(OFST, VAL) qpci_io_writel(ahci, hba_base + (OFST), (VAL))
|
|
#define AHCI_RREG(regno) AHCI_READ(4 * (regno))
|
|
#define AHCI_WREG(regno, val) AHCI_WRITE(4 * (regno), (val))
|
|
#define AHCI_SET(regno, mask) AHCI_WREG((regno), AHCI_RREG(regno) | (mask))
|
|
#define AHCI_CLR(regno, mask) AHCI_WREG((regno), AHCI_RREG(regno) & ~(mask))
|
|
|
|
/*** IO macros for port-specific offsets inside of AHCI memory. ***/
|
|
#define PX_OFST(port, regno) (HBA_PORT_NUM_REG * (port) + AHCI_PORTS + (regno))
|
|
#define PX_RREG(port, regno) AHCI_RREG(PX_OFST((port), (regno)))
|
|
#define PX_WREG(port, regno, val) AHCI_WREG(PX_OFST((port), (regno)), (val))
|
|
#define PX_SET(port, reg, mask) PX_WREG((port), (reg), \
|
|
PX_RREG((port), (reg)) | (mask));
|
|
#define PX_CLR(port, reg, mask) PX_WREG((port), (reg), \
|
|
PX_RREG((port), (reg)) & ~(mask));
|
|
|
|
/*** Function Declarations ***/
|
|
static QPCIDevice *get_ahci_device(void);
|
|
static QPCIDevice *start_ahci_device(QPCIDevice *dev, void **hba_base);
|
|
static void free_ahci_device(QPCIDevice *dev);
|
|
static void ahci_test_port_spec(QPCIDevice *ahci, void *hba_base,
|
|
HBACap *hcap, uint8_t port);
|
|
static void ahci_test_pci_spec(QPCIDevice *ahci);
|
|
static void ahci_test_pci_caps(QPCIDevice *ahci, uint16_t header,
|
|
uint8_t offset);
|
|
static void ahci_test_satacap(QPCIDevice *ahci, uint8_t offset);
|
|
static void ahci_test_msicap(QPCIDevice *ahci, uint8_t offset);
|
|
static void ahci_test_pmcap(QPCIDevice *ahci, uint8_t offset);
|
|
|
|
/*** Utilities ***/
|
|
|
|
static void string_bswap16(uint16_t *s, size_t bytes)
|
|
{
|
|
g_assert_cmphex((bytes & 1), ==, 0);
|
|
bytes /= 2;
|
|
|
|
while (bytes--) {
|
|
*s = bswap16(*s);
|
|
s++;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Locate, verify, and return a handle to the AHCI device.
|
|
*/
|
|
static QPCIDevice *get_ahci_device(void)
|
|
{
|
|
QPCIDevice *ahci;
|
|
|
|
pcibus = qpci_init_pc();
|
|
|
|
/* Find the AHCI PCI device and verify it's the right one. */
|
|
ahci = qpci_device_find(pcibus, QPCI_DEVFN(0x1F, 0x02));
|
|
g_assert(ahci != NULL);
|
|
|
|
ahci_fingerprint = qpci_config_readl(ahci, PCI_VENDOR_ID);
|
|
|
|
switch (ahci_fingerprint) {
|
|
case AHCI_INTEL_ICH9:
|
|
break;
|
|
default:
|
|
/* Unknown device. */
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
return ahci;
|
|
}
|
|
|
|
static void free_ahci_device(QPCIDevice *ahci)
|
|
{
|
|
/* libqos doesn't have a function for this, so free it manually */
|
|
g_free(ahci);
|
|
|
|
if (pcibus) {
|
|
qpci_free_pc(pcibus);
|
|
pcibus = NULL;
|
|
}
|
|
|
|
/* Clear our cached barsize information. */
|
|
barsize = 0;
|
|
}
|
|
|
|
/*** Test Setup & Teardown ***/
|
|
|
|
/**
|
|
* Start a Q35 machine and bookmark a handle to the AHCI device.
|
|
*/
|
|
static AHCIQState *ahci_boot(void)
|
|
{
|
|
AHCIQState *s;
|
|
const char *cli;
|
|
|
|
s = g_malloc0(sizeof(AHCIQState));
|
|
|
|
cli = "-drive if=none,id=drive0,file=%s,cache=writeback,serial=%s"
|
|
",format=raw"
|
|
" -M q35 "
|
|
"-device ide-hd,drive=drive0 "
|
|
"-global ide-hd.ver=%s";
|
|
s->parent = qtest_pc_boot(cli, tmp_path, "testdisk", "version");
|
|
|
|
/* Verify that we have an AHCI device present. */
|
|
s->dev = get_ahci_device();
|
|
|
|
/* Stopgap: Copy the allocator reference */
|
|
guest_malloc = s->parent->alloc;
|
|
|
|
return s;
|
|
}
|
|
|
|
/**
|
|
* Clean up the PCI device, then terminate the QEMU instance.
|
|
*/
|
|
static void ahci_shutdown(AHCIQState *ahci)
|
|
{
|
|
QOSState *qs = ahci->parent;
|
|
free_ahci_device(ahci->dev);
|
|
g_free(ahci);
|
|
qtest_shutdown(qs);
|
|
}
|
|
|
|
/*** Logical Device Initialization ***/
|
|
|
|
/**
|
|
* Start the PCI device and sanity-check default operation.
|
|
*/
|
|
static void ahci_pci_enable(QPCIDevice *ahci, void **hba_base)
|
|
{
|
|
uint8_t reg;
|
|
|
|
start_ahci_device(ahci, hba_base);
|
|
|
|
switch (ahci_fingerprint) {
|
|
case AHCI_INTEL_ICH9:
|
|
/* ICH9 has a register at PCI 0x92 that
|
|
* acts as a master port enabler mask. */
|
|
reg = qpci_config_readb(ahci, 0x92);
|
|
reg |= 0x3F;
|
|
qpci_config_writeb(ahci, 0x92, reg);
|
|
/* 0...0111111b -- bit significant, ports 0-5 enabled. */
|
|
ASSERT_BIT_SET(qpci_config_readb(ahci, 0x92), 0x3F);
|
|
break;
|
|
}
|
|
|
|
}
|
|
|
|
/**
|
|
* Map BAR5/ABAR, and engage the PCI device.
|
|
*/
|
|
static QPCIDevice *start_ahci_device(QPCIDevice *ahci, void **hba_base)
|
|
{
|
|
/* Map AHCI's ABAR (BAR5) */
|
|
*hba_base = qpci_iomap(ahci, 5, &barsize);
|
|
|
|
/* turns on pci.cmd.iose, pci.cmd.mse and pci.cmd.bme */
|
|
qpci_device_enable(ahci);
|
|
|
|
return ahci;
|
|
}
|
|
|
|
/**
|
|
* Test and initialize the AHCI's HBA memory areas.
|
|
* Initialize and start any ports with devices attached.
|
|
* Bring the HBA into the idle state.
