qemu/hw/net/etraxfs_eth.c
Eric Blake f394b2e20d qapi: Change Netdev into a flat union
This is a mostly-mechanical conversion that creates a new flat
union 'Netdev' QAPI type that covers all the branches of the
former 'NetClientOptions' simple union, where the branches are
now listed in a new 'NetClientDriver' enum rather than generated
from the simple union.  The existence of a flat union has no
change to the command line syntax accepted for new code, and
will make it possible for a future patch to switch the QMP
command to parse a boxed union for no change to valid QMP; but
it does have some ripple effect on the C code when dealing with
the new types.

While making the conversion, note that the 'NetLegacy' type
remains unchanged: it applies only to legacy command line options,
and will not be ported to QMP, so it should remain a wrapper
around a simple union; to avoid confusion, the type named
'NetClientOptions' is now gone, and we introduce 'NetLegacyOptions'
in its place.  Then, in the C code, we convert from NetLegacy to
Netdev as soon as possible, so that the bulk of the net stack
only has to deal with one QAPI type, not two.  Note that since
the old legacy code always rejected 'hubport', we can just omit
that branch from the new 'NetLegacyOptions' simple union.

Based on an idea originally by Zoltán Kővágó <DirtY.iCE.hu@gmail.com>:
Message-Id: <01a527fbf1a5de880091f98cf011616a78adeeee.1441627176.git.DirtY.iCE.hu@gmail.com>
although the sed script in that patch no longer applies due to
other changes in the tree since then, and I also did some manual
cleanups (such as fixing whitespace to keep checkpatch happy).

Signed-off-by: Eric Blake <eblake@redhat.com>
Message-Id: <1468468228-27827-13-git-send-email-eblake@redhat.com>
Reviewed-by: Markus Armbruster <armbru@redhat.com>
[Fixup from Eric squashed in]
Signed-off-by: Markus Armbruster <armbru@redhat.com>
2016-07-19 20:18:02 +02:00

649 lines
16 KiB
C

/*
* QEMU ETRAX Ethernet Controller.
*
* Copyright (c) 2008 Edgar E. Iglesias, Axis Communications AB.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "qemu/osdep.h"
#include "hw/sysbus.h"
#include "net/net.h"
#include "hw/cris/etraxfs.h"
#include "qemu/error-report.h"
#define D(x)
/* Advertisement control register. */
#define ADVERTISE_10HALF 0x0020 /* Try for 10mbps half-duplex */
#define ADVERTISE_10FULL 0x0040 /* Try for 10mbps full-duplex */
#define ADVERTISE_100HALF 0x0080 /* Try for 100mbps half-duplex */
#define ADVERTISE_100FULL 0x0100 /* Try for 100mbps full-duplex */
/*
* The MDIO extensions in the TDK PHY model were reversed engineered from the
* linux driver (PHYID and Diagnostics reg).
* TODO: Add friendly names for the register nums.
*/
struct qemu_phy
{
uint32_t regs[32];
int link;
unsigned int (*read)(struct qemu_phy *phy, unsigned int req);
void (*write)(struct qemu_phy *phy, unsigned int req, unsigned int data);
};
static unsigned int tdk_read(struct qemu_phy *phy, unsigned int req)
{
int regnum;
unsigned r = 0;
regnum = req & 0x1f;
switch (regnum) {
case 1:
if (!phy->link) {
break;
}
/* MR1. */
/* Speeds and modes. */
r |= (1 << 13) | (1 << 14);
r |= (1 << 11) | (1 << 12);
r |= (1 << 5); /* Autoneg complete. */
r |= (1 << 3); /* Autoneg able. */
r |= (1 << 2); /* link. */
break;
case 5:
/* Link partner ability.
