72893756e0
The L1 table grow operation includes a size calculation that bumps up the new L1 table size in order to anticipate the size needs of vmstate data. This helps reduce the number of times that the L1 table has to be grown when vmstate data is appended. This size overhead is not necessary during image creation, bdrv_truncate(), or snapshot goto operations. In fact, existing qemu-iotests that exercise table growth are no longer able to trigger it because image creation preallocates an L1 table that is too large after changes to qcow_create2(). This patch keeps the size calculation but also adds exact growth for callers that do not want to inflate the L1 table size unnecessarily. Signed-off-by: Stefan Hajnoczi <stefanha@linux.vnet.ibm.com> Signed-off-by: Kevin Wolf <kwolf@redhat.com>
954 lines
28 KiB
C
954 lines
28 KiB
C
/*
|
|
* Block driver for the QCOW version 2 format
|
|
*
|
|
* Copyright (c) 2004-2006 Fabrice Bellard
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
|
|
#include <zlib.h>
|
|
|
|
#include "qemu-common.h"
|
|
#include "block_int.h"
|
|
#include "block/qcow2.h"
|
|
|
|
int qcow2_grow_l1_table(BlockDriverState *bs, int min_size, bool exact_size)
|
|
{
|
|
BDRVQcowState *s = bs->opaque;
|
|
int new_l1_size, new_l1_size2, ret, i;
|
|
uint64_t *new_l1_table;
|
|
int64_t new_l1_table_offset;
|
|
uint8_t data[12];
|
|
|
|
if (min_size <= s->l1_size)
|
|
return 0;
|
|
|
|
if (exact_size) {
|
|
new_l1_size = min_size;
|
|
} else {
|
|
/* Bump size up to reduce the number of times we have to grow */
|
|
new_l1_size = s->l1_size;
|
|
if (new_l1_size == 0) {
|
|
new_l1_size = 1;
|
|
}
|
|
while (min_size > new_l1_size) {
|
|
new_l1_size = (new_l1_size * 3 + 1) / 2;
|
|
}
|
|
}
|
|
|
|
#ifdef DEBUG_ALLOC2
|
|
printf("grow l1_table from %d to %d\n", s->l1_size, new_l1_size);
|
|
#endif
|
|
|
|
new_l1_size2 = sizeof(uint64_t) * new_l1_size;
|
|
new_l1_table = qemu_mallocz(align_offset(new_l1_size2, 512));
|
|
memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t));
|
|
|
|
/* write new table (align to cluster) */
|
|
BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
|
|
new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
|
|
if (new_l1_table_offset < 0) {
|
|
qemu_free(new_l1_table);
|
|
return new_l1_table_offset;
|
|
}
|
|
bdrv_flush(bs->file);
|
|
|
|
BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
|
|
for(i = 0; i < s->l1_size; i++)
|
|
new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
|
|
ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset, new_l1_table, new_l1_size2);
|
|
if (ret < 0)
|
|
goto fail;
|
|
for(i = 0; i < s->l1_size; i++)
|
|
new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
|
|
|
|
/* set new table */
|
|
BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
|
|
cpu_to_be32w((uint32_t*)data, new_l1_size);
|
|
cpu_to_be64w((uint64_t*)(data + 4), new_l1_table_offset);
|
|
ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size), data,sizeof(data));
|
|
if (ret < 0) {
|
|
goto fail;
|
|
}
|
|
qemu_free(s->l1_table);
|
|
qcow2_free_clusters(bs, s->l1_table_offset, s->l1_size * sizeof(uint64_t));
|
|
s->l1_table_offset = new_l1_table_offset;
|
|
s->l1_table = new_l1_table;
|
|
s->l1_size = new_l1_size;
|
|
return 0;
|
|
fail:
|
|
qemu_free(new_l1_table);
|
|
qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2);
|
|
return ret;
|
|
}
|
|
|
|
void qcow2_l2_cache_reset(BlockDriverState *bs)
|
|
{
|
|
BDRVQcowState *s = bs->opaque;
|
|
|
|
memset(s->l2_cache, 0, s->l2_size * L2_CACHE_SIZE * sizeof(uint64_t));
