qemu/hw/virtio/virtio-iommu.c
Markus Armbruster b69c3c21a5 qdev: Unrealize must not fail
Devices may have component devices and buses.

Device realization may fail.  Realization is recursive: a device's
realize() method realizes its components, and device_set_realized()
realizes its buses (which should in turn realize the devices on that
bus, except bus_set_realized() doesn't implement that, yet).

When realization of a component or bus fails, we need to roll back:
unrealize everything we realized so far.  If any of these unrealizes
failed, the device would be left in an inconsistent state.  Must not
happen.

device_set_realized() lets it happen: it ignores errors in the roll
back code starting at label child_realize_fail.

Since realization is recursive, unrealization must be recursive, too.
But how could a partly failed unrealize be rolled back?  We'd have to
re-realize, which can fail.  This design is fundamentally broken.

device_set_realized() does not roll back at all.  Instead, it keeps
unrealizing, ignoring further errors.

It can screw up even for a device with no buses: if the lone
dc->unrealize() fails, it still unregisters vmstate, and calls
listeners' unrealize() callback.

bus_set_realized() does not roll back either.  Instead, it stops
unrealizing.

Fortunately, no unrealize method can fail, as we'll see below.

To fix the design error, drop parameter @errp from all the unrealize
methods.

Any unrealize method that uses @errp now needs an update.  This leads
us to unrealize() methods that can fail.  Merely passing it to another
unrealize method cannot cause failure, though.  Here are the ones that
do other things with @errp:

* virtio_serial_device_unrealize()

  Fails when qbus_set_hotplug_handler() fails, but still does all the
  other work.  On failure, the device would stay realized with its
  resources completely gone.  Oops.  Can't happen, because
  qbus_set_hotplug_handler() can't actually fail here.  Pass
  &error_abort to qbus_set_hotplug_handler() instead.

* hw/ppc/spapr_drc.c's unrealize()

  Fails when object_property_del() fails, but all the other work is
  already done.  On failure, the device would stay realized with its
  vmstate registration gone.  Oops.  Can't happen, because
  object_property_del() can't actually fail here.  Pass &error_abort
  to object_property_del() instead.

* spapr_phb_unrealize()

  Fails and bails out when remove_drcs() fails, but other work is
  already done.  On failure, the device would stay realized with some
  of its resources gone.  Oops.  remove_drcs() fails only when
  chassis_from_bus()'s object_property_get_uint() fails, and it can't
  here.  Pass &error_abort to remove_drcs() instead.

Therefore, no unrealize method can fail before this patch.

device_set_realized()'s recursive unrealization via bus uses
object_property_set_bool().  Can't drop @errp there, so pass
&error_abort.

We similarly unrealize with object_property_set_bool() elsewhere,
always ignoring errors.  Pass &error_abort instead.

Several unrealize methods no longer handle errors from other unrealize
methods: virtio_9p_device_unrealize(),
virtio_input_device_unrealize(), scsi_qdev_unrealize(), ...
Much of the deleted error handling looks wrong anyway.

One unrealize methods no longer ignore such errors:
usb_ehci_pci_exit().

Several realize methods no longer ignore errors when rolling back:
v9fs_device_realize_common(), pci_qdev_unrealize(),
spapr_phb_realize(), usb_qdev_realize(), vfio_ccw_realize(),
virtio_device_realize().

Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20200505152926.18877-17-armbru@redhat.com>
2020-05-15 07:08:14 +02:00