We are kind; always agree with whatever best mode
the guest advertises. */
r = 1 << 14; /* Success. */
/* Copy advertised modes. */
r |= phy->regs[4] & (15 << 5);
/* Autoneg support. */
r |= 1;
break;
case 18:
{
/* Diagnostics reg. */
int duplex = 0;
int speed_100 = 0;
if (!phy->link) {
break;
}
/* Are we advertising 100 half or 100 duplex ? */
speed_100 = !!(phy->regs[4] & ADVERTISE_100HALF);
speed_100 |= !!(phy->regs[4] & ADVERTISE_100FULL);
/* Are we advertising 10 duplex or 100 duplex ? */
duplex = !!(phy->regs[4] & ADVERTISE_100FULL);
duplex |= !!(phy->regs[4] & ADVERTISE_10FULL);
r = (speed_100 << 10) | (duplex << 11);
}
break;
default:
r = phy->regs[regnum];
break;
}
D(printf("\n%s %x = reg[%d]\n", __func__, r, regnum));
return r;
}
static void
tdk_write(struct qemu_phy *phy, unsigned int req, unsigned int data)
{
int regnum;
regnum = req & 0x1f;
D(printf("%s reg[%d] = %x\n", __func__, regnum, data));
switch (regnum) {
default:
phy->regs[regnum] = data;
break;
}
}
static void
tdk_init(struct qemu_phy *phy)
{
phy->regs[0] = 0x3100;
/* PHY Id. */
phy->regs[2] = 0x0300;
phy->regs[3] = 0xe400;
/* Autonegotiation advertisement reg. */
phy->regs[4] = 0x01E1;
phy->link = 1;
phy->read = tdk_read;
phy->write = tdk_write;
}
struct qemu_mdio
{
/* bus. */
int mdc;
int mdio;
/* decoder. */
enum {
PREAMBLE,
SOF,
OPC,
ADDR,
REQ,
TURNAROUND,
DATA
} state;
unsigned int drive;
unsigned int cnt;
unsigned int addr;
unsigned int opc;
unsigned int req;
unsigned int data;
struct qemu_phy *devs[32];
};
static void
mdio_attach(struct qemu_mdio *bus, struct qemu_phy *phy, unsigned int addr)
{
bus->devs[addr & 0x1f] = phy;
}
#ifdef USE_THIS_DEAD_CODE
static void
mdio_detach(struct qemu_mdio *bus, struct qemu_phy *phy, unsigned int addr)
{
bus->devs[addr & 0x1f] = NULL;
}
#endif
static void mdio_read_req(struct qemu_mdio *bus)
{
struct qemu_phy *phy;
phy = bus->devs[bus->addr];
if (phy && phy->read) {
bus->data = phy->read(phy, bus->req);
} else {
bus->data = 0xffff;
}
}
static void mdio_write_req(struct qemu_mdio *bus)
{
struct qemu_phy *phy;
phy = bus->devs[bus->addr];
if (phy && phy->write) {
phy->write(phy, bus->req, bus->data);
}
}
static void mdio_cycle(struct qemu_mdio *bus)
{
bus->cnt++;
D(printf("mdc=%d mdio=%d state=%d cnt=%d drv=%d\n",
bus->mdc, bus->mdio, bus->state, bus->cnt, bus->drive));
#if 0
if (bus->mdc) {
printf("%d", bus->mdio);
}
#endif
switch (bus->state) {
case PREAMBLE:
if (bus->mdc) {
if (bus->cnt >= (32 * 2) && !bus->mdio) {
bus->cnt = 0;
bus->state = SOF;
bus->data = 0;
}
}
break;
case SOF:
if (bus->mdc) {
if (bus->mdio != 1) {
printf("WARNING: no SOF\n");
}
if (bus->cnt == 1*2) {
bus->cnt = 0;
bus->opc = 0;
bus->state = OPC;
}
}
break;
case OPC:
if (bus->mdc) {
bus->opc <<= 1;
bus->opc |= bus->mdio & 1;
if (bus->cnt == 2*2) {
bus->cnt = 0;