|
|
memset(s->l2_cache_offsets, 0, L2_CACHE_SIZE * sizeof(uint64_t));
|
|
memset(s->l2_cache_counts, 0, L2_CACHE_SIZE * sizeof(uint32_t));
|
|
}
|
|
|
|
static inline int l2_cache_new_entry(BlockDriverState *bs)
|
|
{
|
|
BDRVQcowState *s = bs->opaque;
|
|
uint32_t min_count;
|
|
int min_index, i;
|
|
|
|
/* find a new entry in the least used one */
|
|
min_index = 0;
|
|
min_count = 0xffffffff;
|
|
for(i = 0; i < L2_CACHE_SIZE; i++) {
|
|
if (s->l2_cache_counts[i] < min_count) {
|
|
min_count = s->l2_cache_counts[i];
|
|
min_index = i;
|
|
}
|
|
}
|
|
return min_index;
|
|
}
|
|
|
|
/*
|
|
* seek_l2_table
|
|
*
|
|
* seek l2_offset in the l2_cache table
|
|
* if not found, return NULL,
|
|
* if found,
|
|
* increments the l2 cache hit count of the entry,
|
|
* if counter overflow, divide by two all counters
|
|
* return the pointer to the l2 cache entry
|
|
*
|
|
*/
|
|
|
|
static uint64_t *seek_l2_table(BDRVQcowState *s, uint64_t l2_offset)
|
|
{
|
|
int i, j;
|
|
|
|
for(i = 0; i < L2_CACHE_SIZE; i++) {
|
|
if (l2_offset == s->l2_cache_offsets[i]) {
|
|
/* increment the hit count */
|
|
if (++s->l2_cache_counts[i] == 0xffffffff) {
|
|
for(j = 0; j < L2_CACHE_SIZE; j++) {
|
|
s->l2_cache_counts[j] >>= 1;
|
|
}
|
|
}
|
|
return s->l2_cache + (i << s->l2_bits);
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* l2_load
|
|
*
|
|
* Loads a L2 table into memory. If the table is in the cache, the cache
|
|
* is used; otherwise the L2 table is loaded from the image file.
|
|
*
|
|
* Returns a pointer to the L2 table on success, or NULL if the read from
|
|
* the image file failed.
|
|
*/
|
|
|
|
static int l2_load(BlockDriverState *bs, uint64_t l2_offset,
|
|
uint64_t **l2_table)
|
|
{
|
|
BDRVQcowState *s = bs->opaque;
|
|
int min_index;
|
|
int ret;
|
|
|
|
/* seek if the table for the given offset is in the cache */
|
|
|
|
*l2_table = seek_l2_table(s, l2_offset);
|
|
if (*l2_table != NULL) {
|
|
return 0;
|
|
}
|
|
|
|
/* not found: load a new entry in the least used one */
|
|
|
|
min_index = l2_cache_new_entry(bs);
|
|
*l2_table = s->l2_cache + (min_index << s->l2_bits);
|
|
|
|
BLKDBG_EVENT(bs->file, BLKDBG_L2_LOAD);
|
|
ret = bdrv_pread(bs->file, l2_offset, *l2_table,
|
|
s->l2_size * sizeof(uint64_t));
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
|
|
s->l2_cache_offsets[min_index] = l2_offset;
|
|
s->l2_cache_counts[min_index] = 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Writes one sector of the L1 table to the disk (can't update single entries
|
|
* and we really don't want bdrv_pread to perform a read-modify-write)
|
|
*/
|
|
#define L1_ENTRIES_PER_SECTOR (512 / 8)
|
|
static int write_l1_entry(BlockDriverState *bs, int l1_index)
|
|
{
|
|
BDRVQcowState *s = bs->opaque;
|
|
uint64_t buf[L1_ENTRIES_PER_SECTOR];
|
|
int l1_start_index;
|
|
int i, ret;
|
|
|
|
l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1);
|
|
for (i = 0; i < L1_ENTRIES_PER_SECTOR; i++) {
|
|
buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
|
|
}
|
|
|
|
BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
|
|
ret = bdrv_pwrite_sync(bs->file, s->l1_table_offset + 8 * l1_start_index,
|
|
buf, sizeof(buf));
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* l2_allocate
|
|
*
|
|
* Allocate a new l2 entry in the file. If l1_index points to an already
|
|
* used entry in the L2 table (i.e. we are doing a copy on write for the L2
|
|
* table) copy the contents of the old L2 table into the newly allocated one.
|
|
* Otherwise the new table is initialized with zeros.