894 lines
28 KiB
C

/*
* virtio-iommu device
*
* Copyright (c) 2020 Red Hat, Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2 or later, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "qemu/iov.h"
#include "qemu-common.h"
#include "hw/qdev-properties.h"
#include "hw/virtio/virtio.h"
#include "sysemu/kvm.h"
#include "qapi/error.h"
#include "qemu/error-report.h"
#include "trace.h"
#include "standard-headers/linux/virtio_ids.h"
#include "hw/virtio/virtio-bus.h"
#include "hw/virtio/virtio-access.h"
#include "hw/virtio/virtio-iommu.h"
#include "hw/pci/pci_bus.h"
#include "hw/pci/pci.h"
/* Max size */
#define VIOMMU_DEFAULT_QUEUE_SIZE 256
typedef struct VirtIOIOMMUDomain {
uint32_t id;
GTree *mappings;
QLIST_HEAD(, VirtIOIOMMUEndpoint) endpoint_list;
} VirtIOIOMMUDomain;
typedef struct VirtIOIOMMUEndpoint {
uint32_t id;
VirtIOIOMMUDomain *domain;
QLIST_ENTRY(VirtIOIOMMUEndpoint) next;
} VirtIOIOMMUEndpoint;
typedef struct VirtIOIOMMUInterval {
uint64_t low;
uint64_t high;
} VirtIOIOMMUInterval;
typedef struct VirtIOIOMMUMapping {
uint64_t phys_addr;
uint32_t flags;
} VirtIOIOMMUMapping;
static inline uint16_t virtio_iommu_get_bdf(IOMMUDevice *dev)
{
return PCI_BUILD_BDF(pci_bus_num(dev->bus), dev->devfn);
}
/**
* The bus number is used for lookup when SID based operations occur.
* In that case we lazily populate the IOMMUPciBus array from the bus hash
* table. At the time the IOMMUPciBus is created (iommu_find_add_as), the bus
* numbers may not be always initialized yet.
*/
static IOMMUPciBus *iommu_find_iommu_pcibus(VirtIOIOMMU *s, uint8_t bus_num)
{
IOMMUPciBus *iommu_pci_bus = s->iommu_pcibus_by_bus_num[bus_num];
if (!iommu_pci_bus) {
GHashTableIter iter;
g_hash_table_iter_init(&iter, s->as_by_busptr);
while (g_hash_table_iter_next(&iter, NULL, (void **)&iommu_pci_bus)) {
if (pci_bus_num(iommu_pci_bus->bus) == bus_num) {
s->iommu_pcibus_by_bus_num[bus_num] = iommu_pci_bus;
return iommu_pci_bus;
}
}
return NULL;
}
return iommu_pci_bus;
}
static IOMMUMemoryRegion *virtio_iommu_mr(VirtIOIOMMU *s, uint32_t sid)
{
uint8_t bus_n, devfn;
IOMMUPciBus *iommu_pci_bus;
IOMMUDevice *dev;
bus_n = PCI_BUS_NUM(sid);
iommu_pci_bus = iommu_find_iommu_pcibus(s, bus_n);
if (iommu_pci_bus) {
devfn = sid & PCI_DEVFN_MAX;
dev = iommu_pci_bus->pbdev[devfn];
if (dev) {
return &dev->iommu_mr;
}
}
return NULL;
}
static gint interval_cmp(gconstpointer a, gconstpointer b, gpointer user_data)
{
VirtIOIOMMUInterval *inta = (VirtIOIOMMUInterval *)a;
VirtIOIOMMUInterval *intb = (VirtIOIOMMUInterval *)b;
if (inta->high < intb->low) {
return -1;
} else if (intb->high < inta->low) {
return 1;
} else {
return 0;
}
}
static void virtio_iommu_detach_endpoint_from_domain(VirtIOIOMMUEndpoint *ep)
{
if (!ep->domain) {
return;
}
QLIST_REMOVE(ep, next);
ep->domain = NULL;
}
static VirtIOIOMMUEndpoint *virtio_iommu_get_endpoint(VirtIOIOMMU *s,
uint32_t ep_id)
{
VirtIOIOMMUEndpoint *ep;
ep = g_tree_lookup(s->endpoints, GUINT_TO_POINTER(ep_id));
if (ep) {
return ep;
}
if (!virtio_iommu_mr(s, ep_id)) {
return NULL;
}
ep = g_malloc0(sizeof(*ep));
ep->id = ep_id;
trace_virtio_iommu_get_endpoint(ep_id);
