qemu/target/arm/cpu.c
Alexander Graf 2c9c0bf9d1 hvf: arm: Implement PSCI handling
We need to handle PSCI calls. Most of the TCG code works for us,
but we can simplify it to only handle aa64 mode and we need to
handle SUSPEND differently.

This patch takes the TCG code as template and duplicates it in HVF.

To tell the guest that we support PSCI 0.2 now, update the check in
arm_cpu_initfn() as well.

Signed-off-by: Alexander Graf <agraf@csgraf.de>
Reviewed-by: Sergio Lopez <slp@redhat.com>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 20210916155404.86958-8-agraf@csgraf.de
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
2021-09-21 16:28:26 +01:00

2160 lines
70 KiB
C

/*
* QEMU ARM CPU
*
* Copyright (c) 2012 SUSE LINUX Products GmbH
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see
* <http://www.gnu.org/licenses/gpl-2.0.html>
*/
#include "qemu/osdep.h"
#include "qemu/qemu-print.h"
#include "qemu-common.h"
#include "target/arm/idau.h"
#include "qemu/module.h"
#include "qapi/error.h"
#include "qapi/visitor.h"
#include "cpu.h"
#ifdef CONFIG_TCG
#include "hw/core/tcg-cpu-ops.h"
#endif /* CONFIG_TCG */
#include "internals.h"
#include "exec/exec-all.h"
#include "hw/qdev-properties.h"
#if !defined(CONFIG_USER_ONLY)
#include "hw/loader.h"
#include "hw/boards.h"
#endif
#include "sysemu/tcg.h"
#include "sysemu/hw_accel.h"
#include "kvm_arm.h"
#include "hvf_arm.h"
#include "disas/capstone.h"
#include "fpu/softfloat.h"
static void arm_cpu_set_pc(CPUState *cs, vaddr value)
{
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
if (is_a64(env)) {
env->pc = value;
env->thumb = 0;
} else {
env->regs[15] = value & ~1;
env->thumb = value & 1;
}
}
#ifdef CONFIG_TCG
void arm_cpu_synchronize_from_tb(CPUState *cs,
const TranslationBlock *tb)
{
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
/*
* It's OK to look at env for the current mode here, because it's
* never possible for an AArch64 TB to chain to an AArch32 TB.
*/
if (is_a64(env)) {
env->pc = tb->pc;
} else {
env->regs[15] = tb->pc;
}
}
#endif /* CONFIG_TCG */
static bool arm_cpu_has_work(CPUState *cs)
{
ARMCPU *cpu = ARM_CPU(cs);
return (cpu->power_state != PSCI_OFF)
&& cs->interrupt_request &
(CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
| CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
| CPU_INTERRUPT_EXITTB);
}
void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
void *opaque)
{
ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
entry->hook = hook;
entry->opaque = opaque;
QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
}
void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
void *opaque)
{
ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
entry->hook = hook;
entry->opaque = opaque;
QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
}
static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
{
/* Reset a single ARMCPRegInfo register */
ARMCPRegInfo *ri = value;
ARMCPU *cpu = opaque;
if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
return;
}
if (ri->resetfn) {
ri->resetfn(&cpu->env, ri);
return;
}
/* A zero offset is never possible as it would be regs[0]
* so we use it to indicate that reset is being handled elsewhere.
* This is basically only used for fields in non-core coprocessors
* (like the pxa2xx ones).
*/
if (!ri->fieldoffset) {
return;
}
if (cpreg_field_is_64bit(ri)) {
CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
} else {
CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
}
}
static void cp_reg_check_reset(gpointer key, gpointer value, gpointer opaque)
{
/* Purely an assertion check: we've already done reset once,
* so now check that running the reset for the cpreg doesn't
* change its value. This traps bugs where two different cpregs
* both try to reset the same state field but to different values.