|
|
*
|
|
*/
|
|
|
|
static int l2_allocate(BlockDriverState *bs, int l1_index, uint64_t **table)
|
|
{
|
|
BDRVQcowState *s = bs->opaque;
|
|
int min_index;
|
|
uint64_t old_l2_offset;
|
|
uint64_t *l2_table;
|
|
int64_t l2_offset;
|
|
int ret;
|
|
|
|
old_l2_offset = s->l1_table[l1_index];
|
|
|
|
/* allocate a new l2 entry */
|
|
|
|
l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t));
|
|
if (l2_offset < 0) {
|
|
return l2_offset;
|
|
}
|
|
bdrv_flush(bs->file);
|
|
|
|
/* allocate a new entry in the l2 cache */
|
|
|
|
min_index = l2_cache_new_entry(bs);
|
|
l2_table = s->l2_cache + (min_index << s->l2_bits);
|
|
|
|
if (old_l2_offset == 0) {
|
|
/* if there was no old l2 table, clear the new table */
|
|
memset(l2_table, 0, s->l2_size * sizeof(uint64_t));
|
|
} else {
|
|
/* if there was an old l2 table, read it from the disk */
|
|
BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
|
|
ret = bdrv_pread(bs->file, old_l2_offset, l2_table,
|
|
s->l2_size * sizeof(uint64_t));
|
|
if (ret < 0) {
|
|
goto fail;
|
|
}
|
|
}
|
|
/* write the l2 table to the file */
|
|
BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
|
|
ret = bdrv_pwrite_sync(bs->file, l2_offset, l2_table,
|
|
s->l2_size * sizeof(uint64_t));
|
|
if (ret < 0) {
|
|
goto fail;
|
|
}
|
|
|
|
/* update the L1 entry */
|
|
s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
|
|
ret = write_l1_entry(bs, l1_index);
|
|
if (ret < 0) {
|
|
goto fail;
|
|
}
|
|
|
|
/* update the l2 cache entry */
|
|
|
|
s->l2_cache_offsets[min_index] = l2_offset;
|
|
s->l2_cache_counts[min_index] = 1;
|
|
|
|
*table = l2_table;
|
|
return 0;
|
|
|
|
fail:
|
|
s->l1_table[l1_index] = old_l2_offset;
|
|
qcow2_l2_cache_reset(bs);
|
|
return ret;
|
|
}
|
|
|
|
static int count_contiguous_clusters(uint64_t nb_clusters, int cluster_size,
|
|
uint64_t *l2_table, uint64_t start, uint64_t mask)
|
|
{
|
|
int i;
|
|
uint64_t offset = be64_to_cpu(l2_table[0]) & ~mask;
|
|
|
|
if (!offset)
|
|
return 0;
|
|
|
|
for (i = start; i < start + nb_clusters; i++)
|
|
if (offset + (uint64_t) i * cluster_size != (be64_to_cpu(l2_table[i]) & ~mask))
|
|
break;
|
|
|
|
return (i - start);
|
|
}
|
|
|
|
static int count_contiguous_free_clusters(uint64_t nb_clusters, uint64_t *l2_table)
|
|
{
|
|
int i = 0;
|
|
|
|
while(nb_clusters-- && l2_table[i] == 0)
|
|
i++;
|
|
|
|
return i;
|
|
}
|
|
|
|
/* The crypt function is compatible with the linux cryptoloop
|
|
algorithm for < 4 GB images. NOTE: out_buf == in_buf is
|
|
supported */
|
|
void qcow2_encrypt_sectors(BDRVQcowState *s, int64_t sector_num,
|
|
uint8_t *out_buf, const uint8_t *in_buf,
|
|
int nb_sectors, int enc,
|
|
const AES_KEY *key)
|
|
{
|
|
union {
|
|
uint64_t ll[2];
|
|
uint8_t b[16];
|
|
} ivec;
|
|
int i;
|
|
|
|
for(i = 0; i < nb_sectors; i++) {
|
|
ivec.ll[0] = cpu_to_le64(sector_num);
|
|
ivec.ll[1] = 0;
|
|
AES_cbc_encrypt(in_buf, out_buf, 512, key,