g_tree_insert(s->endpoints, GUINT_TO_POINTER(ep_id), ep);
return ep;
}
static void virtio_iommu_put_endpoint(gpointer data)
{
VirtIOIOMMUEndpoint *ep = (VirtIOIOMMUEndpoint *)data;
if (ep->domain) {
virtio_iommu_detach_endpoint_from_domain(ep);
}
trace_virtio_iommu_put_endpoint(ep->id);
g_free(ep);
}
static VirtIOIOMMUDomain *virtio_iommu_get_domain(VirtIOIOMMU *s,
uint32_t domain_id)
{
VirtIOIOMMUDomain *domain;
domain = g_tree_lookup(s->domains, GUINT_TO_POINTER(domain_id));
if (domain) {
return domain;
}
domain = g_malloc0(sizeof(*domain));
domain->id = domain_id;
domain->mappings = g_tree_new_full((GCompareDataFunc)interval_cmp,
NULL, (GDestroyNotify)g_free,
(GDestroyNotify)g_free);
g_tree_insert(s->domains, GUINT_TO_POINTER(domain_id), domain);
QLIST_INIT(&domain->endpoint_list);
trace_virtio_iommu_get_domain(domain_id);
return domain;
}
static void virtio_iommu_put_domain(gpointer data)
{
VirtIOIOMMUDomain *domain = (VirtIOIOMMUDomain *)data;
VirtIOIOMMUEndpoint *iter, *tmp;
QLIST_FOREACH_SAFE(iter, &domain->endpoint_list, next, tmp) {
virtio_iommu_detach_endpoint_from_domain(iter);
}
g_tree_destroy(domain->mappings);
trace_virtio_iommu_put_domain(domain->id);
g_free(domain);
}
static AddressSpace *virtio_iommu_find_add_as(PCIBus *bus, void *opaque,
int devfn)
{
VirtIOIOMMU *s = opaque;
IOMMUPciBus *sbus = g_hash_table_lookup(s->as_by_busptr, bus);
static uint32_t mr_index;
IOMMUDevice *sdev;
if (!sbus) {
sbus = g_malloc0(sizeof(IOMMUPciBus) +
sizeof(IOMMUDevice *) * PCI_DEVFN_MAX);
sbus->bus = bus;
g_hash_table_insert(s->as_by_busptr, bus, sbus);
}
sdev = sbus->pbdev[devfn];
if (!sdev) {
char *name = g_strdup_printf("%s-%d-%d",
TYPE_VIRTIO_IOMMU_MEMORY_REGION,
mr_index++, devfn);
sdev = sbus->pbdev[devfn] = g_malloc0(sizeof(IOMMUDevice));
sdev->viommu = s;
sdev->bus = bus;
sdev->devfn = devfn;
trace_virtio_iommu_init_iommu_mr(name);
memory_region_init_iommu(&sdev->iommu_mr, sizeof(sdev->iommu_mr),
TYPE_VIRTIO_IOMMU_MEMORY_REGION,
OBJECT(s), name,
UINT64_MAX);
address_space_init(&sdev->as,
MEMORY_REGION(&sdev->iommu_mr), TYPE_VIRTIO_IOMMU);
g_free(name);
}
return &sdev->as;
}
static int virtio_iommu_attach(VirtIOIOMMU *s,
struct virtio_iommu_req_attach *req)
{
uint32_t domain_id = le32_to_cpu(req->domain);
uint32_t ep_id = le32_to_cpu(req->endpoint);
VirtIOIOMMUDomain *domain;
VirtIOIOMMUEndpoint *ep;
trace_virtio_iommu_attach(domain_id, ep_id);
ep = virtio_iommu_get_endpoint(s, ep_id);
if (!ep) {
return VIRTIO_IOMMU_S_NOENT;
}
if (ep->domain) {
VirtIOIOMMUDomain *previous_domain = ep->domain;
/*
* the device is already attached to a domain,
* detach it first
*/
virtio_iommu_detach_endpoint_from_domain(ep);
if (QLIST_EMPTY(&previous_domain->endpoint_list)) {
g_tree_remove(s->domains, GUINT_TO_POINTER(previous_domain->id));
}
}
domain = virtio_iommu_get_domain(s, domain_id);
QLIST_INSERT_HEAD(&domain->endpoint_list, ep, next);
ep->domain = domain;
return VIRTIO_IOMMU_S_OK;
}
static int virtio_iommu_detach(VirtIOIOMMU *s,
struct virtio_iommu_req_detach *req)
{
uint32_t domain_id = le32_to_cpu(req->domain);
uint32_t ep_id = le32_to_cpu(req->endpoint);
VirtIOIOMMUDomain *domain;
VirtIOIOMMUEndpoint *ep;