*/
ARMCPRegInfo *ri = value;
ARMCPU *cpu = opaque;
uint64_t oldvalue, newvalue;
if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
return;
}
oldvalue = read_raw_cp_reg(&cpu->env, ri);
cp_reg_reset(key, value, opaque);
newvalue = read_raw_cp_reg(&cpu->env, ri);
assert(oldvalue == newvalue);
}
static void arm_cpu_reset(DeviceState *dev)
{
CPUState *s = CPU(dev);
ARMCPU *cpu = ARM_CPU(s);
ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
CPUARMState *env = &cpu->env;
acc->parent_reset(dev);
memset(env, 0, offsetof(CPUARMState, end_reset_fields));
g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
cpu->power_state = s->start_powered_off ? PSCI_OFF : PSCI_ON;
if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
}
if (arm_feature(env, ARM_FEATURE_AARCH64)) {
/* 64 bit CPUs always start in 64 bit mode */
env->aarch64 = 1;
#if defined(CONFIG_USER_ONLY)
env->pstate = PSTATE_MODE_EL0t;
/* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
/* Enable all PAC keys. */
env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
SCTLR_EnDA | SCTLR_EnDB);
/* and to the FP/Neon instructions */
env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
/* and to the SVE instructions */
env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
/* with reasonable vector length */
if (cpu_isar_feature(aa64_sve, cpu)) {
env->vfp.zcr_el[1] =
aarch64_sve_zcr_get_valid_len(cpu, cpu->sve_default_vq - 1);
}
/*
* Enable TBI0 but not TBI1.
* Note that this must match useronly_clean_ptr.
*/
env->cp15.tcr_el[1].raw_tcr = (1ULL << 37);
/* Enable MTE */
if (cpu_isar_feature(aa64_mte, cpu)) {
/* Enable tag access, but leave TCF0 as No Effect (0). */
env->cp15.sctlr_el[1] |= SCTLR_ATA0;
/*
* Exclude all tags, so that tag 0 is always used.
* This corresponds to Linux current->thread.gcr_incl = 0.
*
* Set RRND, so that helper_irg() will generate a seed later.
* Here in cpu_reset(), the crypto subsystem has not yet been
* initialized.
*/
env->cp15.gcr_el1 = 0x1ffff;
}
#else
/* Reset into the highest available EL */
if (arm_feature(env, ARM_FEATURE_EL3)) {
env->pstate = PSTATE_MODE_EL3h;
} else if (arm_feature(env, ARM_FEATURE_EL2)) {
env->pstate = PSTATE_MODE_EL2h;
} else {
env->pstate = PSTATE_MODE_EL1h;
}
env->pc = cpu->rvbar;
#endif
} else {
#if defined(CONFIG_USER_ONLY)
/* Userspace expects access to cp10 and cp11 for FP/Neon */
env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
#endif
}
#if defined(CONFIG_USER_ONLY)
env->uncached_cpsr = ARM_CPU_MODE_USR;
/* For user mode we must enable access to coprocessors */
env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
env->cp15.c15_cpar = 3;
} else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
env->cp15.c15_cpar = 1;
}
#else
/*
* If the highest available EL is EL2, AArch32 will start in Hyp
* mode; otherwise it starts in SVC. Note that if we start in
* AArch64 then these values in the uncached_cpsr will be ignored.
*/
if (arm_feature(env, ARM_FEATURE_EL2) &&
!arm_feature(env, ARM_FEATURE_EL3)) {
env->uncached_cpsr = ARM_CPU_MODE_HYP;
} else {
env->uncached_cpsr = ARM_CPU_MODE_SVC;
}
env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
/* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently
* executing as AArch32 then check if highvecs are enabled and
* adjust the PC accordingly.