|
|
ivec.b, enc);
|
|
sector_num++;
|
|
in_buf += 512;
|
|
out_buf += 512;
|
|
}
|
|
}
|
|
|
|
|
|
static int qcow_read(BlockDriverState *bs, int64_t sector_num,
|
|
uint8_t *buf, int nb_sectors)
|
|
{
|
|
BDRVQcowState *s = bs->opaque;
|
|
int ret, index_in_cluster, n, n1;
|
|
uint64_t cluster_offset;
|
|
struct iovec iov;
|
|
QEMUIOVector qiov;
|
|
|
|
while (nb_sectors > 0) {
|
|
n = nb_sectors;
|
|
|
|
ret = qcow2_get_cluster_offset(bs, sector_num << 9, &n,
|
|
&cluster_offset);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
|
|
index_in_cluster = sector_num & (s->cluster_sectors - 1);
|
|
if (!cluster_offset) {
|
|
if (bs->backing_hd) {
|
|
/* read from the base image */
|
|
iov.iov_base = buf;
|
|
iov.iov_len = n * 512;
|
|
qemu_iovec_init_external(&qiov, &iov, 1);
|
|
|
|
n1 = qcow2_backing_read1(bs->backing_hd, &qiov, sector_num, n);
|
|
if (n1 > 0) {
|
|
BLKDBG_EVENT(bs->file, BLKDBG_READ_BACKING);
|
|
ret = bdrv_read(bs->backing_hd, sector_num, buf, n1);
|
|
if (ret < 0)
|
|
return -1;
|
|
}
|
|
} else {
|
|
memset(buf, 0, 512 * n);
|
|
}
|
|
} else if (cluster_offset & QCOW_OFLAG_COMPRESSED) {
|
|
if (qcow2_decompress_cluster(bs, cluster_offset) < 0)
|
|
return -1;
|
|
memcpy(buf, s->cluster_cache + index_in_cluster * 512, 512 * n);
|
|
} else {
|
|
BLKDBG_EVENT(bs->file, BLKDBG_READ);
|
|
ret = bdrv_pread(bs->file, cluster_offset + index_in_cluster * 512, buf, n * 512);
|
|
if (ret != n * 512)
|
|
return -1;
|
|
if (s->crypt_method) {
|
|
qcow2_encrypt_sectors(s, sector_num, buf, buf, n, 0,
|
|
&s->aes_decrypt_key);
|
|
}
|
|
}
|
|
nb_sectors -= n;
|
|
sector_num += n;
|
|
buf += n * 512;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int copy_sectors(BlockDriverState *bs, uint64_t start_sect,
|
|
uint64_t cluster_offset, int n_start, int n_end)
|
|
{
|
|
BDRVQcowState *s = bs->opaque;
|
|
int n, ret;
|
|
|
|
n = n_end - n_start;
|
|
if (n <= 0)
|
|
return 0;
|
|
BLKDBG_EVENT(bs->file, BLKDBG_COW_READ);
|
|
ret = qcow_read(bs, start_sect + n_start, s->cluster_data, n);
|
|
if (ret < 0)
|
|
return ret;
|
|
if (s->crypt_method) {
|
|
qcow2_encrypt_sectors(s, start_sect + n_start,
|
|
s->cluster_data,
|
|
s->cluster_data, n, 1,
|
|
&s->aes_encrypt_key);
|
|
}
|
|
BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE);
|
|
ret = bdrv_write(bs->file, (cluster_offset >> 9) + n_start,
|
|
s->cluster_data, n);
|
|
if (ret < 0)
|
|
return ret;
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* get_cluster_offset
|
|
*
|
|
* For a given offset of the disk image, find the cluster offset in
|
|
* qcow2 file. The offset is stored in *cluster_offset.
|
|
*
|
|
* on entry, *num is the number of contiguous clusters we'd like to
|
|
* access following offset.
|
|
*
|
|
* on exit, *num is the number of contiguous clusters we can read.
|
|
*
|
|
* Return 0, if the offset is found
|
|
* Return -errno, otherwise.