trace_virtio_iommu_detach(domain_id, ep_id);
ep = g_tree_lookup(s->endpoints, GUINT_TO_POINTER(ep_id));
if (!ep) {
return VIRTIO_IOMMU_S_NOENT;
}
domain = ep->domain;
if (!domain || domain->id != domain_id) {
return VIRTIO_IOMMU_S_INVAL;
}
virtio_iommu_detach_endpoint_from_domain(ep);
if (QLIST_EMPTY(&domain->endpoint_list)) {
g_tree_remove(s->domains, GUINT_TO_POINTER(domain->id));
}
return VIRTIO_IOMMU_S_OK;
}
static int virtio_iommu_map(VirtIOIOMMU *s,
struct virtio_iommu_req_map *req)
{
uint32_t domain_id = le32_to_cpu(req->domain);
uint64_t phys_start = le64_to_cpu(req->phys_start);
uint64_t virt_start = le64_to_cpu(req->virt_start);
uint64_t virt_end = le64_to_cpu(req->virt_end);
uint32_t flags = le32_to_cpu(req->flags);
VirtIOIOMMUDomain *domain;
VirtIOIOMMUInterval *interval;
VirtIOIOMMUMapping *mapping;
if (flags & ~VIRTIO_IOMMU_MAP_F_MASK) {
return VIRTIO_IOMMU_S_INVAL;
}
domain = g_tree_lookup(s->domains, GUINT_TO_POINTER(domain_id));
if (!domain) {
return VIRTIO_IOMMU_S_NOENT;
}
interval = g_malloc0(sizeof(*interval));
interval->low = virt_start;
interval->high = virt_end;
mapping = g_tree_lookup(domain->mappings, (gpointer)interval);
if (mapping) {
g_free(interval);
return VIRTIO_IOMMU_S_INVAL;
}
trace_virtio_iommu_map(domain_id, virt_start, virt_end, phys_start, flags);
mapping = g_malloc0(sizeof(*mapping));
mapping->phys_addr = phys_start;
mapping->flags = flags;
g_tree_insert(domain->mappings, interval, mapping);
return VIRTIO_IOMMU_S_OK;
}
static int virtio_iommu_unmap(VirtIOIOMMU *s,
struct virtio_iommu_req_unmap *req)
{
uint32_t domain_id = le32_to_cpu(req->domain);
uint64_t virt_start = le64_to_cpu(req->virt_start);
uint64_t virt_end = le64_to_cpu(req->virt_end);
VirtIOIOMMUMapping *iter_val;
VirtIOIOMMUInterval interval, *iter_key;
VirtIOIOMMUDomain *domain;
int ret = VIRTIO_IOMMU_S_OK;
trace_virtio_iommu_unmap(domain_id, virt_start, virt_end);
domain = g_tree_lookup(s->domains, GUINT_TO_POINTER(domain_id));
if (!domain) {
return VIRTIO_IOMMU_S_NOENT;
}
interval.low = virt_start;
interval.high = virt_end;
while (g_tree_lookup_extended(domain->mappings, &interval,
(void **)&iter_key, (void**)&iter_val)) {
uint64_t current_low = iter_key->low;
uint64_t current_high = iter_key->high;
if (interval.low <= current_low && interval.high >= current_high) {
g_tree_remove(domain->mappings, iter_key);
trace_virtio_iommu_unmap_done(domain_id, current_low, current_high);
} else {
ret = VIRTIO_IOMMU_S_RANGE;
break;
}
}
return ret;
}
static int virtio_iommu_iov_to_req(struct iovec *iov,
unsigned int iov_cnt,
void *req, size_t req_sz)
{
size_t sz, payload_sz = req_sz - sizeof(struct virtio_iommu_req_tail);
sz = iov_to_buf(iov, iov_cnt, 0, req, payload_sz);
if (unlikely(sz != payload_sz)) {
return VIRTIO_IOMMU_S_INVAL;
}
return 0;
}
#define virtio_iommu_handle_req(__req) \
static int virtio_iommu_handle_ ## __req(VirtIOIOMMU *s, \
struct iovec *iov, \
unsigned int iov_cnt) \
{ \
struct virtio_iommu_req_ ## __req req; \
int ret = virtio_iommu_iov_to_req(iov, iov_cnt, &req, sizeof(req)); \
\
return ret ? ret : virtio_iommu_ ## __req(s, &req); \
}
virtio_iommu_handle_req(attach)