*/
if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
env->regs[15] = 0xFFFF0000;
}
env->vfp.xregs[ARM_VFP_FPEXC] = 0;
#endif
if (arm_feature(env, ARM_FEATURE_M)) {
#ifndef CONFIG_USER_ONLY
uint32_t initial_msp; /* Loaded from 0x0 */
uint32_t initial_pc; /* Loaded from 0x4 */
uint8_t *rom;
uint32_t vecbase;
#endif
if (cpu_isar_feature(aa32_lob, cpu)) {
/*
* LTPSIZE is constant 4 if MVE not implemented, and resets
* to an UNKNOWN value if MVE is implemented. We choose to
* always reset to 4.
*/
env->v7m.ltpsize = 4;
/* The LTPSIZE field in FPDSCR is constant and reads as 4. */
env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT;
env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT;
}
if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
env->v7m.secure = true;
} else {
/* This bit resets to 0 if security is supported, but 1 if
* it is not. The bit is not present in v7M, but we set it
* here so we can avoid having to make checks on it conditional
* on ARM_FEATURE_V8 (we don't let the guest see the bit).
*/
env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
/*
* Set NSACR to indicate "NS access permitted to everything";
* this avoids having to have all the tests of it being
* conditional on ARM_FEATURE_M_SECURITY. Note also that from
* v8.1M the guest-visible value of NSACR in a CPU without the
* Security Extension is 0xcff.
*/
env->v7m.nsacr = 0xcff;
}
/* In v7M the reset value of this bit is IMPDEF, but ARM recommends
* that it resets to 1, so QEMU always does that rather than making
* it dependent on CPU model. In v8M it is RES1.
*/
env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
if (arm_feature(env, ARM_FEATURE_V8)) {
/* in v8M the NONBASETHRDENA bit [0] is RES1 */
env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
}
if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
}
if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
}
#ifndef CONFIG_USER_ONLY
/* Unlike A/R profile, M profile defines the reset LR value */
env->regs[14] = 0xffffffff;
env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
env->v7m.vecbase[M_REG_NS] = cpu->init_nsvtor & 0xffffff80;
/* Load the initial SP and PC from offset 0 and 4 in the vector table */
vecbase = env->v7m.vecbase[env->v7m.secure];
rom = rom_ptr_for_as(s->as, vecbase, 8);
if (rom) {
/* Address zero is covered by ROM which hasn't yet been
* copied into physical memory.
*/
initial_msp = ldl_p(rom);
initial_pc = ldl_p(rom + 4);
} else {
/* Address zero not covered by a ROM blob, or the ROM blob
* is in non-modifiable memory and this is a second reset after
* it got copied into memory. In the latter case, rom_ptr
* will return a NULL pointer and we should use ldl_phys instead.
*/
initial_msp = ldl_phys(s->as, vecbase);
initial_pc = ldl_phys(s->as, vecbase + 4);
}
env->regs[13] = initial_msp & 0xFFFFFFFC;
env->regs[15] = initial_pc & ~1;
env->thumb = initial_pc & 1;
#else
/*
* For user mode we run non-secure and with access to the FPU.
* The FPU context is active (ie does not need further setup)
* and is owned by non-secure.
*/
env->v7m.secure = false;
env->v7m.nsacr = 0xcff;
env->v7m.cpacr[M_REG_NS] = 0xf0ffff;
env->v7m.fpccr[M_REG_S] &=
~(R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK);
env->v7m.control[M_REG_S] |= R_V7M_CONTROL_FPCA_MASK;
#endif
}
/* M profile requires that reset clears the exclusive monitor;
* A profile does not, but clearing it makes more sense than having it
* set with an exclusive access on address zero.