|
|
*/
|
|
static void ahci_hba_enable(QPCIDevice *ahci, void *hba_base)
|
|
{
|
|
/* Bits of interest in this section:
|
|
* GHC.AE Global Host Control / AHCI Enable
|
|
* PxCMD.ST Port Command: Start
|
|
* PxCMD.SUD "Spin Up Device"
|
|
* PxCMD.POD "Power On Device"
|
|
* PxCMD.FRE "FIS Receive Enable"
|
|
* PxCMD.FR "FIS Receive Running"
|
|
* PxCMD.CR "Command List Running"
|
|
*/
|
|
|
|
g_assert(ahci != NULL);
|
|
g_assert(hba_base != NULL);
|
|
|
|
uint32_t reg, ports_impl, clb, fb;
|
|
uint16_t i;
|
|
uint8_t num_cmd_slots;
|
|
|
|
g_assert(hba_base != 0);
|
|
|
|
/* Set GHC.AE to 1 */
|
|
AHCI_SET(AHCI_GHC, AHCI_GHC_AE);
|
|
reg = AHCI_RREG(AHCI_GHC);
|
|
ASSERT_BIT_SET(reg, AHCI_GHC_AE);
|
|
|
|
/* Read CAP.NCS, how many command slots do we have? */
|
|
reg = AHCI_RREG(AHCI_CAP);
|
|
num_cmd_slots = ((reg & AHCI_CAP_NCS) >> ctzl(AHCI_CAP_NCS)) + 1;
|
|
g_test_message("Number of Command Slots: %u", num_cmd_slots);
|
|
|
|
/* Determine which ports are implemented. */
|
|
ports_impl = AHCI_RREG(AHCI_PI);
|
|
|
|
for (i = 0; ports_impl; ports_impl >>= 1, ++i) {
|
|
if (!(ports_impl & 0x01)) {
|
|
continue;
|
|
}
|
|
|
|
g_test_message("Initializing port %u", i);
|
|
|
|
reg = PX_RREG(i, AHCI_PX_CMD);
|
|
if (BITCLR(reg, AHCI_PX_CMD_ST | AHCI_PX_CMD_CR |
|
|
AHCI_PX_CMD_FRE | AHCI_PX_CMD_FR)) {
|
|
g_test_message("port is idle");
|
|
} else {
|
|
g_test_message("port needs to be idled");
|
|
PX_CLR(i, AHCI_PX_CMD, (AHCI_PX_CMD_ST | AHCI_PX_CMD_FRE));
|
|
/* The port has 500ms to disengage. */
|
|
usleep(500000);
|
|
reg = PX_RREG(i, AHCI_PX_CMD);
|
|
ASSERT_BIT_CLEAR(reg, AHCI_PX_CMD_CR);
|
|
ASSERT_BIT_CLEAR(reg, AHCI_PX_CMD_FR);
|
|
g_test_message("port is now idle");
|
|
/* The spec does allow for possibly needing a PORT RESET
|
|
* or HBA reset if we fail to idle the port. */
|
|
}
|
|
|
|
/* Allocate Memory for the Command List Buffer & FIS Buffer */
|
|
/* PxCLB space ... 0x20 per command, as in 4.2.2 p 36 */
|
|
clb = guest_alloc(guest_malloc, num_cmd_slots * 0x20);
|
|
g_test_message("CLB: 0x%08x", clb);
|
|
PX_WREG(i, AHCI_PX_CLB, clb);
|
|
g_assert_cmphex(clb, ==, PX_RREG(i, AHCI_PX_CLB));
|
|
|
|
/* PxFB space ... 0x100, as in 4.2.1 p 35 */
|
|
fb = guest_alloc(guest_malloc, 0x100);
|
|
g_test_message("FB: 0x%08x", fb);
|
|
PX_WREG(i, AHCI_PX_FB, fb);
|
|
g_assert_cmphex(fb, ==, PX_RREG(i, AHCI_PX_FB));
|
|
|
|
/* Clear PxSERR, PxIS, then IS.IPS[x] by writing '1's. */
|
|
PX_WREG(i, AHCI_PX_SERR, 0xFFFFFFFF);
|
|
PX_WREG(i, AHCI_PX_IS, 0xFFFFFFFF);
|
|
AHCI_WREG(AHCI_IS, (1 << i));
|
|
|
|
/* Verify Interrupts Cleared */
|
|
reg = PX_RREG(i, AHCI_PX_SERR);
|
|
g_assert_cmphex(reg, ==, 0);
|
|
|
|
reg = PX_RREG(i, AHCI_PX_IS);
|
|
g_assert_cmphex(reg, ==, 0);
|
|
|
|
reg = AHCI_RREG(AHCI_IS);
|
|
ASSERT_BIT_CLEAR(reg, (1 << i));
|
|
|
|
/* Enable All Interrupts: */
|
|
PX_WREG(i, AHCI_PX_IE, 0xFFFFFFFF);
|
|
reg = PX_RREG(i, AHCI_PX_IE);
|
|
g_assert_cmphex(reg, ==, ~((uint32_t)AHCI_PX_IE_RESERVED));
|
|
|
|
/* Enable the FIS Receive Engine. */
|
|
PX_SET(i, AHCI_PX_CMD, AHCI_PX_CMD_FRE);
|
|
reg = PX_RREG(i, AHCI_PX_CMD);
|
|
ASSERT_BIT_SET(reg, AHCI_PX_CMD_FR);
|
|
|
|
/* AHCI 1.3 spec: if !STS.BSY, !STS.DRQ and PxSSTS.DET indicates
|
|
* physical presence, a device is present and may be started. However,
|
|
* PxSERR.DIAG.X /may/ need to be cleared a priori. */
|
|
reg = PX_RREG(i, AHCI_PX_SERR);
|
|
if (BITSET(reg, AHCI_PX_SERR_DIAG_X)) {
|
|
PX_SET(i, AHCI_PX_SERR, AHCI_PX_SERR_DIAG_X);
|
|
}
|
|
|
|
reg = PX_RREG(i, AHCI_PX_TFD);
|
|
if (BITCLR(reg, AHCI_PX_TFD_STS_BSY | AHCI_PX_TFD_STS_DRQ)) {
|
|
reg = PX_RREG(i, AHCI_PX_SSTS);
|
|
if ((reg & AHCI_PX_SSTS_DET) == SSTS_DET_ESTABLISHED) {
|
|
/* Device Found: set PxCMD.ST := 1 */
|
|
PX_SET(i, AHCI_PX_CMD, AHCI_PX_CMD_ST);
|
|
ASSERT_BIT_SET(PX_RREG(i, AHCI_PX_CMD), AHCI_PX_CMD_CR);
|
|
g_test_message("Started Device %u", i);
|
|
} else if ((reg & AHCI_PX_SSTS_DET)) {
|
|
/* Device present, but in some unknown state. */
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Enable GHC.IE */
|
|
AHCI_SET(AHCI_GHC, AHCI_GHC_IE);
|
|
reg = AHCI_RREG(AHCI_GHC);
|
|
ASSERT_BIT_SET(reg, AHCI_GHC_IE);
|
|
|
|
/* TODO: The device should now be idling and waiting for commands.
|
|
* In the future, a small test-case to inspect the Register D2H FIS
|
|
* and clear the initial interrupts might be good. */
|
|
}
|
|
|
|
/*** Specification Adherence Tests ***/
|
|
|
|
/**
|
|
* Implementation for test_pci_spec. Ensures PCI configuration space is sane.