virtio_iommu_handle_req(detach)
virtio_iommu_handle_req(map)
virtio_iommu_handle_req(unmap)
static void virtio_iommu_handle_command(VirtIODevice *vdev, VirtQueue *vq)
{
VirtIOIOMMU *s = VIRTIO_IOMMU(vdev);
struct virtio_iommu_req_head head;
struct virtio_iommu_req_tail tail = {};
VirtQueueElement *elem;
unsigned int iov_cnt;
struct iovec *iov;
size_t sz;
for (;;) {
elem = virtqueue_pop(vq, sizeof(VirtQueueElement));
if (!elem) {
return;
}
if (iov_size(elem->in_sg, elem->in_num) < sizeof(tail) ||
iov_size(elem->out_sg, elem->out_num) < sizeof(head)) {
virtio_error(vdev, "virtio-iommu bad head/tail size");
virtqueue_detach_element(vq, elem, 0);
g_free(elem);
break;
}
iov_cnt = elem->out_num;
iov = elem->out_sg;
sz = iov_to_buf(iov, iov_cnt, 0, &head, sizeof(head));
if (unlikely(sz != sizeof(head))) {
tail.status = VIRTIO_IOMMU_S_DEVERR;
goto out;
}
qemu_mutex_lock(&s->mutex);
switch (head.type) {
case VIRTIO_IOMMU_T_ATTACH:
tail.status = virtio_iommu_handle_attach(s, iov, iov_cnt);
break;
case VIRTIO_IOMMU_T_DETACH:
tail.status = virtio_iommu_handle_detach(s, iov, iov_cnt);
break;
case VIRTIO_IOMMU_T_MAP:
tail.status = virtio_iommu_handle_map(s, iov, iov_cnt);
break;
case VIRTIO_IOMMU_T_UNMAP:
tail.status = virtio_iommu_handle_unmap(s, iov, iov_cnt);
break;
default:
tail.status = VIRTIO_IOMMU_S_UNSUPP;
}
qemu_mutex_unlock(&s->mutex);
out:
sz = iov_from_buf(elem->in_sg, elem->in_num, 0,
&tail, sizeof(tail));
assert(sz == sizeof(tail));
virtqueue_push(vq, elem, sizeof(tail));
virtio_notify(vdev, vq);
g_free(elem);
}
}
static void virtio_iommu_report_fault(VirtIOIOMMU *viommu, uint8_t reason,
int flags, uint32_t endpoint,
uint64_t address)
{
VirtIODevice *vdev = &viommu->parent_obj;
VirtQueue *vq = viommu->event_vq;
struct virtio_iommu_fault fault;
VirtQueueElement *elem;
size_t sz;
memset(&fault, 0, sizeof(fault));
fault.reason = reason;
fault.flags = cpu_to_le32(flags);
fault.endpoint = cpu_to_le32(endpoint);
fault.address = cpu_to_le64(address);
elem = virtqueue_pop(vq, sizeof(VirtQueueElement));
if (!elem) {
error_report_once(
"no buffer available in event queue to report event");
return;
}
if (iov_size(elem->in_sg, elem->in_num) < sizeof(fault)) {
virtio_error(vdev, "error buffer of wrong size");
virtqueue_detach_element(vq, elem, 0);
g_free(elem);
return;
}
sz = iov_from_buf(elem->in_sg, elem->in_num, 0,
&fault, sizeof(fault));
assert(sz == sizeof(fault));
trace_virtio_iommu_report_fault(reason, flags, endpoint, address);
virtqueue_push(vq, elem, sz);
virtio_notify(vdev, vq);
g_free(elem);
}
static IOMMUTLBEntry virtio_iommu_translate(IOMMUMemoryRegion *mr, hwaddr addr,
IOMMUAccessFlags flag,
int iommu_idx)
{
IOMMUDevice *sdev = container_of(mr, IOMMUDevice, iommu_mr);
VirtIOIOMMUInterval interval, *mapping_key;
VirtIOIOMMUMapping *mapping_value;
VirtIOIOMMU *s = sdev->viommu;
bool read_fault, write_fault;
VirtIOIOMMUEndpoint *ep;
uint32_t sid, flags;
bool bypass_allowed;
bool found;
interval.low = addr;
interval.high = addr + 1;
IOMMUTLBEntry entry = {
.target_as = &address_space_memory,
.iova = addr,
.translated_addr = addr,
.addr_mask = (1 << ctz32(s->config.page_size_mask)) - 1,