*/
arm_clear_exclusive(env);
if (arm_feature(env, ARM_FEATURE_PMSA)) {
if (cpu->pmsav7_dregion > 0) {
if (arm_feature(env, ARM_FEATURE_V8)) {
memset(env->pmsav8.rbar[M_REG_NS], 0,
sizeof(*env->pmsav8.rbar[M_REG_NS])
* cpu->pmsav7_dregion);
memset(env->pmsav8.rlar[M_REG_NS], 0,
sizeof(*env->pmsav8.rlar[M_REG_NS])
* cpu->pmsav7_dregion);
if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
memset(env->pmsav8.rbar[M_REG_S], 0,
sizeof(*env->pmsav8.rbar[M_REG_S])
* cpu->pmsav7_dregion);
memset(env->pmsav8.rlar[M_REG_S], 0,
sizeof(*env->pmsav8.rlar[M_REG_S])
* cpu->pmsav7_dregion);
}
} else if (arm_feature(env, ARM_FEATURE_V7)) {
memset(env->pmsav7.drbar, 0,
sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
memset(env->pmsav7.drsr, 0,
sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
memset(env->pmsav7.dracr, 0,
sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
}
}
env->pmsav7.rnr[M_REG_NS] = 0;
env->pmsav7.rnr[M_REG_S] = 0;
env->pmsav8.mair0[M_REG_NS] = 0;
env->pmsav8.mair0[M_REG_S] = 0;
env->pmsav8.mair1[M_REG_NS] = 0;
env->pmsav8.mair1[M_REG_S] = 0;
}
if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
if (cpu->sau_sregion > 0) {
memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
}
env->sau.rnr = 0;
/* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
* the Cortex-M33 does.
*/
env->sau.ctrl = 0;
}
set_flush_to_zero(1, &env->vfp.standard_fp_status);
set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
set_default_nan_mode(1, &env->vfp.standard_fp_status);
set_default_nan_mode(1, &env->vfp.standard_fp_status_f16);
set_float_detect_tininess(float_tininess_before_rounding,
&env->vfp.fp_status);
set_float_detect_tininess(float_tininess_before_rounding,
&env->vfp.standard_fp_status);
set_float_detect_tininess(float_tininess_before_rounding,
&env->vfp.fp_status_f16);
set_float_detect_tininess(float_tininess_before_rounding,
&env->vfp.standard_fp_status_f16);
#ifndef CONFIG_USER_ONLY
if (kvm_enabled()) {
kvm_arm_reset_vcpu(cpu);
}
#endif
hw_breakpoint_update_all(cpu);
hw_watchpoint_update_all(cpu);
arm_rebuild_hflags(env);
}
#ifndef CONFIG_USER_ONLY
static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
unsigned int target_el,
unsigned int cur_el, bool secure,
uint64_t hcr_el2)
{
CPUARMState *env = cs->env_ptr;
bool pstate_unmasked;
bool unmasked = false;
/*
* Don't take exceptions if they target a lower EL.
* This check should catch any exceptions that would not be taken
* but left pending.
*/
if (cur_el > target_el) {
return false;
}
switch (excp_idx) {
case EXCP_FIQ:
pstate_unmasked = !(env->daif & PSTATE_F);
break;
case EXCP_IRQ:
pstate_unmasked = !(env->daif & PSTATE_I);
break;
case EXCP_VFIQ:
if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
/* VFIQs are only taken when hypervized. */
return false;
}
return !(env->daif & PSTATE_F);
case EXCP_VIRQ:
if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
/* VIRQs are only taken when hypervized. */
return false;
}
return !(env->daif & PSTATE_I);
default:
g_assert_not_reached();
}
/*
* Use the target EL, current execution state and SCR/HCR settings to
* determine whether the corresponding CPSR bit is used to mask the
* interrupt.
*/
if ((target_el > cur_el) && (target_el != 1)) {
/* Exceptions targeting a higher EL may not be maskable */
if (arm_feature(env, ARM_FEATURE_AARCH64)) {
/*
* 64-bit masking rules are simple: exceptions to EL3
* can't be masked, and exceptions to EL2 can only be
* masked from Secure state. The HCR and SCR settings
* don't affect the masking logic, only the interrupt routing.