|
|
*/
|
|
static void ahci_test_pci_spec(QPCIDevice *ahci)
|
|
{
|
|
uint8_t datab;
|
|
uint16_t data;
|
|
uint32_t datal;
|
|
|
|
/* Most of these bits should start cleared until we turn them on. */
|
|
data = qpci_config_readw(ahci, PCI_COMMAND);
|
|
ASSERT_BIT_CLEAR(data, PCI_COMMAND_MEMORY);
|
|
ASSERT_BIT_CLEAR(data, PCI_COMMAND_MASTER);
|
|
ASSERT_BIT_CLEAR(data, PCI_COMMAND_SPECIAL); /* Reserved */
|
|
ASSERT_BIT_CLEAR(data, PCI_COMMAND_VGA_PALETTE); /* Reserved */
|
|
ASSERT_BIT_CLEAR(data, PCI_COMMAND_PARITY);
|
|
ASSERT_BIT_CLEAR(data, PCI_COMMAND_WAIT); /* Reserved */
|
|
ASSERT_BIT_CLEAR(data, PCI_COMMAND_SERR);
|
|
ASSERT_BIT_CLEAR(data, PCI_COMMAND_FAST_BACK);
|
|
ASSERT_BIT_CLEAR(data, PCI_COMMAND_INTX_DISABLE);
|
|
ASSERT_BIT_CLEAR(data, 0xF800); /* Reserved */
|
|
|
|
data = qpci_config_readw(ahci, PCI_STATUS);
|
|
ASSERT_BIT_CLEAR(data, 0x01 | 0x02 | 0x04); /* Reserved */
|
|
ASSERT_BIT_CLEAR(data, PCI_STATUS_INTERRUPT);
|
|
ASSERT_BIT_SET(data, PCI_STATUS_CAP_LIST); /* must be set */
|
|
ASSERT_BIT_CLEAR(data, PCI_STATUS_UDF); /* Reserved */
|
|
ASSERT_BIT_CLEAR(data, PCI_STATUS_PARITY);
|
|
ASSERT_BIT_CLEAR(data, PCI_STATUS_SIG_TARGET_ABORT);
|
|
ASSERT_BIT_CLEAR(data, PCI_STATUS_REC_TARGET_ABORT);
|
|
ASSERT_BIT_CLEAR(data, PCI_STATUS_REC_MASTER_ABORT);
|
|
ASSERT_BIT_CLEAR(data, PCI_STATUS_SIG_SYSTEM_ERROR);
|
|
ASSERT_BIT_CLEAR(data, PCI_STATUS_DETECTED_PARITY);
|
|
|
|
/* RID occupies the low byte, CCs occupy the high three. */
|
|
datal = qpci_config_readl(ahci, PCI_CLASS_REVISION);
|
|
if (ahci_pedantic) {
|
|
/* AHCI 1.3 specifies that at-boot, the RID should reset to 0x00,
|
|
* Though in practice this is likely seldom true. */
|
|
ASSERT_BIT_CLEAR(datal, 0xFF);
|
|
}
|
|
|
|
/* BCC *must* equal 0x01. */
|
|
g_assert_cmphex(PCI_BCC(datal), ==, 0x01);
|
|
if (PCI_SCC(datal) == 0x01) {
|
|
/* IDE */
|
|
ASSERT_BIT_SET(0x80000000, datal);
|
|
ASSERT_BIT_CLEAR(0x60000000, datal);
|
|
} else if (PCI_SCC(datal) == 0x04) {
|
|
/* RAID */
|
|
g_assert_cmphex(PCI_PI(datal), ==, 0);
|
|
} else if (PCI_SCC(datal) == 0x06) {
|
|
/* AHCI */
|
|
g_assert_cmphex(PCI_PI(datal), ==, 0x01);
|
|
} else {
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
datab = qpci_config_readb(ahci, PCI_CACHE_LINE_SIZE);
|
|
g_assert_cmphex(datab, ==, 0);
|
|
|
|
datab = qpci_config_readb(ahci, PCI_LATENCY_TIMER);
|
|
g_assert_cmphex(datab, ==, 0);
|
|
|
|
/* Only the bottom 7 bits must be off. */
|
|
datab = qpci_config_readb(ahci, PCI_HEADER_TYPE);
|
|
ASSERT_BIT_CLEAR(datab, 0x7F);
|
|
|
|
/* BIST is optional, but the low 7 bits must always start off regardless. */
|
|
datab = qpci_config_readb(ahci, PCI_BIST);
|
|
ASSERT_BIT_CLEAR(datab, 0x7F);
|
|
|
|
/* BARS 0-4 do not have a boot spec, but ABAR/BAR5 must be clean. */
|
|
datal = qpci_config_readl(ahci, PCI_BASE_ADDRESS_5);
|
|
g_assert_cmphex(datal, ==, 0);
|
|
|
|
qpci_config_writel(ahci, PCI_BASE_ADDRESS_5, 0xFFFFFFFF);
|
|
datal = qpci_config_readl(ahci, PCI_BASE_ADDRESS_5);
|
|
/* ABAR must be 32-bit, memory mapped, non-prefetchable and
|
|
* must be >= 512 bytes. To that end, bits 0-8 must be off. */
|
|
ASSERT_BIT_CLEAR(datal, 0xFF);
|
|
|
|
/* Capability list MUST be present, */
|
|
datal = qpci_config_readl(ahci, PCI_CAPABILITY_LIST);
|
|
/* But these bits are reserved. */
|
|
ASSERT_BIT_CLEAR(datal, ~0xFF);
|
|
g_assert_cmphex(datal, !=, 0);
|
|
|
|
/* Check specification adherence for capability extenstions. */
|
|
data = qpci_config_readw(ahci, datal);
|
|
|
|
switch (ahci_fingerprint) {
|
|
case AHCI_INTEL_ICH9:
|
|
/* Intel ICH9 Family Datasheet 14.1.19 p.550 */
|
|
g_assert_cmphex((data & 0xFF), ==, PCI_CAP_ID_MSI);
|
|
break;
|
|
default:
|
|
/* AHCI 1.3, Section 2.1.14 -- CAP must point to PMCAP. */
|
|
g_assert_cmphex((data & 0xFF), ==, PCI_CAP_ID_PM);
|
|
}
|
|
|
|
ahci_test_pci_caps(ahci, data, (uint8_t)datal);
|
|
|
|
/* Reserved. */
|
|
datal = qpci_config_readl(ahci, PCI_CAPABILITY_LIST + 4);
|
|
g_assert_cmphex(datal, ==, 0);
|
|
|
|
/* IPIN might vary, but ILINE must be off. */
|
|
datab = qpci_config_readb(ahci, PCI_INTERRUPT_LINE);
|
|
g_assert_cmphex(datab, ==, 0);
|
|
}
|
|
|
|
/**
|
|
* Test PCI capabilities for AHCI specification adherence.
|
|
*/
|
|
static void ahci_test_pci_caps(QPCIDevice *ahci, uint16_t header,
|
|
uint8_t offset)
|
|
{
|
|
uint8_t cid = header & 0xFF;
|
|
uint8_t next = header >> 8;
|
|
|
|
g_test_message("CID: %02x; next: %02x", cid, next);
|
|
|
|
switch (cid) {
|
|
case PCI_CAP_ID_PM:
|
|
ahci_test_pmcap(ahci, offset);
|
|
break;
|
|
case PCI_CAP_ID_MSI:
|
|
ahci_test_msicap(ahci, offset);
|
|
break;
|
|
case PCI_CAP_ID_SATA:
|
|
ahci_test_satacap(ahci, offset);
|
|
break;
|
|
|
|
default:
|
|
g_test_message("Unknown CAP 0x%02x", cid);
|
|
}
|
|
|
|
if (next) {
|
|
ahci_test_pci_caps(ahci, qpci_config_readw(ahci, next), next);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Test SATA PCI capabilitity for AHCI specification adherence.