.perm = IOMMU_NONE,
};
bypass_allowed = virtio_vdev_has_feature(&s->parent_obj,
VIRTIO_IOMMU_F_BYPASS);
sid = virtio_iommu_get_bdf(sdev);
trace_virtio_iommu_translate(mr->parent_obj.name, sid, addr, flag);
qemu_mutex_lock(&s->mutex);
ep = g_tree_lookup(s->endpoints, GUINT_TO_POINTER(sid));
if (!ep) {
if (!bypass_allowed) {
error_report_once("%s sid=%d is not known!!", __func__, sid);
virtio_iommu_report_fault(s, VIRTIO_IOMMU_FAULT_R_UNKNOWN,
VIRTIO_IOMMU_FAULT_F_ADDRESS,
sid, addr);
} else {
entry.perm = flag;
}
goto unlock;
}
if (!ep->domain) {
if (!bypass_allowed) {
error_report_once("%s %02x:%02x.%01x not attached to any domain",
__func__, PCI_BUS_NUM(sid),
PCI_SLOT(sid), PCI_FUNC(sid));
virtio_iommu_report_fault(s, VIRTIO_IOMMU_FAULT_R_DOMAIN,
VIRTIO_IOMMU_FAULT_F_ADDRESS,
sid, addr);
} else {
entry.perm = flag;
}
goto unlock;
}
found = g_tree_lookup_extended(ep->domain->mappings, (gpointer)(&interval),
(void **)&mapping_key,
(void **)&mapping_value);
if (!found) {
error_report_once("%s no mapping for 0x%"PRIx64" for sid=%d",
__func__, addr, sid);
virtio_iommu_report_fault(s, VIRTIO_IOMMU_FAULT_R_MAPPING,
VIRTIO_IOMMU_FAULT_F_ADDRESS,
sid, addr);
goto unlock;
}
read_fault = (flag & IOMMU_RO) &&
!(mapping_value->flags & VIRTIO_IOMMU_MAP_F_READ);
write_fault = (flag & IOMMU_WO) &&
!(mapping_value->flags & VIRTIO_IOMMU_MAP_F_WRITE);
flags = read_fault ? VIRTIO_IOMMU_FAULT_F_READ : 0;
flags |= write_fault ? VIRTIO_IOMMU_FAULT_F_WRITE : 0;
if (flags) {
error_report_once("%s permission error on 0x%"PRIx64"(%d): allowed=%d",
__func__, addr, flag, mapping_value->flags);
flags |= VIRTIO_IOMMU_FAULT_F_ADDRESS;
virtio_iommu_report_fault(s, VIRTIO_IOMMU_FAULT_R_MAPPING,
flags | VIRTIO_IOMMU_FAULT_F_ADDRESS,
sid, addr);
goto unlock;
}
entry.translated_addr = addr - mapping_key->low + mapping_value->phys_addr;
entry.perm = flag;
trace_virtio_iommu_translate_out(addr, entry.translated_addr, sid);
unlock:
qemu_mutex_unlock(&s->mutex);
return entry;
}
static void virtio_iommu_get_config(VirtIODevice *vdev, uint8_t *config_data)
{
VirtIOIOMMU *dev = VIRTIO_IOMMU(vdev);
struct virtio_iommu_config *config = &dev->config;
trace_virtio_iommu_get_config(config->page_size_mask,
config->input_range.start,
config->input_range.end,
config->domain_range.end,
config->probe_size);
memcpy(config_data, &dev->config, sizeof(struct virtio_iommu_config));
}
static void virtio_iommu_set_config(VirtIODevice *vdev,
const uint8_t *config_data)
{
struct virtio_iommu_config config;
memcpy(&config, config_data, sizeof(struct virtio_iommu_config));
trace_virtio_iommu_set_config(config.page_size_mask,
config.input_range.start,
config.input_range.end,
config.domain_range.end,
config.probe_size);
}
static uint64_t virtio_iommu_get_features(VirtIODevice *vdev, uint64_t f,
Error **errp)
{
VirtIOIOMMU *dev = VIRTIO_IOMMU(vdev);
f |= dev->features;
trace_virtio_iommu_get_features(f);
return f;
}
static gint int_cmp(gconstpointer a, gconstpointer b, gpointer user_data)
{
guint ua = GPOINTER_TO_UINT(a);
guint ub = GPOINTER_TO_UINT(b);
return (ua > ub) - (ua < ub);
}
static void virtio_iommu_device_realize(DeviceState *dev, Error **errp)
