qemu/hw/intc/riscv_aclint.c
Anup Patel b8fb878aa2 hw/intc: Upgrade the SiFive CLINT implementation to RISC-V ACLINT
The RISC-V ACLINT is more modular and backward compatible with
original SiFive CLINT so instead of duplicating the original
SiFive CLINT implementation we upgrade the current SiFive CLINT
implementation to RISC-V ACLINT implementation.

Signed-off-by: Anup Patel <anup.patel@wdc.com>
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Reviewed-by: Bin Meng <bmeng.cn@gmail.com>
Message-id: 20210831110603.338681-3-anup.patel@wdc.com
Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
2021-09-21 07:56:49 +10:00

461 lines
15 KiB
C

/*
* RISC-V ACLINT (Advanced Core Local Interruptor)
* URL: https://github.com/riscv/riscv-aclint
*
* Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
* Copyright (c) 2017 SiFive, Inc.
* Copyright (c) 2021 Western Digital Corporation or its affiliates.
*
* This provides real-time clock, timer and interprocessor interrupts.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2 or later, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qapi/error.h"
#include "qemu/error-report.h"
#include "qemu/log.h"
#include "qemu/module.h"
#include "hw/sysbus.h"
#include "target/riscv/cpu.h"
#include "hw/qdev-properties.h"
#include "hw/intc/riscv_aclint.h"
#include "qemu/timer.h"
#include "hw/irq.h"
typedef struct riscv_aclint_mtimer_callback {
RISCVAclintMTimerState *s;
int num;
} riscv_aclint_mtimer_callback;
static uint64_t cpu_riscv_read_rtc(uint32_t timebase_freq)
{
return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
timebase_freq, NANOSECONDS_PER_SECOND);
}
/*
* Called when timecmp is written to update the QEMU timer or immediately
* trigger timer interrupt if mtimecmp <= current timer value.
*/
static void riscv_aclint_mtimer_write_timecmp(RISCVAclintMTimerState *mtimer,
RISCVCPU *cpu,
int hartid,
uint64_t value,
uint32_t timebase_freq)
{
uint64_t next;
uint64_t diff;
uint64_t rtc_r = cpu_riscv_read_rtc(timebase_freq);
cpu->env.timecmp = value;
if (cpu->env.timecmp <= rtc_r) {
/*
* If we're setting an MTIMECMP value in the "past",
* immediately raise the timer interrupt
*/
qemu_irq_raise(mtimer->timer_irqs[hartid - mtimer->hartid_base]);
return;
}
/* otherwise, set up the future timer interrupt */
qemu_irq_lower(mtimer->timer_irqs[hartid - mtimer->hartid_base]);
diff = cpu->env.timecmp - rtc_r;
/* back to ns (note args switched in muldiv64) */
uint64_t ns_diff = muldiv64(diff, NANOSECONDS_PER_SECOND, timebase_freq);
/*
* check if ns_diff overflowed and check if the addition would potentially
* overflow
*/
if ((NANOSECONDS_PER_SECOND > timebase_freq && ns_diff < diff) ||
ns_diff > INT64_MAX) {
next = INT64_MAX;
} else {
/*
* as it is very unlikely qemu_clock_get_ns will return a value
* greater than INT64_MAX, no additional check is needed for an
* unsigned integer overflow.
*/
next = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + ns_diff;
/*
* if ns_diff is INT64_MAX next may still be outside the range
* of a signed integer.
*/
next = MIN(next, INT64_MAX);
}
timer_mod(cpu->env.timer, next);
}
/*
* Callback used when the timer set using timer_mod expires.