|
|
*
|
|
*/
|
|
|
|
int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset,
|
|
int *num, uint64_t *cluster_offset)
|
|
{
|
|
BDRVQcowState *s = bs->opaque;
|
|
unsigned int l1_index, l2_index;
|
|
uint64_t l2_offset, *l2_table;
|
|
int l1_bits, c;
|
|
unsigned int index_in_cluster, nb_clusters;
|
|
uint64_t nb_available, nb_needed;
|
|
int ret;
|
|
|
|
index_in_cluster = (offset >> 9) & (s->cluster_sectors - 1);
|
|
nb_needed = *num + index_in_cluster;
|
|
|
|
l1_bits = s->l2_bits + s->cluster_bits;
|
|
|
|
/* compute how many bytes there are between the offset and
|
|
* the end of the l1 entry
|
|
*/
|
|
|
|
nb_available = (1ULL << l1_bits) - (offset & ((1ULL << l1_bits) - 1));
|
|
|
|
/* compute the number of available sectors */
|
|
|
|
nb_available = (nb_available >> 9) + index_in_cluster;
|
|
|
|
if (nb_needed > nb_available) {
|
|
nb_needed = nb_available;
|
|
}
|
|
|
|
*cluster_offset = 0;
|
|
|
|
/* seek the the l2 offset in the l1 table */
|
|
|
|
l1_index = offset >> l1_bits;
|
|
if (l1_index >= s->l1_size)
|
|
goto out;
|
|
|
|
l2_offset = s->l1_table[l1_index];
|
|
|
|
/* seek the l2 table of the given l2 offset */
|
|
|
|
if (!l2_offset)
|
|
goto out;
|
|
|
|
/* load the l2 table in memory */
|
|
|
|
l2_offset &= ~QCOW_OFLAG_COPIED;
|
|
ret = l2_load(bs, l2_offset, &l2_table);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
|
|
/* find the cluster offset for the given disk offset */
|
|
|
|
l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
|
|
*cluster_offset = be64_to_cpu(l2_table[l2_index]);
|
|
nb_clusters = size_to_clusters(s, nb_needed << 9);
|
|
|
|
if (!*cluster_offset) {
|
|
/* how many empty clusters ? */
|
|
c = count_contiguous_free_clusters(nb_clusters, &l2_table[l2_index]);
|
|
} else {
|
|
/* how many allocated clusters ? */
|
|
c = count_contiguous_clusters(nb_clusters, s->cluster_size,
|
|
&l2_table[l2_index], 0, QCOW_OFLAG_COPIED);
|
|
}
|
|
|
|
nb_available = (c * s->cluster_sectors);
|
|
out:
|
|
if (nb_available > nb_needed)
|
|
nb_available = nb_needed;
|
|
|
|
*num = nb_available - index_in_cluster;
|
|
|
|
*cluster_offset &=~QCOW_OFLAG_COPIED;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* get_cluster_table
|
|
*
|
|
* for a given disk offset, load (and allocate if needed)
|
|
* the l2 table.
|
|
*
|
|
* the l2 table offset in the qcow2 file and the cluster index
|
|
* in the l2 table are given to the caller.
|
|
*
|
|
* Returns 0 on success, -errno in failure case
|
|
*/
|
|
static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
|
|
uint64_t **new_l2_table,
|
|
uint64_t *new_l2_offset,
|
|
int *new_l2_index)
|
|
{
|
|
BDRVQcowState *s = bs->opaque;
|
|
unsigned int l1_index, l2_index;
|
|
uint64_t l2_offset;
|
|
uint64_t *l2_table = NULL;
|
|
int ret;
|
|
|
|
/* seek the the l2 offset in the l1 table */
|
|
|
|
l1_index = offset >> (s->l2_bits + s->cluster_bits);
|
|
if (l1_index >= s->l1_size) {
|
|
ret = qcow2_grow_l1_table(bs, l1_index + 1, false);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
}
|
|
l2_offset = s->l1_table[l1_index];
|
|
|
|
/* seek the l2 table of the given l2 offset */
|
|
|
|
if (l2_offset & QCOW_OFLAG_COPIED) {
|
|
/* load the l2 table in memory */
|
|
l2_offset &= ~QCOW_OFLAG_COPIED;
|
|
ret = l2_load(bs, l2_offset, &l2_table);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
} else {
|
|
if (l2_offset)
|
|
qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t));
|
|
ret = l2_allocate(bs, l1_index, &l2_table);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
l2_offset = s->l1_table[l1_index] & ~QCOW_OFLAG_COPIED;
|
|
}
|
|
|
|
/* find the cluster offset for the given disk offset */
|
|
|
|
l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
|
|
|
|
*new_l2_table = l2_table;
|
|
*new_l2_offset = l2_offset;
|
|
*new_l2_index = l2_index;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* alloc_compressed_cluster_offset
|
|
*
|
|
* For a given offset of the disk image, return cluster offset in
|
|
* qcow2 file.
|
|
*
|
|
* If the offset is not found, allocate a new compressed cluster.
|
|
*
|
|
* Return the cluster offset if successful,
|
|
* Return 0, otherwise.