{
VirtIODevice *vdev = VIRTIO_DEVICE(dev);
VirtIOIOMMU *s = VIRTIO_IOMMU(dev);
virtio_init(vdev, "virtio-iommu", VIRTIO_ID_IOMMU,
sizeof(struct virtio_iommu_config));
memset(s->iommu_pcibus_by_bus_num, 0, sizeof(s->iommu_pcibus_by_bus_num));
s->req_vq = virtio_add_queue(vdev, VIOMMU_DEFAULT_QUEUE_SIZE,
virtio_iommu_handle_command);
s->event_vq = virtio_add_queue(vdev, VIOMMU_DEFAULT_QUEUE_SIZE, NULL);
s->config.page_size_mask = TARGET_PAGE_MASK;
s->config.input_range.end = -1UL;
s->config.domain_range.end = 32;
virtio_add_feature(&s->features, VIRTIO_RING_F_EVENT_IDX);
virtio_add_feature(&s->features, VIRTIO_RING_F_INDIRECT_DESC);
virtio_add_feature(&s->features, VIRTIO_F_VERSION_1);
virtio_add_feature(&s->features, VIRTIO_IOMMU_F_INPUT_RANGE);
virtio_add_feature(&s->features, VIRTIO_IOMMU_F_DOMAIN_RANGE);
virtio_add_feature(&s->features, VIRTIO_IOMMU_F_MAP_UNMAP);
virtio_add_feature(&s->features, VIRTIO_IOMMU_F_BYPASS);
virtio_add_feature(&s->features, VIRTIO_IOMMU_F_MMIO);
qemu_mutex_init(&s->mutex);
s->as_by_busptr = g_hash_table_new_full(NULL, NULL, NULL, g_free);
if (s->primary_bus) {
pci_setup_iommu(s->primary_bus, virtio_iommu_find_add_as, s);
} else {
error_setg(errp, "VIRTIO-IOMMU is not attached to any PCI bus!");
}
}
static void virtio_iommu_device_unrealize(DeviceState *dev)
{
VirtIODevice *vdev = VIRTIO_DEVICE(dev);
VirtIOIOMMU *s = VIRTIO_IOMMU(dev);
g_hash_table_destroy(s->as_by_busptr);
g_tree_destroy(s->domains);
g_tree_destroy(s->endpoints);
virtio_delete_queue(s->req_vq);
virtio_delete_queue(s->event_vq);
virtio_cleanup(vdev);
}
static void virtio_iommu_device_reset(VirtIODevice *vdev)
{
VirtIOIOMMU *s = VIRTIO_IOMMU(vdev);
trace_virtio_iommu_device_reset();
if (s->domains) {
g_tree_destroy(s->domains);
}
if (s->endpoints) {
g_tree_destroy(s->endpoints);
}
s->domains = g_tree_new_full((GCompareDataFunc)int_cmp,
NULL, NULL, virtio_iommu_put_domain);
s->endpoints = g_tree_new_full((GCompareDataFunc)int_cmp,
NULL, NULL, virtio_iommu_put_endpoint);
}
static void virtio_iommu_set_status(VirtIODevice *vdev, uint8_t status)
{
trace_virtio_iommu_device_status(status);
}
static void virtio_iommu_instance_init(Object *obj)
{
}
#define VMSTATE_INTERVAL \
{ \
.name = "interval", \
.version_id = 1, \
.minimum_version_id = 1, \
.fields = (VMStateField[]) { \
VMSTATE_UINT64(low, VirtIOIOMMUInterval), \
VMSTATE_UINT64(high, VirtIOIOMMUInterval), \
VMSTATE_END_OF_LIST() \
} \
}
#define VMSTATE_MAPPING \
{ \
.name = "mapping", \
.version_id = 1, \
.minimum_version_id = 1, \
.fields = (VMStateField[]) { \
VMSTATE_UINT64(phys_addr, VirtIOIOMMUMapping),\
VMSTATE_UINT32(flags, VirtIOIOMMUMapping), \
VMSTATE_END_OF_LIST() \
}, \
}
static const VMStateDescription vmstate_interval_mapping[2] = {
VMSTATE_MAPPING, /* value */
VMSTATE_INTERVAL /* key */
};
static int domain_preload(void *opaque)
{
VirtIOIOMMUDomain *domain = opaque;
domain->mappings = g_tree_new_full((GCompareDataFunc)interval_cmp,
NULL, g_free, g_free);
return 0;
}
static const VMStateDescription vmstate_endpoint = {