* Should raise the timer interrupt line
*/
static void riscv_aclint_mtimer_cb(void *opaque)
{
riscv_aclint_mtimer_callback *state = opaque;
qemu_irq_raise(state->s->timer_irqs[state->num]);
}
/* CPU read MTIMER register */
static uint64_t riscv_aclint_mtimer_read(void *opaque, hwaddr addr,
unsigned size)
{
RISCVAclintMTimerState *mtimer = opaque;
if (addr >= mtimer->timecmp_base &&
addr < (mtimer->timecmp_base + (mtimer->num_harts << 3))) {
size_t hartid = mtimer->hartid_base +
((addr - mtimer->timecmp_base) >> 3);
CPUState *cpu = qemu_get_cpu(hartid);
CPURISCVState *env = cpu ? cpu->env_ptr : NULL;
if (!env) {
qemu_log_mask(LOG_GUEST_ERROR,
"aclint-mtimer: invalid hartid: %zu", hartid);
} else if ((addr & 0x7) == 0) {
/* timecmp_lo */
uint64_t timecmp = env->timecmp;
return timecmp & 0xFFFFFFFF;
} else if ((addr & 0x7) == 4) {
/* timecmp_hi */
uint64_t timecmp = env->timecmp;
return (timecmp >> 32) & 0xFFFFFFFF;
} else {
qemu_log_mask(LOG_UNIMP,
"aclint-mtimer: invalid read: %08x", (uint32_t)addr);
return 0;
}
} else if (addr == mtimer->time_base) {
/* time_lo */
return cpu_riscv_read_rtc(mtimer->timebase_freq) & 0xFFFFFFFF;
} else if (addr == mtimer->time_base + 4) {
/* time_hi */
return (cpu_riscv_read_rtc(mtimer->timebase_freq) >> 32) & 0xFFFFFFFF;
}
qemu_log_mask(LOG_UNIMP,
"aclint-mtimer: invalid read: %08x", (uint32_t)addr);
return 0;
}
/* CPU write MTIMER register */
static void riscv_aclint_mtimer_write(void *opaque, hwaddr addr,
uint64_t value, unsigned size)
{
RISCVAclintMTimerState *mtimer = opaque;
if (addr >= mtimer->timecmp_base &&
addr < (mtimer->timecmp_base + (mtimer->num_harts << 3))) {
size_t hartid = mtimer->hartid_base +
((addr - mtimer->timecmp_base) >> 3);
CPUState *cpu = qemu_get_cpu(hartid);
CPURISCVState *env = cpu ? cpu->env_ptr : NULL;
if (!env) {
qemu_log_mask(LOG_GUEST_ERROR,
"aclint-mtimer: invalid hartid: %zu", hartid);
} else if ((addr & 0x7) == 0) {
/* timecmp_lo */
uint64_t timecmp_hi = env->timecmp >> 32;
riscv_aclint_mtimer_write_timecmp(mtimer, RISCV_CPU(cpu), hartid,
timecmp_hi << 32 | (value & 0xFFFFFFFF),
mtimer->timebase_freq);
return;
} else if ((addr & 0x7) == 4) {
/* timecmp_hi */
uint64_t timecmp_lo = env->timecmp;
riscv_aclint_mtimer_write_timecmp(mtimer, RISCV_CPU(cpu), hartid,
value << 32 | (timecmp_lo & 0xFFFFFFFF),
mtimer->timebase_freq);
} else {
qemu_log_mask(LOG_UNIMP,
"aclint-mtimer: invalid timecmp write: %08x",
(uint32_t)addr);
}
return;
} else if (addr == mtimer->time_base) {
/* time_lo */
qemu_log_mask(LOG_UNIMP,
"aclint-mtimer: time_lo write not implemented");
return;
} else if (addr == mtimer->time_base + 4) {
/* time_hi */
qemu_log_mask(LOG_UNIMP,
"aclint-mtimer: time_hi write not implemented");
return;
}
qemu_log_mask(LOG_UNIMP,
"aclint-mtimer: invalid write: %08x", (uint32_t)addr);
}
static const MemoryRegionOps riscv_aclint_mtimer_ops = {
.read = riscv_aclint_mtimer_read,
.write = riscv_aclint_mtimer_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.valid = {
.min_access_size = 4,
.max_access_size = 8
}
};
static Property riscv_aclint_mtimer_properties[] = {
DEFINE_PROP_UINT32("hartid-base", RISCVAclintMTimerState,
hartid_base, 0),
DEFINE_PROP_UINT32("num-harts", RISCVAclintMTimerState, num_harts, 1),
DEFINE_PROP_UINT32("timecmp-base", RISCVAclintMTimerState,
timecmp_base, RISCV_ACLINT_DEFAULT_MTIMECMP),