|
|
*/
|
|
static void ahci_test_satacap(QPCIDevice *ahci, uint8_t offset)
|
|
{
|
|
uint16_t dataw;
|
|
uint32_t datal;
|
|
|
|
g_test_message("Verifying SATACAP");
|
|
|
|
/* Assert that the SATACAP version is 1.0, And reserved bits are empty. */
|
|
dataw = qpci_config_readw(ahci, offset + 2);
|
|
g_assert_cmphex(dataw, ==, 0x10);
|
|
|
|
/* Grab the SATACR1 register. */
|
|
datal = qpci_config_readw(ahci, offset + 4);
|
|
|
|
switch (datal & 0x0F) {
|
|
case 0x04: /* BAR0 */
|
|
case 0x05: /* BAR1 */
|
|
case 0x06:
|
|
case 0x07:
|
|
case 0x08:
|
|
case 0x09: /* BAR5 */
|
|
case 0x0F: /* Immediately following SATACR1 in PCI config space. */
|
|
break;
|
|
default:
|
|
/* Invalid BARLOC for the Index Data Pair. */
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
/* Reserved. */
|
|
g_assert_cmphex((datal >> 24), ==, 0x00);
|
|
}
|
|
|
|
/**
|
|
* Test MSI PCI capability for AHCI specification adherence.
|
|
*/
|
|
static void ahci_test_msicap(QPCIDevice *ahci, uint8_t offset)
|
|
{
|
|
uint16_t dataw;
|
|
uint32_t datal;
|
|
|
|
g_test_message("Verifying MSICAP");
|
|
|
|
dataw = qpci_config_readw(ahci, offset + PCI_MSI_FLAGS);
|
|
ASSERT_BIT_CLEAR(dataw, PCI_MSI_FLAGS_ENABLE);
|
|
ASSERT_BIT_CLEAR(dataw, PCI_MSI_FLAGS_QSIZE);
|
|
ASSERT_BIT_CLEAR(dataw, PCI_MSI_FLAGS_RESERVED);
|
|
|
|
datal = qpci_config_readl(ahci, offset + PCI_MSI_ADDRESS_LO);
|
|
g_assert_cmphex(datal, ==, 0);
|
|
|
|
if (dataw & PCI_MSI_FLAGS_64BIT) {
|
|
g_test_message("MSICAP is 64bit");
|
|
datal = qpci_config_readl(ahci, offset + PCI_MSI_ADDRESS_HI);
|
|
g_assert_cmphex(datal, ==, 0);
|
|
dataw = qpci_config_readw(ahci, offset + PCI_MSI_DATA_64);
|
|
g_assert_cmphex(dataw, ==, 0);
|
|
} else {
|
|
g_test_message("MSICAP is 32bit");
|
|
dataw = qpci_config_readw(ahci, offset + PCI_MSI_DATA_32);
|
|
g_assert_cmphex(dataw, ==, 0);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Test Power Management PCI capability for AHCI specification adherence.
|
|
*/
|
|
static void ahci_test_pmcap(QPCIDevice *ahci, uint8_t offset)
|
|
{
|
|
uint16_t dataw;
|
|
|
|
g_test_message("Verifying PMCAP");
|
|
|
|
dataw = qpci_config_readw(ahci, offset + PCI_PM_PMC);
|
|
ASSERT_BIT_CLEAR(dataw, PCI_PM_CAP_PME_CLOCK);
|
|
ASSERT_BIT_CLEAR(dataw, PCI_PM_CAP_RESERVED);
|
|
ASSERT_BIT_CLEAR(dataw, PCI_PM_CAP_D1);
|
|
ASSERT_BIT_CLEAR(dataw, PCI_PM_CAP_D2);
|
|
|
|
dataw = qpci_config_readw(ahci, offset + PCI_PM_CTRL);
|
|
ASSERT_BIT_CLEAR(dataw, PCI_PM_CTRL_STATE_MASK);
|
|
ASSERT_BIT_CLEAR(dataw, PCI_PM_CTRL_RESERVED);
|
|
ASSERT_BIT_CLEAR(dataw, PCI_PM_CTRL_DATA_SEL_MASK);
|
|
ASSERT_BIT_CLEAR(dataw, PCI_PM_CTRL_DATA_SCALE_MASK);
|
|
}
|
|
|
|
static void ahci_test_hba_spec(QPCIDevice *ahci, void *hba_base)
|
|
{
|
|
HBACap hcap;
|
|
unsigned i;
|
|
uint32_t cap, cap2, reg;
|
|
uint32_t ports;
|
|
uint8_t nports_impl;
|
|
uint8_t maxports;
|
|
|
|
g_assert(ahci != 0);
|
|
g_assert(hba_base != 0);
|
|
|
|
/*
|
|
* Note that the AHCI spec does expect the BIOS to set up a few things:
|
|
* CAP.SSS - Support for staggered spin-up (t/f)
|
|
* CAP.SMPS - Support for mechanical presence switches (t/f)
|
|
* PI - Ports Implemented (1-32)
|
|
* PxCMD.HPCP - Hot Plug Capable Port
|
|
* PxCMD.MPSP - Mechanical Presence Switch Present
|
|
* PxCMD.CPD - Cold Presence Detection support
|
|
*
|
|
* Additional items are touched if CAP.SSS is on, see AHCI 10.1.1 p.97:
|
|
* Foreach Port Implemented:
|
|
* -PxCMD.ST, PxCMD.CR, PxCMD.FRE, PxCMD.FR, PxSCTL.DET are 0
|
|
* -PxCLB/U and PxFB/U are set to valid regions in memory
|
|
* -PxSUD is set to 1.
|
|
* -PxSSTS.DET is polled for presence; if detected, we continue:
|
|
* -PxSERR is cleared with 1's.
|
|
* -If PxTFD.STS.BSY, PxTFD.STS.DRQ, and PxTFD.STS.ERR are all zero,
|
|
* the device is ready.