bus->addr = 0;
bus->state = ADDR;
}
}
break;
case ADDR:
if (bus->mdc) {
bus->addr <<= 1;
bus->addr |= bus->mdio & 1;
if (bus->cnt == 5*2) {
bus->cnt = 0;
bus->req = 0;
bus->state = REQ;
}
}
break;
case REQ:
if (bus->mdc) {
bus->req <<= 1;
bus->req |= bus->mdio & 1;
if (bus->cnt == 5*2) {
bus->cnt = 0;
bus->state = TURNAROUND;
}
}
break;
case TURNAROUND:
if (bus->mdc && bus->cnt == 2*2) {
bus->mdio = 0;
bus->cnt = 0;
if (bus->opc == 2) {
bus->drive = 1;
mdio_read_req(bus);
bus->mdio = bus->data & 1;
}
bus->state = DATA;
}
break;
case DATA:
if (!bus->mdc) {
if (bus->drive) {
bus->mdio = !!(bus->data & (1 << 15));
bus->data <<= 1;
}
} else {
if (!bus->drive) {
bus->data <<= 1;
bus->data |= bus->mdio;
}
if (bus->cnt == 16 * 2) {
bus->cnt = 0;
bus->state = PREAMBLE;
if (!bus->drive) {
mdio_write_req(bus);
}
bus->drive = 0;
}
}
break;
default:
break;
}
}
/* ETRAX-FS Ethernet MAC block starts here. */
#define RW_MA0_LO 0x00
#define RW_MA0_HI 0x01
#define RW_MA1_LO 0x02
#define RW_MA1_HI 0x03
#define RW_GA_LO 0x04
#define RW_GA_HI 0x05
#define RW_GEN_CTRL 0x06
#define RW_REC_CTRL 0x07
#define RW_TR_CTRL 0x08
#define RW_CLR_ERR 0x09
#define RW_MGM_CTRL 0x0a
#define R_STAT 0x0b
#define FS_ETH_MAX_REGS 0x17
#define TYPE_ETRAX_FS_ETH "etraxfs-eth"
#define ETRAX_FS_ETH(obj) \
OBJECT_CHECK(ETRAXFSEthState, (obj), TYPE_ETRAX_FS_ETH)
typedef struct ETRAXFSEthState
{
SysBusDevice parent_obj;
MemoryRegion mmio;
NICState *nic;
NICConf conf;
/* Two addrs in the filter. */
uint8_t macaddr[2][6];
uint32_t regs[FS_ETH_MAX_REGS];
union {
void *vdma_out;
struct etraxfs_dma_client *dma_out;
};
union {
void *vdma_in;
struct etraxfs_dma_client *dma_in;
};
/* MDIO bus. */
struct qemu_mdio mdio_bus;
unsigned int phyaddr;
int duplex_mismatch;
/* PHY. */
struct qemu_phy phy;
} ETRAXFSEthState;
static void eth_validate_duplex(ETRAXFSEthState *eth)
{
struct qemu_phy *phy;
unsigned int phy_duplex;
unsigned int mac_duplex;
int new_mm = 0;
phy = eth->mdio_bus.devs[eth->phyaddr];
phy_duplex = !!(phy->read(phy, 18) & (1 << 11));
mac_duplex = !!(eth->regs[RW_REC_CTRL] & 128);
if (mac_duplex != phy_duplex) {
new_mm = 1;
}
if (eth->regs[RW_GEN_CTRL] & 1) {
if (new_mm != eth->duplex_mismatch) {
if (new_mm) {
printf("HW: WARNING ETH duplex mismatch MAC=%d PHY=%d\n",
mac_duplex, phy_duplex);
} else {
printf("HW: ETH duplex ok.\n");
}
}
eth->duplex_mismatch = new_mm;
}
}
static uint64_t
eth_read(void *opaque, hwaddr addr, unsigned int size)
{
ETRAXFSEthState *eth = opaque;
uint32_t r = 0;
addr >>= 2;
switch (addr) {
case R_STAT:
r = eth->mdio_bus.mdio & 1;
break;
default:
r = eth->regs[addr];
D(printf("%s %x\n", __func__, addr * 4));
break;
}
return r;
}
static void eth_update_ma(ETRAXFSEthState *eth, int ma)
{
int reg;
int i = 0;
ma &= 1;
reg = RW_MA0_LO;
if (ma) {
reg = RW_MA1_LO;
}