DEFINE_PROP_UINT32("time-base", RISCVAclintMTimerState,
time_base, RISCV_ACLINT_DEFAULT_MTIME),
DEFINE_PROP_UINT32("aperture-size", RISCVAclintMTimerState,
aperture_size, RISCV_ACLINT_DEFAULT_MTIMER_SIZE),
DEFINE_PROP_UINT32("timebase-freq", RISCVAclintMTimerState,
timebase_freq, 0),
DEFINE_PROP_END_OF_LIST(),
};
static void riscv_aclint_mtimer_realize(DeviceState *dev, Error **errp)
{
RISCVAclintMTimerState *s = RISCV_ACLINT_MTIMER(dev);
int i;
memory_region_init_io(&s->mmio, OBJECT(dev), &riscv_aclint_mtimer_ops,
s, TYPE_RISCV_ACLINT_MTIMER, s->aperture_size);
sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->mmio);
s->timer_irqs = g_malloc(sizeof(qemu_irq) * s->num_harts);
qdev_init_gpio_out(dev, s->timer_irqs, s->num_harts);
/* Claim timer interrupt bits */
for (i = 0; i < s->num_harts; i++) {
RISCVCPU *cpu = RISCV_CPU(qemu_get_cpu(s->hartid_base + i));
if (riscv_cpu_claim_interrupts(cpu, MIP_MTIP) < 0) {
error_report("MTIP already claimed");
exit(1);
}
}
}
static void riscv_aclint_mtimer_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->realize = riscv_aclint_mtimer_realize;
device_class_set_props(dc, riscv_aclint_mtimer_properties);
}
static const TypeInfo riscv_aclint_mtimer_info = {
.name = TYPE_RISCV_ACLINT_MTIMER,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(RISCVAclintMTimerState),
.class_init = riscv_aclint_mtimer_class_init,
};
/*
* Create ACLINT MTIMER device.
*/
DeviceState *riscv_aclint_mtimer_create(hwaddr addr, hwaddr size,
uint32_t hartid_base, uint32_t num_harts,
uint32_t timecmp_base, uint32_t time_base, uint32_t timebase_freq,
bool provide_rdtime)
{
int i;
DeviceState *dev = qdev_new(TYPE_RISCV_ACLINT_MTIMER);
assert(num_harts <= RISCV_ACLINT_MAX_HARTS);
assert(!(addr & 0x7));
assert(!(timecmp_base & 0x7));
assert(!(time_base & 0x7));
qdev_prop_set_uint32(dev, "hartid-base", hartid_base);
qdev_prop_set_uint32(dev, "num-harts", num_harts);
qdev_prop_set_uint32(dev, "timecmp-base", timecmp_base);
qdev_prop_set_uint32(dev, "time-base", time_base);
qdev_prop_set_uint32(dev, "aperture-size", size);
qdev_prop_set_uint32(dev, "timebase-freq", timebase_freq);
sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, addr);
for (i = 0; i < num_harts; i++) {
CPUState *cpu = qemu_get_cpu(hartid_base + i);
RISCVCPU *rvcpu = RISCV_CPU(cpu);
CPURISCVState *env = cpu ? cpu->env_ptr : NULL;
riscv_aclint_mtimer_callback *cb =
g_malloc0(sizeof(riscv_aclint_mtimer_callback));
if (!env) {
g_free(cb);
continue;
}
if (provide_rdtime) {
riscv_cpu_set_rdtime_fn(env, cpu_riscv_read_rtc, timebase_freq);
}
cb->s = RISCV_ACLINT_MTIMER(dev);
cb->num = i;
env->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
&riscv_aclint_mtimer_cb, cb);
env->timecmp = 0;
qdev_connect_gpio_out(dev, i,
qdev_get_gpio_in(DEVICE(rvcpu), IRQ_M_TIMER));
}
return dev;
}
/* CPU read [M|S]SWI register */
static uint64_t riscv_aclint_swi_read(void *opaque, hwaddr addr,
unsigned size)
{
RISCVAclintSwiState *swi = opaque;
if (addr < (swi->num_harts << 2)) {
size_t hartid = swi->hartid_base + (addr >> 2);
CPUState *cpu = qemu_get_cpu(hartid);
CPURISCVState *env = cpu ? cpu->env_ptr : NULL;
if (!env) {
qemu_log_mask(LOG_GUEST_ERROR,
"aclint-swi: invalid hartid: %zu", hartid);
} else if ((addr & 0x3) == 0) {
return (swi->sswi) ? 0 : ((env->mip & MIP_MSIP) > 0);
}
}