|
|
*/
|
|
|
|
/* 1 CAP - Capabilities Register */
|
|
cap = AHCI_RREG(AHCI_CAP);
|
|
ASSERT_BIT_CLEAR(cap, AHCI_CAP_RESERVED);
|
|
|
|
/* 2 GHC - Global Host Control */
|
|
reg = AHCI_RREG(AHCI_GHC);
|
|
ASSERT_BIT_CLEAR(reg, AHCI_GHC_HR);
|
|
ASSERT_BIT_CLEAR(reg, AHCI_GHC_IE);
|
|
ASSERT_BIT_CLEAR(reg, AHCI_GHC_MRSM);
|
|
if (BITSET(cap, AHCI_CAP_SAM)) {
|
|
g_test_message("Supports AHCI-Only Mode: GHC_AE is Read-Only.");
|
|
ASSERT_BIT_SET(reg, AHCI_GHC_AE);
|
|
} else {
|
|
g_test_message("Supports AHCI/Legacy mix.");
|
|
ASSERT_BIT_CLEAR(reg, AHCI_GHC_AE);
|
|
}
|
|
|
|
/* 3 IS - Interrupt Status */
|
|
reg = AHCI_RREG(AHCI_IS);
|
|
g_assert_cmphex(reg, ==, 0);
|
|
|
|
/* 4 PI - Ports Implemented */
|
|
ports = AHCI_RREG(AHCI_PI);
|
|
/* Ports Implemented must be non-zero. */
|
|
g_assert_cmphex(ports, !=, 0);
|
|
/* Ports Implemented must be <= Number of Ports. */
|
|
nports_impl = ctpopl(ports);
|
|
g_assert_cmpuint(((AHCI_CAP_NP & cap) + 1), >=, nports_impl);
|
|
|
|
g_assert_cmphex(barsize, >, 0);
|
|
/* Ports must be within the proper range. Given a mapping of SIZE,
|
|
* 256 bytes are used for global HBA control, and the rest is used
|
|
* for ports data, at 0x80 bytes each. */
|
|
maxports = (barsize - HBA_DATA_REGION_SIZE) / HBA_PORT_DATA_SIZE;
|
|
/* e.g, 30 ports for 4K of memory. (4096 - 256) / 128 = 30 */
|
|
g_assert_cmphex((reg >> maxports), ==, 0);
|
|
|
|
/* 5 AHCI Version */
|
|
reg = AHCI_RREG(AHCI_VS);
|
|
switch (reg) {
|
|
case AHCI_VERSION_0_95:
|
|
case AHCI_VERSION_1_0:
|
|
case AHCI_VERSION_1_1:
|
|
case AHCI_VERSION_1_2:
|
|
case AHCI_VERSION_1_3:
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
/* 6 Command Completion Coalescing Control: depends on CAP.CCCS. */
|
|
reg = AHCI_RREG(AHCI_CCCCTL);
|
|
if (BITSET(cap, AHCI_CAP_CCCS)) {
|
|
ASSERT_BIT_CLEAR(reg, AHCI_CCCCTL_EN);
|
|
ASSERT_BIT_CLEAR(reg, AHCI_CCCCTL_RESERVED);
|
|
ASSERT_BIT_SET(reg, AHCI_CCCCTL_CC);
|
|
ASSERT_BIT_SET(reg, AHCI_CCCCTL_TV);
|
|
} else {
|
|
g_assert_cmphex(reg, ==, 0);
|
|
}
|
|
|
|
/* 7 CCC_PORTS */
|
|
reg = AHCI_RREG(AHCI_CCCPORTS);
|
|
/* Must be zeroes initially regardless of CAP.CCCS */
|
|
g_assert_cmphex(reg, ==, 0);
|
|
|
|
/* 8 EM_LOC */
|
|
reg = AHCI_RREG(AHCI_EMLOC);
|
|
if (BITCLR(cap, AHCI_CAP_EMS)) {
|
|
g_assert_cmphex(reg, ==, 0);
|
|
}
|
|
|
|
/* 9 EM_CTL */
|
|
reg = AHCI_RREG(AHCI_EMCTL);
|
|
if (BITSET(cap, AHCI_CAP_EMS)) {
|
|
ASSERT_BIT_CLEAR(reg, AHCI_EMCTL_STSMR);
|
|
ASSERT_BIT_CLEAR(reg, AHCI_EMCTL_CTLTM);
|
|
ASSERT_BIT_CLEAR(reg, AHCI_EMCTL_CTLRST);
|
|
ASSERT_BIT_CLEAR(reg, AHCI_EMCTL_RESERVED);
|
|
} else {
|
|
g_assert_cmphex(reg, ==, 0);
|
|
}
|
|
|
|
/* 10 CAP2 -- Capabilities Extended */
|
|
cap2 = AHCI_RREG(AHCI_CAP2);
|
|
ASSERT_BIT_CLEAR(cap2, AHCI_CAP2_RESERVED);
|
|
|
|
/* 11 BOHC -- Bios/OS Handoff Control */
|
|
reg = AHCI_RREG(AHCI_BOHC);
|
|
g_assert_cmphex(reg, ==, 0);
|
|
|
|
/* 12 -- 23: Reserved */
|
|
g_test_message("Verifying HBA reserved area is empty.");
|
|
for (i = AHCI_RESERVED; i < AHCI_NVMHCI; ++i) {
|
|
reg = AHCI_RREG(i);
|
|
g_assert_cmphex(reg, ==, 0);
|
|
}
|
|
|
|
/* 24 -- 39: NVMHCI */
|
|
if (BITCLR(cap2, AHCI_CAP2_NVMP)) {
|
|
g_test_message("Verifying HBA/NVMHCI area is empty.");
|
|
for (i = AHCI_NVMHCI; i < AHCI_VENDOR; ++i) {
|
|
reg = AHCI_RREG(i);
|
|
g_assert_cmphex(reg, ==, 0);
|
|
}
|
|
}
|
|
|
|
/* 40 -- 63: Vendor */
|
|
g_test_message("Verifying HBA/Vendor area is empty.");
|
|
for (i = AHCI_VENDOR; i < AHCI_PORTS; ++i) {
|
|
reg = AHCI_RREG(i);
|
|
g_assert_cmphex(reg, ==, 0);
|
|
}
|
|
|
|
/* 64 -- XX: Port Space */
|
|
hcap.cap = cap;
|
|
hcap.cap2 = cap2;
|
|
for (i = 0; ports || (i < maxports); ports >>= 1, ++i) {
|
|
if (BITSET(ports, 0x1)) {
|
|
g_test_message("Testing port %u for spec", i);
|
|
ahci_test_port_spec(ahci, hba_base, &hcap, i);
|
|
} else {
|
|
uint16_t j;
|
|
uint16_t low = AHCI_PORTS + (32 * i);
|
|
uint16_t high = AHCI_PORTS + (32 * (i + 1));
|
|
g_test_message("Asserting unimplemented port %u "
|
|
"(reg [%u-%u]) is empty.",
|
|
i, low, high - 1);
|
|
for (j = low; j < high; ++j) {
|
|
reg = AHCI_RREG(j);
|
|
g_assert_cmphex(reg, ==, 0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Test the memory space for one port for specification adherence.