.name = "endpoint",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32(id, VirtIOIOMMUEndpoint),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription vmstate_domain = {
.name = "domain",
.version_id = 1,
.minimum_version_id = 1,
.pre_load = domain_preload,
.fields = (VMStateField[]) {
VMSTATE_UINT32(id, VirtIOIOMMUDomain),
VMSTATE_GTREE_V(mappings, VirtIOIOMMUDomain, 1,
vmstate_interval_mapping,
VirtIOIOMMUInterval, VirtIOIOMMUMapping),
VMSTATE_QLIST_V(endpoint_list, VirtIOIOMMUDomain, 1,
vmstate_endpoint, VirtIOIOMMUEndpoint, next),
VMSTATE_END_OF_LIST()
}
};
static gboolean reconstruct_endpoints(gpointer key, gpointer value,
gpointer data)
{
VirtIOIOMMU *s = (VirtIOIOMMU *)data;
VirtIOIOMMUDomain *d = (VirtIOIOMMUDomain *)value;
VirtIOIOMMUEndpoint *iter;
QLIST_FOREACH(iter, &d->endpoint_list, next) {
iter->domain = d;
g_tree_insert(s->endpoints, GUINT_TO_POINTER(iter->id), iter);
}
return false; /* continue the domain traversal */
}
static int iommu_post_load(void *opaque, int version_id)
{
VirtIOIOMMU *s = opaque;
g_tree_foreach(s->domains, reconstruct_endpoints, s);
return 0;
}
static const VMStateDescription vmstate_virtio_iommu_device = {
.name = "virtio-iommu-device",
.minimum_version_id = 1,
.version_id = 1,
.post_load = iommu_post_load,
.fields = (VMStateField[]) {
VMSTATE_GTREE_DIRECT_KEY_V(domains, VirtIOIOMMU, 1,
&vmstate_domain, VirtIOIOMMUDomain),
VMSTATE_END_OF_LIST()
},
};
static const VMStateDescription vmstate_virtio_iommu = {
.name = "virtio-iommu",
.minimum_version_id = 1,
.priority = MIG_PRI_IOMMU,
.version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_VIRTIO_DEVICE,
VMSTATE_END_OF_LIST()
},
};
static Property virtio_iommu_properties[] = {
DEFINE_PROP_LINK("primary-bus", VirtIOIOMMU, primary_bus, "PCI", PCIBus *),
DEFINE_PROP_END_OF_LIST(),
};
static void virtio_iommu_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
VirtioDeviceClass *vdc = VIRTIO_DEVICE_CLASS(klass);
device_class_set_props(dc, virtio_iommu_properties);
dc->vmsd = &vmstate_virtio_iommu;
set_bit(DEVICE_CATEGORY_MISC, dc->categories);
vdc->realize = virtio_iommu_device_realize;
vdc->unrealize = virtio_iommu_device_unrealize;
vdc->reset = virtio_iommu_device_reset;
vdc->get_config = virtio_iommu_get_config;
vdc->set_config = virtio_iommu_set_config;
vdc->get_features = virtio_iommu_get_features;
vdc->set_status = virtio_iommu_set_status;
vdc->vmsd = &vmstate_virtio_iommu_device;
}
static void virtio_iommu_memory_region_class_init(ObjectClass *klass,
void *data)
{
IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
imrc->translate = virtio_iommu_translate;
}
static const TypeInfo virtio_iommu_info = {
.name = TYPE_VIRTIO_IOMMU,
.parent = TYPE_VIRTIO_DEVICE,
.instance_size = sizeof(VirtIOIOMMU),
.instance_init = virtio_iommu_instance_init,
.class_init = virtio_iommu_class_init,
};
static const TypeInfo virtio_iommu_memory_region_info = {
.parent = TYPE_IOMMU_MEMORY_REGION,
.name = TYPE_VIRTIO_IOMMU_MEMORY_REGION,
.class_init = virtio_iommu_memory_region_class_init,
};
static void virtio_register_types(void)
{
type_register_static(&virtio_iommu_info);
type_register_static(&virtio_iommu_memory_region_info);
}
type_init(virtio_register_types)