qemu_log_mask(LOG_UNIMP,
"aclint-swi: invalid read: %08x", (uint32_t)addr);
return 0;
}
/* CPU write [M|S]SWI register */
static void riscv_aclint_swi_write(void *opaque, hwaddr addr, uint64_t value,
unsigned size)
{
RISCVAclintSwiState *swi = opaque;
if (addr < (swi->num_harts << 2)) {
size_t hartid = swi->hartid_base + (addr >> 2);
CPUState *cpu = qemu_get_cpu(hartid);
CPURISCVState *env = cpu ? cpu->env_ptr : NULL;
if (!env) {
qemu_log_mask(LOG_GUEST_ERROR,
"aclint-swi: invalid hartid: %zu", hartid);
} else if ((addr & 0x3) == 0) {
if (value & 0x1) {
qemu_irq_raise(swi->soft_irqs[hartid - swi->hartid_base]);
} else {
if (!swi->sswi) {
qemu_irq_lower(swi->soft_irqs[hartid - swi->hartid_base]);
}
}
return;
}
}
qemu_log_mask(LOG_UNIMP,
"aclint-swi: invalid write: %08x", (uint32_t)addr);
}
static const MemoryRegionOps riscv_aclint_swi_ops = {
.read = riscv_aclint_swi_read,
.write = riscv_aclint_swi_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.valid = {
.min_access_size = 4,
.max_access_size = 4
}
};
static Property riscv_aclint_swi_properties[] = {
DEFINE_PROP_UINT32("hartid-base", RISCVAclintSwiState, hartid_base, 0),
DEFINE_PROP_UINT32("num-harts", RISCVAclintSwiState, num_harts, 1),
DEFINE_PROP_UINT32("sswi", RISCVAclintSwiState, sswi, false),
DEFINE_PROP_END_OF_LIST(),
};
static void riscv_aclint_swi_realize(DeviceState *dev, Error **errp)
{
RISCVAclintSwiState *swi = RISCV_ACLINT_SWI(dev);
int i;
memory_region_init_io(&swi->mmio, OBJECT(dev), &riscv_aclint_swi_ops, swi,
TYPE_RISCV_ACLINT_SWI, RISCV_ACLINT_SWI_SIZE);
sysbus_init_mmio(SYS_BUS_DEVICE(dev), &swi->mmio);
swi->soft_irqs = g_malloc(sizeof(qemu_irq) * swi->num_harts);
qdev_init_gpio_out(dev, swi->soft_irqs, swi->num_harts);
/* Claim software interrupt bits */
for (i = 0; i < swi->num_harts; i++) {
RISCVCPU *cpu = RISCV_CPU(qemu_get_cpu(swi->hartid_base + i));
/* We don't claim mip.SSIP because it is writeable by software */
if (riscv_cpu_claim_interrupts(cpu, swi->sswi ? 0 : MIP_MSIP) < 0) {
error_report("MSIP already claimed");
exit(1);
}
}
}
static void riscv_aclint_swi_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->realize = riscv_aclint_swi_realize;
device_class_set_props(dc, riscv_aclint_swi_properties);
}
static const TypeInfo riscv_aclint_swi_info = {
.name = TYPE_RISCV_ACLINT_SWI,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(RISCVAclintSwiState),
.class_init = riscv_aclint_swi_class_init,
};
/*
* Create ACLINT [M|S]SWI device.
*/
DeviceState *riscv_aclint_swi_create(hwaddr addr, uint32_t hartid_base,
uint32_t num_harts, bool sswi)
{
int i;
DeviceState *dev = qdev_new(TYPE_RISCV_ACLINT_SWI);
assert(num_harts <= RISCV_ACLINT_MAX_HARTS);
assert(!(addr & 0x3));
qdev_prop_set_uint32(dev, "hartid-base", hartid_base);
qdev_prop_set_uint32(dev, "num-harts", num_harts);
qdev_prop_set_uint32(dev, "sswi", sswi ? true : false);
sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, addr);
for (i = 0; i < num_harts; i++) {
CPUState *cpu = qemu_get_cpu(hartid_base + i);
RISCVCPU *rvcpu = RISCV_CPU(cpu);
qdev_connect_gpio_out(dev, i,
qdev_get_gpio_in(DEVICE(rvcpu),
(sswi) ? IRQ_S_SOFT : IRQ_M_SOFT));
}
return dev;
}
static void riscv_aclint_register_types(void)
{
type_register_static(&riscv_aclint_mtimer_info);
type_register_static(&riscv_aclint_swi_info);
}
type_init(riscv_aclint_register_types)