|
|
*
|
|
*/
|
|
|
|
uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
|
|
uint64_t offset,
|
|
int compressed_size)
|
|
{
|
|
BDRVQcowState *s = bs->opaque;
|
|
int l2_index, ret;
|
|
uint64_t l2_offset, *l2_table;
|
|
int64_t cluster_offset;
|
|
int nb_csectors;
|
|
|
|
ret = get_cluster_table(bs, offset, &l2_table, &l2_offset, &l2_index);
|
|
if (ret < 0) {
|
|
return 0;
|
|
}
|
|
|
|
cluster_offset = be64_to_cpu(l2_table[l2_index]);
|
|
if (cluster_offset & QCOW_OFLAG_COPIED)
|
|
return cluster_offset & ~QCOW_OFLAG_COPIED;
|
|
|
|
if (cluster_offset)
|
|
qcow2_free_any_clusters(bs, cluster_offset, 1);
|
|
|
|
cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
|
|
if (cluster_offset < 0) {
|
|
return 0;
|
|
}
|
|
|
|
nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) -
|
|
(cluster_offset >> 9);
|
|
|
|
cluster_offset |= QCOW_OFLAG_COMPRESSED |
|
|
((uint64_t)nb_csectors << s->csize_shift);
|
|
|
|
/* update L2 table */
|
|
|
|
/* compressed clusters never have the copied flag */
|
|
|
|
BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
|
|
l2_table[l2_index] = cpu_to_be64(cluster_offset);
|
|
if (bdrv_pwrite_sync(bs->file,
|
|
l2_offset + l2_index * sizeof(uint64_t),
|
|
l2_table + l2_index,
|
|
sizeof(uint64_t)) < 0)
|
|
return 0;
|
|
|
|
return cluster_offset;
|
|
}
|
|
|
|
/*
|
|
* Write L2 table updates to disk, writing whole sectors to avoid a
|
|
* read-modify-write in bdrv_pwrite
|
|
*/
|
|
#define L2_ENTRIES_PER_SECTOR (512 / 8)
|
|
static int write_l2_entries(BlockDriverState *bs, uint64_t *l2_table,
|
|
uint64_t l2_offset, int l2_index, int num)
|
|
{
|
|
int l2_start_index = l2_index & ~(L1_ENTRIES_PER_SECTOR - 1);
|
|
int start_offset = (8 * l2_index) & ~511;
|
|
int end_offset = (8 * (l2_index + num) + 511) & ~511;
|
|
size_t len = end_offset - start_offset;
|
|
int ret;
|
|
|
|
BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE);
|
|
ret = bdrv_pwrite(bs->file, l2_offset + start_offset,
|
|
&l2_table[l2_start_index], len);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m)
|
|
{
|
|
BDRVQcowState *s = bs->opaque;
|
|
int i, j = 0, l2_index, ret;
|
|
uint64_t *old_cluster, start_sect, l2_offset, *l2_table;
|
|
uint64_t cluster_offset = m->cluster_offset;
|
|
|
|
if (m->nb_clusters == 0)
|
|
return 0;
|
|
|
|
old_cluster = qemu_malloc(m->nb_clusters * sizeof(uint64_t));
|
|
|
|
/* copy content of unmodified sectors */
|
|
start_sect = (m->offset & ~(s->cluster_size - 1)) >> 9;
|
|
if (m->n_start) {
|
|
ret = copy_sectors(bs, start_sect, cluster_offset, 0, m->n_start);
|
|
if (ret < 0)
|
|
goto err;
|
|
}
|
|
|
|
if (m->nb_available & (s->cluster_sectors - 1)) {
|
|
uint64_t end = m->nb_available & ~(uint64_t)(s->cluster_sectors - 1);
|
|
ret = copy_sectors(bs, start_sect + end, cluster_offset + (end << 9),
|
|
m->nb_available - end, s->cluster_sectors);
|
|
if (ret < 0)
|
|
goto err;
|
|
}
|
|
|
|
/* update L2 table */
|
|
ret = get_cluster_table(bs, m->offset, &l2_table, &l2_offset, &l2_index);
|
|
if (ret < 0) {
|
|
goto err;
|
|
}
|
|
|
|
for (i = 0; i < m->nb_clusters; i++) {
|
|
/* if two concurrent writes happen to the same unallocated cluster
|
|
* each write allocates separate cluster and writes data concurrently.