*/
if (target_el == 3 || !secure || (env->cp15.scr_el3 & SCR_EEL2)) {
unmasked = true;
}
} else {
/*
* The old 32-bit-only environment has a more complicated
* masking setup. HCR and SCR bits not only affect interrupt
* routing but also change the behaviour of masking.
*/
bool hcr, scr;
switch (excp_idx) {
case EXCP_FIQ:
/*
* If FIQs are routed to EL3 or EL2 then there are cases where
* we override the CPSR.F in determining if the exception is
* masked or not. If neither of these are set then we fall back
* to the CPSR.F setting otherwise we further assess the state
* below.
*/
hcr = hcr_el2 & HCR_FMO;
scr = (env->cp15.scr_el3 & SCR_FIQ);
/*
* When EL3 is 32-bit, the SCR.FW bit controls whether the
* CPSR.F bit masks FIQ interrupts when taken in non-secure
* state. If SCR.FW is set then FIQs can be masked by CPSR.F
* when non-secure but only when FIQs are only routed to EL3.
*/
scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
break;
case EXCP_IRQ:
/*
* When EL3 execution state is 32-bit, if HCR.IMO is set then
* we may override the CPSR.I masking when in non-secure state.
* The SCR.IRQ setting has already been taken into consideration
* when setting the target EL, so it does not have a further
* affect here.
*/
hcr = hcr_el2 & HCR_IMO;
scr = false;
break;
default:
g_assert_not_reached();
}
if ((scr || hcr) && !secure) {
unmasked = true;
}
}
}
/*
* The PSTATE bits only mask the interrupt if we have not overriden the
* ability above.
*/
return unmasked || pstate_unmasked;
}
static bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
{
CPUClass *cc = CPU_GET_CLASS(cs);
CPUARMState *env = cs->env_ptr;
uint32_t cur_el = arm_current_el(env);
bool secure = arm_is_secure(env);
uint64_t hcr_el2 = arm_hcr_el2_eff(env);
uint32_t target_el;
uint32_t excp_idx;
/* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
if (interrupt_request & CPU_INTERRUPT_FIQ) {
excp_idx = EXCP_FIQ;
target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
if (arm_excp_unmasked(cs, excp_idx, target_el,
cur_el, secure, hcr_el2)) {
goto found;
}
}
if (interrupt_request & CPU_INTERRUPT_HARD) {
excp_idx = EXCP_IRQ;
target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
if (arm_excp_unmasked(cs, excp_idx, target_el,
cur_el, secure, hcr_el2)) {
goto found;
}
}
if (interrupt_request & CPU_INTERRUPT_VIRQ) {
excp_idx = EXCP_VIRQ;
target_el = 1;
if (arm_excp_unmasked(cs, excp_idx, target_el,
cur_el, secure, hcr_el2)) {
goto found;
}
}
if (interrupt_request & CPU_INTERRUPT_VFIQ) {
excp_idx = EXCP_VFIQ;
target_el = 1;
if (arm_excp_unmasked(cs, excp_idx, target_el,
cur_el, secure, hcr_el2)) {
goto found;
}
}
return false;
found:
cs->exception_index = excp_idx;
env->exception.target_el = target_el;
cc->tcg_ops->do_interrupt(cs);
return true;
}
#endif /* !CONFIG_USER_ONLY */
void arm_cpu_update_virq(ARMCPU *cpu)
{
/*
* Update the interrupt level for VIRQ, which is the logical OR of
* the HCR_EL2.VI bit and the input line level from the GIC.
*/
CPUARMState *env = &cpu->env;
CPUState *cs = CPU(cpu);
bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
(env->irq_line_state & CPU_INTERRUPT_VIRQ);
if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
if (new_state) {
cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
} else {
cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
}
}
}
void arm_cpu_update_vfiq(ARMCPU *cpu)
{
/*
* Update the interrupt level for VFIQ, which is the logical OR of
* the HCR_EL2.VF bit and the input line level from the GIC.