|
|
*/
|
|
static void ahci_test_port_spec(QPCIDevice *ahci, void *hba_base,
|
|
HBACap *hcap, uint8_t port)
|
|
{
|
|
uint32_t reg;
|
|
unsigned i;
|
|
|
|
/* (0) CLB */
|
|
reg = PX_RREG(port, AHCI_PX_CLB);
|
|
ASSERT_BIT_CLEAR(reg, AHCI_PX_CLB_RESERVED);
|
|
|
|
/* (1) CLBU */
|
|
if (BITCLR(hcap->cap, AHCI_CAP_S64A)) {
|
|
reg = PX_RREG(port, AHCI_PX_CLBU);
|
|
g_assert_cmphex(reg, ==, 0);
|
|
}
|
|
|
|
/* (2) FB */
|
|
reg = PX_RREG(port, AHCI_PX_FB);
|
|
ASSERT_BIT_CLEAR(reg, AHCI_PX_FB_RESERVED);
|
|
|
|
/* (3) FBU */
|
|
if (BITCLR(hcap->cap, AHCI_CAP_S64A)) {
|
|
reg = PX_RREG(port, AHCI_PX_FBU);
|
|
g_assert_cmphex(reg, ==, 0);
|
|
}
|
|
|
|
/* (4) IS */
|
|
reg = PX_RREG(port, AHCI_PX_IS);
|
|
g_assert_cmphex(reg, ==, 0);
|
|
|
|
/* (5) IE */
|
|
reg = PX_RREG(port, AHCI_PX_IE);
|
|
g_assert_cmphex(reg, ==, 0);
|
|
|
|
/* (6) CMD */
|
|
reg = PX_RREG(port, AHCI_PX_CMD);
|
|
ASSERT_BIT_CLEAR(reg, AHCI_PX_CMD_FRE);
|
|
ASSERT_BIT_CLEAR(reg, AHCI_PX_CMD_RESERVED);
|
|
ASSERT_BIT_CLEAR(reg, AHCI_PX_CMD_CCS);
|
|
ASSERT_BIT_CLEAR(reg, AHCI_PX_CMD_FR);
|
|
ASSERT_BIT_CLEAR(reg, AHCI_PX_CMD_CR);
|
|
ASSERT_BIT_CLEAR(reg, AHCI_PX_CMD_PMA); /* And RW only if CAP.SPM */
|
|
ASSERT_BIT_CLEAR(reg, AHCI_PX_CMD_APSTE); /* RW only if CAP2.APST */
|
|
ASSERT_BIT_CLEAR(reg, AHCI_PX_CMD_ATAPI);
|
|
ASSERT_BIT_CLEAR(reg, AHCI_PX_CMD_DLAE);
|
|
ASSERT_BIT_CLEAR(reg, AHCI_PX_CMD_ALPE); /* RW only if CAP.SALP */
|
|
ASSERT_BIT_CLEAR(reg, AHCI_PX_CMD_ASP); /* RW only if CAP.SALP */
|
|
ASSERT_BIT_CLEAR(reg, AHCI_PX_CMD_ICC);
|
|
/* If CPDetect support does not exist, CPState must be off. */
|
|
if (BITCLR(reg, AHCI_PX_CMD_CPD)) {
|
|
ASSERT_BIT_CLEAR(reg, AHCI_PX_CMD_CPS);
|
|
}
|
|
/* If MPSPresence is not set, MPSState must be off. */
|
|
if (BITCLR(reg, AHCI_PX_CMD_MPSP)) {
|
|
ASSERT_BIT_CLEAR(reg, AHCI_PX_CMD_MPSS);
|
|
}
|
|
/* If we do not support MPS, MPSS and MPSP must be off. */
|
|
if (BITCLR(hcap->cap, AHCI_CAP_SMPS)) {
|
|
ASSERT_BIT_CLEAR(reg, AHCI_PX_CMD_MPSS);
|
|
ASSERT_BIT_CLEAR(reg, AHCI_PX_CMD_MPSP);
|
|
}
|
|
/* If, via CPD or MPSP we detect a drive, HPCP must be on. */
|
|
if (BITANY(reg, AHCI_PX_CMD_CPD || AHCI_PX_CMD_MPSP)) {
|
|
ASSERT_BIT_SET(reg, AHCI_PX_CMD_HPCP);
|
|
}
|
|
/* HPCP and ESP cannot both be active. */
|
|
g_assert(!BITSET(reg, AHCI_PX_CMD_HPCP | AHCI_PX_CMD_ESP));
|
|
/* If CAP.FBSS is not set, FBSCP must not be set. */
|
|
if (BITCLR(hcap->cap, AHCI_CAP_FBSS)) {
|
|
ASSERT_BIT_CLEAR(reg, AHCI_PX_CMD_FBSCP);
|
|
}
|
|
|
|
/* (7) RESERVED */
|
|
reg = PX_RREG(port, AHCI_PX_RES1);
|
|
g_assert_cmphex(reg, ==, 0);
|
|
|
|
/* (8) TFD */
|
|
reg = PX_RREG(port, AHCI_PX_TFD);
|
|
/* At boot, prior to an FIS being received, the TFD register should be 0x7F,
|
|
* which breaks down as follows, as seen in AHCI 1.3 sec 3.3.8, p. 27. */
|
|
ASSERT_BIT_SET(reg, AHCI_PX_TFD_STS_ERR);
|
|
ASSERT_BIT_SET(reg, AHCI_PX_TFD_STS_CS1);
|
|
ASSERT_BIT_SET(reg, AHCI_PX_TFD_STS_DRQ);
|
|
ASSERT_BIT_SET(reg, AHCI_PX_TFD_STS_CS2);
|
|
ASSERT_BIT_CLEAR(reg, AHCI_PX_TFD_STS_BSY);
|
|
ASSERT_BIT_CLEAR(reg, AHCI_PX_TFD_ERR);
|
|
ASSERT_BIT_CLEAR(reg, AHCI_PX_TFD_RESERVED);
|
|
|
|
/* (9) SIG */
|
|
/* Though AHCI specifies the boot value should be 0xFFFFFFFF,
|
|
* Even when GHC.ST is zero, the AHCI HBA may receive the initial
|
|
* D2H register FIS and update the signature asynchronously,
|
|
* so we cannot expect a value here. AHCI 1.3, sec 3.3.9, pp 27-28 */
|
|
|
|
/* (10) SSTS / SCR0: SStatus */
|
|
reg = PX_RREG(port, AHCI_PX_SSTS);
|
|
ASSERT_BIT_CLEAR(reg, AHCI_PX_SSTS_RESERVED);
|
|
/* Even though the register should be 0 at boot, it is asynchronous and
|
|
* prone to change, so we cannot test any well known value. */
|
|
|
|
/* (11) SCTL / SCR2: SControl */
|
|
reg = PX_RREG(port, AHCI_PX_SCTL);
|
|
g_assert_cmphex(reg, ==, 0);
|
|
|
|
/* (12) SERR / SCR1: SError */
|
|
reg = PX_RREG(port, AHCI_PX_SERR);
|
|
g_assert_cmphex(reg, ==, 0);
|
|
|
|
/* (13) SACT / SCR3: SActive */
|
|
reg = PX_RREG(port, AHCI_PX_SACT);
|
|
g_assert_cmphex(reg, ==, 0);
|
|
|
|
/* (14) CI */
|
|
reg = PX_RREG(port, AHCI_PX_CI);
|
|
g_assert_cmphex(reg, ==, 0);
|
|
|
|
/* (15) SNTF */
|
|
reg = PX_RREG(port, AHCI_PX_SNTF);
|
|
g_assert_cmphex(reg, ==, 0);
|
|
|
|
/* (16) FBS */
|
|
reg = PX_RREG(port, AHCI_PX_FBS);
|
|
ASSERT_BIT_CLEAR(reg, AHCI_PX_FBS_EN);
|
|
ASSERT_BIT_CLEAR(reg, AHCI_PX_FBS_DEC);
|
|
ASSERT_BIT_CLEAR(reg, AHCI_PX_FBS_SDE);
|
|
ASSERT_BIT_CLEAR(reg, AHCI_PX_FBS_DEV);
|
|
ASSERT_BIT_CLEAR(reg, AHCI_PX_FBS_DWE);
|
|
ASSERT_BIT_CLEAR(reg, AHCI_PX_FBS_RESERVED);
|
|
if (BITSET(hcap->cap, AHCI_CAP_FBSS)) {
|
|
/* if Port-Multiplier FIS-based switching avail, ADO must >= 2 */
|
|
g_assert((reg & AHCI_PX_FBS_ADO) >> ctzl(AHCI_PX_FBS_ADO) >= 2);
|
|
}
|
|
|
|
/* [17 -- 27] RESERVED */
|
|
for (i = AHCI_PX_RES2; i < AHCI_PX_VS; ++i) {
|
|
reg = PX_RREG(port, i);
|
|
g_assert_cmphex(reg, ==, 0);
|
|
}
|
|
|
|
/* [28 -- 31] Vendor-Specific */
|
|
for (i = AHCI_PX_VS; i < 32; ++i) {
|
|
reg = PX_RREG(port, i);
|
|
if (reg) {
|
|
g_test_message("INFO: Vendor register %u non-empty", i);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Utilizing an initialized AHCI HBA, issue an IDENTIFY command to the first
|
|
* device we see, then read and check the response.