|
|
* The first one to complete updates l2 table with pointer to its
|
|
* cluster the second one has to do RMW (which is done above by
|
|
* copy_sectors()), update l2 table with its cluster pointer and free
|
|
* old cluster. This is what this loop does */
|
|
if(l2_table[l2_index + i] != 0)
|
|
old_cluster[j++] = l2_table[l2_index + i];
|
|
|
|
l2_table[l2_index + i] = cpu_to_be64((cluster_offset +
|
|
(i << s->cluster_bits)) | QCOW_OFLAG_COPIED);
|
|
}
|
|
|
|
/*
|
|
* Before we update the L2 table to actually point to the new cluster, we
|
|
* need to be sure that the refcounts have been increased and COW was
|
|
* handled.
|
|
*/
|
|
bdrv_flush(bs->file);
|
|
|
|
ret = write_l2_entries(bs, l2_table, l2_offset, l2_index, m->nb_clusters);
|
|
if (ret < 0) {
|
|
qcow2_l2_cache_reset(bs);
|
|
goto err;
|
|
}
|
|
|
|
/*
|
|
* If this was a COW, we need to decrease the refcount of the old cluster.
|
|
* Also flush bs->file to get the right order for L2 and refcount update.
|
|
*/
|
|
if (j != 0) {
|
|
bdrv_flush(bs->file);
|
|
for (i = 0; i < j; i++) {
|
|
qcow2_free_any_clusters(bs,
|
|
be64_to_cpu(old_cluster[i]) & ~QCOW_OFLAG_COPIED, 1);
|
|
}
|
|
}
|
|
|
|
ret = 0;
|
|
err:
|
|
qemu_free(old_cluster);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* alloc_cluster_offset
|
|
*
|
|
* For a given offset of the disk image, return cluster offset in qcow2 file.
|
|
* If the offset is not found, allocate a new cluster.
|
|
*
|
|
* If the cluster was already allocated, m->nb_clusters is set to 0,
|
|
* m->depends_on is set to NULL and the other fields in m are meaningless.
|
|
*
|
|
* If the cluster is newly allocated, m->nb_clusters is set to the number of
|
|
* contiguous clusters that have been allocated. This may be 0 if the request
|
|
* conflict with another write request in flight; in this case, m->depends_on
|
|
* is set and the remaining fields of m are meaningless.
|
|
*
|
|
* If m->nb_clusters is non-zero, the other fields of m are valid and contain
|
|
* information about the first allocated cluster.
|
|
*
|
|
* Return 0 on success and -errno in error cases
|
|
*/
|
|
int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset,
|
|
int n_start, int n_end, int *num, QCowL2Meta *m)
|
|
{
|
|
BDRVQcowState *s = bs->opaque;
|
|
int l2_index, ret;
|
|
uint64_t l2_offset, *l2_table;
|
|
int64_t cluster_offset;
|
|
unsigned int nb_clusters, i = 0;
|
|
QCowL2Meta *old_alloc;
|
|
|
|
ret = get_cluster_table(bs, offset, &l2_table, &l2_offset, &l2_index);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
|
|
nb_clusters = size_to_clusters(s, n_end << 9);
|
|
|
|
nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
|
|
|
|
cluster_offset = be64_to_cpu(l2_table[l2_index]);
|
|
|
|
/* We keep all QCOW_OFLAG_COPIED clusters */
|
|
|
|
if (cluster_offset & QCOW_OFLAG_COPIED) {
|
|
nb_clusters = count_contiguous_clusters(nb_clusters, s->cluster_size,
|
|
&l2_table[l2_index], 0, 0);
|
|
|
|
cluster_offset &= ~QCOW_OFLAG_COPIED;
|
|
m->nb_clusters = 0;
|
|
m->depends_on = NULL;
|
|
|
|
goto out;
|
|
}
|
|
|
|
/* for the moment, multiple compressed clusters are not managed */
|
|
|
|
if (cluster_offset & QCOW_OFLAG_COMPRESSED)
|
|
nb_clusters = 1;
|
|
|
|
/* how many available clusters ? */
|
|
|
|
while (i < nb_clusters) {
|
|
i += count_contiguous_clusters(nb_clusters - i, s->cluster_size,
|
|
&l2_table[l2_index], i, 0);
|
|
if ((i >= nb_clusters) || be64_to_cpu(l2_table[l2_index + i])) {
|
|
break;
|
|
}
|
|
|
|
i += count_contiguous_free_clusters(nb_clusters - i,
|
|
&l2_table[l2_index + i]);
|
|
if (i >= nb_clusters) {
|
|
break;
|
|
}
|
|
|
|
cluster_offset = be64_to_cpu(l2_table[l2_index + i]);
|
|
|
|
if ((cluster_offset & QCOW_OFLAG_COPIED) ||
|
|
(cluster_offset & QCOW_OFLAG_COMPRESSED))
|
|
break;
|
|
}
|
|
assert(i <= nb_clusters);
|
|
nb_clusters = i;
|
|
|
|
/*
|
|
* Check if there already is an AIO write request in flight which allocates
|
|
* the same cluster. In this case we need to wait until the previous
|
|
* request has completed and updated the L2 table accordingly.