*/
CPUARMState *env = &cpu->env;
CPUState *cs = CPU(cpu);
bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
(env->irq_line_state & CPU_INTERRUPT_VFIQ);
if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
if (new_state) {
cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
} else {
cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
}
}
}
#ifndef CONFIG_USER_ONLY
static void arm_cpu_set_irq(void *opaque, int irq, int level)
{
ARMCPU *cpu = opaque;
CPUARMState *env = &cpu->env;
CPUState *cs = CPU(cpu);
static const int mask[] = {
[ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
[ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
[ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
[ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
};
if (level) {
env->irq_line_state |= mask[irq];
} else {
env->irq_line_state &= ~mask[irq];
}
switch (irq) {
case ARM_CPU_VIRQ:
assert(arm_feature(env, ARM_FEATURE_EL2));
arm_cpu_update_virq(cpu);
break;
case ARM_CPU_VFIQ:
assert(arm_feature(env, ARM_FEATURE_EL2));
arm_cpu_update_vfiq(cpu);
break;
case ARM_CPU_IRQ:
case ARM_CPU_FIQ:
if (level) {
cpu_interrupt(cs, mask[irq]);
} else {
cpu_reset_interrupt(cs, mask[irq]);
}
break;
default:
g_assert_not_reached();
}
}
static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
{
#ifdef CONFIG_KVM
ARMCPU *cpu = opaque;
CPUARMState *env = &cpu->env;
CPUState *cs = CPU(cpu);
uint32_t linestate_bit;
int irq_id;
switch (irq) {
case ARM_CPU_IRQ:
irq_id = KVM_ARM_IRQ_CPU_IRQ;
linestate_bit = CPU_INTERRUPT_HARD;
break;
case ARM_CPU_FIQ:
irq_id = KVM_ARM_IRQ_CPU_FIQ;
linestate_bit = CPU_INTERRUPT_FIQ;
break;
default:
g_assert_not_reached();
}
if (level) {
env->irq_line_state |= linestate_bit;
} else {
env->irq_line_state &= ~linestate_bit;
}
kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
#endif
}
static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
{
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
cpu_synchronize_state(cs);
return arm_cpu_data_is_big_endian(env);
}
#endif
static int
print_insn_thumb1(bfd_vma pc, disassemble_info *info)
{
return print_insn_arm(pc | 1, info);
}
static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
{
ARMCPU *ac = ARM_CPU(cpu);
CPUARMState *env = &ac->env;
bool sctlr_b;
if (is_a64(env)) {
/* We might not be compiled with the A64 disassembler
* because it needs a C++ compiler. Leave print_insn
* unset in this case to use the caller default behaviour.
*/
#if defined(CONFIG_ARM_A64_DIS)
info->print_insn = print_insn_arm_a64;
#endif
info->cap_arch = CS_ARCH_ARM64;
info->cap_insn_unit = 4;
info->cap_insn_split = 4;
} else {
int cap_mode;
if (env->thumb) {
info->print_insn = print_insn_thumb1;
info->cap_insn_unit = 2;
info->cap_insn_split = 4;
cap_mode = CS_MODE_THUMB;
} else {
info->print_insn = print_insn_arm;
info->cap_insn_unit = 4;
info->cap_insn_split = 4;
cap_mode = CS_MODE_ARM;
}
if (arm_feature(env, ARM_FEATURE_V8)) {
cap_mode |= CS_MODE_V8;
}
if (arm_feature(env, ARM_FEATURE_M)) {
cap_mode |= CS_MODE_MCLASS;
}
info->cap_arch = CS_ARCH_ARM;
info->cap_mode = cap_mode;
}
sctlr_b = arm_sctlr_b(env);
if (bswap_code(sctlr_b)) {
#ifdef TARGET_WORDS_BIGENDIAN
info->endian = BFD_ENDIAN_LITTLE;
#else
info->endian = BFD_ENDIAN_BIG;
#endif
}
info->flags &= ~INSN_ARM_BE32;
#ifndef CONFIG_USER_ONLY
if (sctlr_b) {
info->flags |= INSN_ARM_BE32;
}
#endif
}
#ifdef TARGET_AARCH64
static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