|
|
*/
|
|
static void ahci_test_identify(QPCIDevice *ahci, void *hba_base)
|
|
{
|
|
RegD2HFIS *d2h = g_malloc0(0x20);
|
|
RegD2HFIS *pio = g_malloc0(0x20);
|
|
RegH2DFIS fis;
|
|
AHCICommand cmd;
|
|
PRD prd;
|
|
uint32_t ports, reg, clb, table, fb, data_ptr;
|
|
uint16_t buff[256];
|
|
unsigned i;
|
|
int rc;
|
|
|
|
g_assert(ahci != NULL);
|
|
g_assert(hba_base != NULL);
|
|
|
|
/* We need to:
|
|
* (1) Create a Command Table Buffer and update the Command List Slot #0
|
|
* to point to this buffer.
|
|
* (2) Construct an FIS host-to-device command structure, and write it to
|
|
* the top of the command table buffer.
|
|
* (3) Create a data buffer for the IDENTIFY response to be sent to
|
|
* (4) Create a Physical Region Descriptor that points to the data buffer,
|
|
* and write it to the bottom (offset 0x80) of the command table.
|
|
* (5) Now, PxCLB points to the command list, command 0 points to
|
|
* our table, and our table contains an FIS instruction and a
|
|
* PRD that points to our rx buffer.
|
|
* (6) We inform the HBA via PxCI that there is a command ready in slot #0.
|
|
*/
|
|
|
|
/* Pick the first implemented and running port */
|
|
ports = AHCI_RREG(AHCI_PI);
|
|
for (i = 0; i < 32; ports >>= 1, ++i) {
|
|
if (ports == 0) {
|
|
i = 32;
|
|
}
|
|
|
|
if (!(ports & 0x01)) {
|
|
continue;
|
|
}
|
|
|
|
reg = PX_RREG(i, AHCI_PX_CMD);
|
|
if (BITSET(reg, AHCI_PX_CMD_ST)) {
|
|
break;
|
|
}
|
|
}
|
|
g_assert_cmphex(i, <, 32);
|
|
g_test_message("Selected port %u for test", i);
|
|
|
|
/* Clear out this port's interrupts (ignore the init register d2h fis) */
|
|
reg = PX_RREG(i, AHCI_PX_IS);
|
|
PX_WREG(i, AHCI_PX_IS, reg);
|
|
g_assert_cmphex(PX_RREG(i, AHCI_PX_IS), ==, 0);
|
|
|
|
/* Wipe the FIS-Receive Buffer */
|
|
fb = PX_RREG(i, AHCI_PX_FB);
|
|
g_assert_cmphex(fb, !=, 0);
|
|
qmemset(fb, 0x00, 0x100);
|
|
|
|
/* Create a Command Table buffer. 0x80 is the smallest with a PRDTL of 0. */
|
|
/* We need at least one PRD, so round up to the nearest 0x80 multiple. */
|
|
table = guest_alloc(guest_malloc, CMD_TBL_SIZ(1));
|
|
g_assert(table);
|
|
ASSERT_BIT_CLEAR(table, 0x7F);
|
|
|
|
/* Create a data buffer ... where we will dump the IDENTIFY data to. */
|
|
data_ptr = guest_alloc(guest_malloc, 512);
|
|
g_assert(data_ptr);
|
|
|
|
/* Grab the Command List Buffer pointer */
|
|
clb = PX_RREG(i, AHCI_PX_CLB);
|
|
g_assert(clb);
|
|
|
|
/* Copy the existing Command #0 structure from the CLB into local memory,
|
|
* and build a new command #0. */
|
|
memread(clb, &cmd, sizeof(cmd));
|
|
cmd.b1 = 5; /* reg_h2d_fis is 5 double-words long */
|
|
cmd.b2 = 0x04; /* clear PxTFD.STS.BSY when done */
|
|
cmd.prdtl = cpu_to_le16(1); /* One PRD table entry. */
|
|
cmd.prdbc = 0;
|
|
cmd.ctba = cpu_to_le32(table);
|
|
cmd.ctbau = 0;
|
|
|
|
/* Construct our PRD, noting that DBC is 0-indexed. */
|
|
prd.dba = cpu_to_le32(data_ptr);
|
|
prd.dbau = 0;
|
|
prd.res = 0;
|
|
/* 511+1 bytes, request DPS interrupt */
|
|
prd.dbc = cpu_to_le32(511 | 0x80000000);
|
|
|
|
/* Construct our Command FIS, Based on http://wiki.osdev.org/AHCI */
|
|
memset(&fis, 0x00, sizeof(fis));
|
|
fis.fis_type = 0x27; /* Register Host-to-Device FIS */
|
|
fis.command = 0xEC; /* IDENTIFY */
|
|
fis.device = 0;
|
|
fis.flags = 0x80; /* Indicate this is a command FIS */
|
|
|
|
/* We've committed nothing yet, no interrupts should be posted yet. */
|
|
g_assert_cmphex(PX_RREG(i, AHCI_PX_IS), ==, 0);
|
|
|
|
/* Commit the Command FIS to the Command Table */
|
|
memwrite(table, &fis, sizeof(fis));
|
|
|
|
/* Commit the PRD entry to the Command Table */
|
|
memwrite(table + 0x80, &prd, sizeof(prd));
|
|
|
|
/* Commit Command #0, pointing to the Table, to the Command List Buffer. */
|
|
memwrite(clb, &cmd, sizeof(cmd));
|
|
|
|
/* Everything is in place, but we haven't given the go-ahead yet. */
|
|
g_assert_cmphex(PX_RREG(i, AHCI_PX_IS), ==, 0);
|
|
|
|
/* Issue Command #0 via PxCI */
|
|
PX_WREG(i, AHCI_PX_CI, (1 << 0));
|
|
while (BITSET(PX_RREG(i, AHCI_PX_TFD), AHCI_PX_TFD_STS_BSY)) {
|
|
usleep(50);
|
|
}
|
|
|
|
/* Check for expected interrupts */
|
|
reg = PX_RREG(i, AHCI_PX_IS);
|
|
ASSERT_BIT_SET(reg, AHCI_PX_IS_DHRS);
|
|
ASSERT_BIT_SET(reg, AHCI_PX_IS_PSS);
|
|
/* BUG: we expect AHCI_PX_IS_DPS to be set. */
|
|
ASSERT_BIT_CLEAR(reg, AHCI_PX_IS_DPS);
|
|
|
|
/* Clear expected interrupts and assert all interrupts now cleared. */
|
|
PX_WREG(i, AHCI_PX_IS, AHCI_PX_IS_DHRS | AHCI_PX_IS_PSS | AHCI_PX_IS_DPS);
|
|
g_assert_cmphex(PX_RREG(i, AHCI_PX_IS), ==, 0);
|
|
|
|
/* Check for errors. */
|
|
reg = PX_RREG(i, AHCI_PX_SERR);
|
|
g_assert_cmphex(reg, ==, 0);
|
|
reg = PX_RREG(i, AHCI_PX_TFD);
|
|
ASSERT_BIT_CLEAR(reg, AHCI_PX_TFD_STS_ERR);
|
|
ASSERT_BIT_CLEAR(reg, AHCI_PX_TFD_ERR);
|
|
|
|
/* Investigate CMD #0, assert that we read 512 bytes */
|
|
memread(clb, &cmd, sizeof(cmd));
|
|
g_assert_cmphex(512, ==, le32_to_cpu(cmd.prdbc));
|
|
|
|
/* Investigate FIS responses */
|
|
memread(fb + 0x20, pio, 0x20);
|
|
memread(fb + 0x40, d2h, 0x20);
|
|
g_assert_cmphex(pio->fis_type, ==, 0x5f);
|
|
g_assert_cmphex(d2h->fis_type, ==, 0x34);
|
|
g_assert_cmphex(pio->flags, ==, d2h->flags);
|
|
g_assert_cmphex(pio->status, ==, d2h->status);
|
|
g_assert_cmphex(pio->error, ==, d2h->error);
|
|
|
|
reg = PX_RREG(i, AHCI_PX_TFD);
|
|
g_assert_cmphex((reg & AHCI_PX_TFD_ERR), ==, pio->error);
|
|
g_assert_cmphex((reg & AHCI_PX_TFD_STS), ==, pio->status);
|
|
/* The PIO Setup FIS contains a "bytes read" field, which is a
|
|
* 16-bit value. The Physical Region Descriptor Byte Count is
|
|
* 32-bit, but for small transfers using one PRD, it should match. */
|
|
g_assert_cmphex(le16_to_cpu(pio->res4), ==, le32_to_cpu(cmd.prdbc));
|
|
|
|
/* Last, but not least: Investigate the IDENTIFY response data. */
|
|
memread(data_ptr, &buff, 512);
|
|
|
|
/* Check serial number/version in the buffer */
|
|
/* NB: IDENTIFY strings are packed in 16bit little endian chunks.