|
|
*/
|
|
QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
|
|
|
|
uint64_t end_offset = offset + nb_clusters * s->cluster_size;
|
|
uint64_t old_offset = old_alloc->offset;
|
|
uint64_t old_end_offset = old_alloc->offset +
|
|
old_alloc->nb_clusters * s->cluster_size;
|
|
|
|
if (end_offset < old_offset || offset > old_end_offset) {
|
|
/* No intersection */
|
|
} else {
|
|
if (offset < old_offset) {
|
|
/* Stop at the start of a running allocation */
|
|
nb_clusters = (old_offset - offset) >> s->cluster_bits;
|
|
} else {
|
|
nb_clusters = 0;
|
|
}
|
|
|
|
if (nb_clusters == 0) {
|
|
/* Set dependency and wait for a callback */
|
|
m->depends_on = old_alloc;
|
|
m->nb_clusters = 0;
|
|
*num = 0;
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!nb_clusters) {
|
|
abort();
|
|
}
|
|
|
|
QLIST_INSERT_HEAD(&s->cluster_allocs, m, next_in_flight);
|
|
|
|
/* allocate a new cluster */
|
|
|
|
cluster_offset = qcow2_alloc_clusters(bs, nb_clusters * s->cluster_size);
|
|
if (cluster_offset < 0) {
|
|
QLIST_REMOVE(m, next_in_flight);
|
|
return cluster_offset;
|
|
}
|
|
|
|
/* save info needed for meta data update */
|
|
m->offset = offset;
|
|
m->n_start = n_start;
|
|
m->nb_clusters = nb_clusters;
|
|
|
|
out:
|
|
m->nb_available = MIN(nb_clusters << (s->cluster_bits - 9), n_end);
|
|
m->cluster_offset = cluster_offset;
|
|
|
|
*num = m->nb_available - n_start;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int decompress_buffer(uint8_t *out_buf, int out_buf_size,
|
|
const uint8_t *buf, int buf_size)
|
|
{
|
|
z_stream strm1, *strm = &strm1;
|
|
int ret, out_len;
|
|
|
|
memset(strm, 0, sizeof(*strm));
|
|
|
|
strm->next_in = (uint8_t *)buf;
|
|
strm->avail_in = buf_size;
|
|
strm->next_out = out_buf;
|
|
strm->avail_out = out_buf_size;
|
|
|
|
ret = inflateInit2(strm, -12);
|
|
if (ret != Z_OK)
|
|
return -1;
|
|
ret = inflate(strm, Z_FINISH);
|
|
out_len = strm->next_out - out_buf;
|
|
if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) ||
|
|
out_len != out_buf_size) {
|
|
inflateEnd(strm);
|
|
return -1;
|
|
}
|
|
inflateEnd(strm);
|
|
return 0;
|
|
}
|
|
|
|
int qcow2_decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset)
|
|
{
|
|
BDRVQcowState *s = bs->opaque;
|
|
int ret, csize, nb_csectors, sector_offset;
|
|
uint64_t coffset;
|
|
|
|
coffset = cluster_offset & s->cluster_offset_mask;
|
|
if (s->cluster_cache_offset != coffset) {
|
|
nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1;
|
|
sector_offset = coffset & 511;
|
|
csize = nb_csectors * 512 - sector_offset;
|
|
BLKDBG_EVENT(bs->file, BLKDBG_READ_COMPRESSED);
|
|
ret = bdrv_read(bs->file, coffset >> 9, s->cluster_data, nb_csectors);
|
|
if (ret < 0) {
|
|
return -1;
|
|
}
|
|
if (decompress_buffer(s->cluster_cache, s->cluster_size,
|
|
s->cluster_data + sector_offset, csize) < 0) {
|
|
return -1;
|
|
}
|
|
s->cluster_cache_offset = coffset;
|
|
}
|
|
return 0;
|
|
}
|