eth->macaddr[ma][i++] = eth->regs[reg];
eth->macaddr[ma][i++] = eth->regs[reg] >> 8;
eth->macaddr[ma][i++] = eth->regs[reg] >> 16;
eth->macaddr[ma][i++] = eth->regs[reg] >> 24;
eth->macaddr[ma][i++] = eth->regs[reg + 1];
eth->macaddr[ma][i] = eth->regs[reg + 1] >> 8;
D(printf("set mac%d=%x.%x.%x.%x.%x.%x\n", ma,
eth->macaddr[ma][0], eth->macaddr[ma][1],
eth->macaddr[ma][2], eth->macaddr[ma][3],
eth->macaddr[ma][4], eth->macaddr[ma][5]));
}
static void
eth_write(void *opaque, hwaddr addr,
uint64_t val64, unsigned int size)
{
ETRAXFSEthState *eth = opaque;
uint32_t value = val64;
addr >>= 2;
switch (addr) {
case RW_MA0_LO:
case RW_MA0_HI:
eth->regs[addr] = value;
eth_update_ma(eth, 0);
break;
case RW_MA1_LO:
case RW_MA1_HI:
eth->regs[addr] = value;
eth_update_ma(eth, 1);
break;
case RW_MGM_CTRL:
/* Attach an MDIO/PHY abstraction. */
if (value & 2) {
eth->mdio_bus.mdio = value & 1;
}
if (eth->mdio_bus.mdc != (value & 4)) {
mdio_cycle(&eth->mdio_bus);
eth_validate_duplex(eth);
}
eth->mdio_bus.mdc = !!(value & 4);
eth->regs[addr] = value;
break;
case RW_REC_CTRL:
eth->regs[addr] = value;
eth_validate_duplex(eth);
break;
default:
eth->regs[addr] = value;
D(printf("%s %x %x\n", __func__, addr, value));
break;
}
}
/* The ETRAX FS has a groupt address table (GAT) which works like a k=1 bloom
filter dropping group addresses we have not joined. The filter has 64
bits (m). The has function is a simple nible xor of the group addr. */
static int eth_match_groupaddr(ETRAXFSEthState *eth, const unsigned char *sa)
{
unsigned int hsh;
int m_individual = eth->regs[RW_REC_CTRL] & 4;
int match;
/* First bit on the wire of a MAC address signals multicast or
physical address. */
if (!m_individual && !(sa[0] & 1)) {
return 0;
}
/* Calculate the hash index for the GA registers. */
hsh = 0;
hsh ^= (*sa) & 0x3f;
hsh ^= ((*sa) >> 6) & 0x03;
++sa;
hsh ^= ((*sa) << 2) & 0x03c;
hsh ^= ((*sa) >> 4) & 0xf;
++sa;
hsh ^= ((*sa) << 4) & 0x30;
hsh ^= ((*sa) >> 2) & 0x3f;
++sa;
hsh ^= (*sa) & 0x3f;
hsh ^= ((*sa) >> 6) & 0x03;
++sa;
hsh ^= ((*sa) << 2) & 0x03c;
hsh ^= ((*sa) >> 4) & 0xf;
++sa;
hsh ^= ((*sa) << 4) & 0x30;
hsh ^= ((*sa) >> 2) & 0x3f;
hsh &= 63;
if (hsh > 31) {
match = eth->regs[RW_GA_HI] & (1 << (hsh - 32));
} else {
match = eth->regs[RW_GA_LO] & (1 << hsh);
}
D(printf("hsh=%x ga=%x.%x mtch=%d\n", hsh,
eth->regs[RW_GA_HI], eth->regs[RW_GA_LO], match));
return match;
}
static ssize_t eth_receive(NetClientState *nc, const uint8_t *buf, size_t size)
{
unsigned char sa_bcast[6] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
ETRAXFSEthState *eth = qemu_get_nic_opaque(nc);
int use_ma0 = eth->regs[RW_REC_CTRL] & 1;
int use_ma1 = eth->regs[RW_REC_CTRL] & 2;
int r_bcast = eth->regs[RW_REC_CTRL] & 8;
if (size < 12) {
return -1;
}
D(printf("%x.%x.%x.%x.%x.%x ma=%d %d bc=%d\n",