|
|
* Since we copy byte-for-byte in ahci-test, on both LE and BE, we need to
|
|
* unchunk this data. By contrast, ide-test copies 2 bytes at a time, and
|
|
* as a consequence, only needs to unchunk the data on LE machines. */
|
|
string_bswap16(&buff[10], 20);
|
|
rc = memcmp(&buff[10], "testdisk ", 20);
|
|
g_assert_cmphex(rc, ==, 0);
|
|
|
|
string_bswap16(&buff[23], 8);
|
|
rc = memcmp(&buff[23], "version ", 8);
|
|
g_assert_cmphex(rc, ==, 0);
|
|
|
|
g_free(d2h);
|
|
g_free(pio);
|
|
}
|
|
|
|
/******************************************************************************/
|
|
/* Test Interfaces */
|
|
/******************************************************************************/
|
|
|
|
/**
|
|
* Basic sanity test to boot a machine, find an AHCI device, and shutdown.
|
|
*/
|
|
static void test_sanity(void)
|
|
{
|
|
AHCIQState *ahci;
|
|
ahci = ahci_boot();
|
|
ahci_shutdown(ahci);
|
|
}
|
|
|
|
/**
|
|
* Ensure that the PCI configuration space for the AHCI device is in-line with
|
|
* the AHCI 1.3 specification for initial values.
|
|
*/
|
|
static void test_pci_spec(void)
|
|
{
|
|
AHCIQState *ahci;
|
|
ahci = ahci_boot();
|
|
ahci_test_pci_spec(ahci->dev);
|
|
ahci_shutdown(ahci);
|
|
}
|
|
|
|
/**
|
|
* Engage the PCI AHCI device and sanity check the response.
|
|
* Perform additional PCI config space bringup for the HBA.
|
|
*/
|
|
static void test_pci_enable(void)
|
|
{
|
|
AHCIQState *ahci;
|
|
void *hba_base;
|
|
ahci = ahci_boot();
|
|
ahci_pci_enable(ahci->dev, &hba_base);
|
|
ahci_shutdown(ahci);
|
|
}
|
|
|
|
/**
|
|
* Investigate the memory mapped regions of the HBA,
|
|
* and test them for AHCI specification adherence.
|
|
*/
|
|
static void test_hba_spec(void)
|
|
{
|
|
AHCIQState *ahci;
|
|
void *hba_base;
|
|
|
|
ahci = ahci_boot();
|
|
ahci_pci_enable(ahci->dev, &hba_base);
|
|
ahci_test_hba_spec(ahci->dev, hba_base);
|
|
ahci_shutdown(ahci);
|
|
}
|
|
|
|
/**
|
|
* Engage the HBA functionality of the AHCI PCI device,
|
|
* and bring it into a functional idle state.
|
|
*/
|
|
static void test_hba_enable(void)
|
|
{
|
|
AHCIQState *ahci;
|
|
void *hba_base;
|
|
|
|
ahci = ahci_boot();
|
|
ahci_pci_enable(ahci->dev, &hba_base);
|
|
ahci_hba_enable(ahci->dev, hba_base);
|
|
ahci_shutdown(ahci);
|
|
}
|
|
|
|
/**
|
|
* Bring up the device and issue an IDENTIFY command.
|
|
* Inspect the state of the HBA device and the data returned.
|
|
*/
|
|
static void test_identify(void)
|
|
{
|
|
AHCIQState *ahci;
|
|
void *hba_base;
|
|
|
|
ahci = ahci_boot();
|
|
ahci_pci_enable(ahci->dev, &hba_base);
|
|
ahci_hba_enable(ahci->dev, hba_base);
|
|
ahci_test_identify(ahci->dev, hba_base);
|
|
ahci_shutdown(ahci);
|
|
}
|
|
|
|
/******************************************************************************/
|
|
|
|
int main(int argc, char **argv)
|
|
{
|
|
const char *arch;
|
|
int fd;
|
|
int ret;
|
|
int c;
|
|
|
|
static struct option long_options[] = {
|
|
{"pedantic", no_argument, 0, 'p' },
|
|
{0, 0, 0, 0},
|
|
};
|
|
|
|
/* Should be first to utilize g_test functionality, So we can see errors. */
|
|
g_test_init(&argc, &argv, NULL);
|
|
|
|
while (1) {
|
|
c = getopt_long(argc, argv, "", long_options, NULL);
|
|
if (c == -1) {
|
|
break;
|
|
}
|
|
switch (c) {
|
|
case -1:
|
|
break;
|
|
case 'p':
|
|
ahci_pedantic = 1;
|
|
break;
|
|
default:
|
|
fprintf(stderr, "Unrecognized ahci_test option.\n");
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
/* Check architecture */
|
|
arch = qtest_get_arch();
|
|
if (strcmp(arch, "i386") && strcmp(arch, "x86_64")) {
|
|
g_test_message("Skipping test for non-x86");
|
|
return 0;
|
|
}
|
|
|
|
/* Create a temporary raw image */
|
|
fd = mkstemp(tmp_path);
|
|
g_assert(fd >= 0);
|
|
ret = ftruncate(fd, TEST_IMAGE_SIZE);
|
|
g_assert(ret == 0);
|
|
close(fd);
|
|
|
|
/* Run the tests */
|
|
qtest_add_func("/ahci/sanity", test_sanity);
|
|
qtest_add_func("/ahci/pci_spec", test_pci_spec);
|
|
qtest_add_func("/ahci/pci_enable", test_pci_enable);
|
|
qtest_add_func("/ahci/hba_spec", test_hba_spec);
|
|
qtest_add_func("/ahci/hba_enable", test_hba_enable);
|
|
qtest_add_func("/ahci/identify", test_identify);
|
|
|
|
ret = g_test_run();
|
|
|
|
/* Cleanup */
|
|
unlink(tmp_path);
|
|
|
|
return ret;
|
|
}
|