{
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
uint32_t psr = pstate_read(env);
int i;
int el = arm_current_el(env);
const char *ns_status;
qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
for (i = 0; i < 32; i++) {
if (i == 31) {
qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
} else {
qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
(i + 2) % 3 ? " " : "\n");
}
}
if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
} else {
ns_status = "";
}
qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
psr,
psr & PSTATE_N ? 'N' : '-',
psr & PSTATE_Z ? 'Z' : '-',
psr & PSTATE_C ? 'C' : '-',
psr & PSTATE_V ? 'V' : '-',
ns_status,
el,
psr & PSTATE_SP ? 'h' : 't');
if (cpu_isar_feature(aa64_bti, cpu)) {
qemu_fprintf(f, " BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
}
if (!(flags & CPU_DUMP_FPU)) {
qemu_fprintf(f, "\n");
return;
}
if (fp_exception_el(env, el) != 0) {
qemu_fprintf(f, " FPU disabled\n");
return;
}
qemu_fprintf(f, " FPCR=%08x FPSR=%08x\n",
vfp_get_fpcr(env), vfp_get_fpsr(env));
if (cpu_isar_feature(aa64_sve, cpu) && sve_exception_el(env, el) == 0) {
int j, zcr_len = sve_zcr_len_for_el(env, el);
for (i = 0; i <= FFR_PRED_NUM; i++) {
bool eol;
if (i == FFR_PRED_NUM) {
qemu_fprintf(f, "FFR=");
/* It's last, so end the line. */
eol = true;
} else {
qemu_fprintf(f, "P%02d=", i);
switch (zcr_len) {
case 0:
eol = i % 8 == 7;
break;
case 1:
eol = i % 6 == 5;
break;
case 2:
case 3:
eol = i % 3 == 2;
break;
default:
/* More than one quadword per predicate. */
eol = true;
break;
}
}
for (j = zcr_len / 4; j >= 0; j--) {
int digits;
if (j * 4 + 4 <= zcr_len + 1) {
digits = 16;
} else {
digits = (zcr_len % 4 + 1) * 4;
}
qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
env->vfp.pregs[i].p[j],
j ? ":" : eol ? "\n" : " ");
}
}
for (i = 0; i < 32; i++) {
if (zcr_len == 0) {
qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
i, env->vfp.zregs[i].d[1],
env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
} else if (zcr_len == 1) {
qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
":%016" PRIx64 ":%016" PRIx64 "\n",
i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
} else {
for (j = zcr_len; j >= 0; j--) {
bool odd = (zcr_len - j) % 2 != 0;
if (j == zcr_len) {
qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
} else if (!odd) {
if (j > 0) {
qemu_fprintf(f, " [%x-%x]=", j, j - 1);
} else {
qemu_fprintf(f, " [%x]=", j);
}
}
qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
env->vfp.zregs[i].d[j * 2 + 1],
env->vfp.zregs[i].d[j * 2],
odd || j == 0 ? "\n" : ":");
}
}
}
} else {
for (i = 0; i < 32; i++) {
uint64_t *q = aa64_vfp_qreg(env, i);
qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
i, q[1], q[0], (i & 1 ? "\n" : " "));
}
}
}
#else
static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
{
g_assert_not_reached();
}
#endif
static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
{
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
int i;
if (is_a64(env)) {
aarch64_cpu_dump_state(cs, f, flags);
return;
}
for (i = 0; i < 16; i++) {
qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
if ((i % 4) == 3) {
qemu_fprintf(f, "\n");
} else {
qemu_fprintf(f, " ");
}
}
if (arm_feature(env, ARM_FEATURE_M)) {
uint32_t xpsr = xpsr_read(env);
const char *mode;
const char *ns_status = "";
if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
ns_status = env->v7m.secure ? "S " : "NS ";