buf[0], buf[1], buf[2], buf[3], buf[4], buf[5],
use_ma0, use_ma1, r_bcast));
/* Does the frame get through the address filters? */
if ((!use_ma0 || memcmp(buf, eth->macaddr[0], 6))
&& (!use_ma1 || memcmp(buf, eth->macaddr[1], 6))
&& (!r_bcast || memcmp(buf, sa_bcast, 6))
&& !eth_match_groupaddr(eth, buf)) {
return size;
}
/* FIXME: Find another way to pass on the fake csum. */
etraxfs_dmac_input(eth->dma_in, (void *)buf, size + 4, 1);
return size;
}
static int eth_tx_push(void *opaque, unsigned char *buf, int len, bool eop)
{
ETRAXFSEthState *eth = opaque;
D(printf("%s buf=%p len=%d\n", __func__, buf, len));
qemu_send_packet(qemu_get_queue(eth->nic), buf, len);
return len;
}
static void eth_set_link(NetClientState *nc)
{
ETRAXFSEthState *eth = qemu_get_nic_opaque(nc);
D(printf("%s %d\n", __func__, nc->link_down));
eth->phy.link = !nc->link_down;
}
static const MemoryRegionOps eth_ops = {
.read = eth_read,
.write = eth_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.valid = {
.min_access_size = 4,
.max_access_size = 4
}
};
static NetClientInfo net_etraxfs_info = {
.type = NET_CLIENT_DRIVER_NIC,
.size = sizeof(NICState),
.receive = eth_receive,
.link_status_changed = eth_set_link,
};
static int fs_eth_init(SysBusDevice *sbd)
{
DeviceState *dev = DEVICE(sbd);
ETRAXFSEthState *s = ETRAX_FS_ETH(dev);
if (!s->dma_out || !s->dma_in) {
error_report("Unconnected ETRAX-FS Ethernet MAC");
return -1;
}
s->dma_out->client.push = eth_tx_push;
s->dma_out->client.opaque = s;
s->dma_in->client.opaque = s;
s->dma_in->client.pull = NULL;
memory_region_init_io(&s->mmio, OBJECT(dev), &eth_ops, s,
"etraxfs-eth", 0x5c);
sysbus_init_mmio(sbd, &s->mmio);
qemu_macaddr_default_if_unset(&s->conf.macaddr);
s->nic = qemu_new_nic(&net_etraxfs_info, &s->conf,
object_get_typename(OBJECT(s)), dev->id, s);
qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a);
tdk_init(&s->phy);
mdio_attach(&s->mdio_bus, &s->phy, s->phyaddr);
return 0;
}
static Property etraxfs_eth_properties[] = {
DEFINE_PROP_UINT32("phyaddr", ETRAXFSEthState, phyaddr, 1),
DEFINE_PROP_PTR("dma_out", ETRAXFSEthState, vdma_out),
DEFINE_PROP_PTR("dma_in", ETRAXFSEthState, vdma_in),
DEFINE_NIC_PROPERTIES(ETRAXFSEthState, conf),
DEFINE_PROP_END_OF_LIST(),
};
static void etraxfs_eth_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
k->init = fs_eth_init;
dc->props = etraxfs_eth_properties;
/* Reason: pointer properties "dma_out", "dma_in" */
dc->cannot_instantiate_with_device_add_yet = true;
}
static const TypeInfo etraxfs_eth_info = {
.name = TYPE_ETRAX_FS_ETH,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(ETRAXFSEthState),
.class_init = etraxfs_eth_class_init,
};
static void etraxfs_eth_register_types(void)
{
type_register_static(&etraxfs_eth_info);
}
type_init(etraxfs_eth_register_types)