}
if (xpsr & XPSR_EXCP) {
mode = "handler";
} else {
if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
mode = "unpriv-thread";
} else {
mode = "priv-thread";
}
}
qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
xpsr,
xpsr & XPSR_N ? 'N' : '-',
xpsr & XPSR_Z ? 'Z' : '-',
xpsr & XPSR_C ? 'C' : '-',
xpsr & XPSR_V ? 'V' : '-',
xpsr & XPSR_T ? 'T' : 'A',
ns_status,
mode);
} else {
uint32_t psr = cpsr_read(env);
const char *ns_status = "";
if (arm_feature(env, ARM_FEATURE_EL3) &&
(psr & CPSR_M) != ARM_CPU_MODE_MON) {
ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
}
qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
psr,
psr & CPSR_N ? 'N' : '-',
psr & CPSR_Z ? 'Z' : '-',
psr & CPSR_C ? 'C' : '-',
psr & CPSR_V ? 'V' : '-',
psr & CPSR_T ? 'T' : 'A',
ns_status,
aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
}
if (flags & CPU_DUMP_FPU) {
int numvfpregs = 0;
if (cpu_isar_feature(aa32_simd_r32, cpu)) {
numvfpregs = 32;
} else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
numvfpregs = 16;
}
for (i = 0; i < numvfpregs; i++) {
uint64_t v = *aa32_vfp_dreg(env, i);
qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
i * 2, (uint32_t)v,
i * 2 + 1, (uint32_t)(v >> 32),
i, v);
}
qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
if (cpu_isar_feature(aa32_mve, cpu)) {
qemu_fprintf(f, "VPR: %08x\n", env->v7m.vpr);
}
}
}
uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
{
uint32_t Aff1 = idx / clustersz;
uint32_t Aff0 = idx % clustersz;
return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
}
static void cpreg_hashtable_data_destroy(gpointer data)
{
/*
* Destroy function for cpu->cp_regs hashtable data entries.
* We must free the name string because it was g_strdup()ed in
* add_cpreg_to_hashtable(). It's OK to cast away the 'const'
* from r->name because we know we definitely allocated it.
*/
ARMCPRegInfo *r = data;
g_free((void *)r->name);
g_free(r);
}
static void arm_cpu_initfn(Object *obj)
{
ARMCPU *cpu = ARM_CPU(obj);
cpu_set_cpustate_pointers(cpu);
cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
g_free, cpreg_hashtable_data_destroy);
QLIST_INIT(&cpu->pre_el_change_hooks);
QLIST_INIT(&cpu->el_change_hooks);
#ifdef CONFIG_USER_ONLY
# ifdef TARGET_AARCH64
/*
* The linux kernel defaults to 512-bit vectors, when sve is supported.
* See documentation for /proc/sys/abi/sve_default_vector_length, and
* our corresponding sve-default-vector-length cpu property.
*/
cpu->sve_default_vq = 4;
# endif
#else
/* Our inbound IRQ and FIQ lines */
if (kvm_enabled()) {
/* VIRQ and VFIQ are unused with KVM but we add them to maintain
* the same interface as non-KVM CPUs.
*/
qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
} else {
qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
}
qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
ARRAY_SIZE(cpu->gt_timer_outputs));
qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
"gicv3-maintenance-interrupt", 1);
qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
"pmu-interrupt", 1);
#endif
/* DTB consumers generally don't in fact care what the 'compatible'
* string is, so always provide some string and trust that a hypothetical
* picky DTB consumer will also provide a helpful error message.
*/
cpu->dtb_compatible = "qemu,unknown";
cpu->psci_version = 1; /* By default assume PSCI v0.1 */
cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
if (tcg_enabled() || hvf_enabled()) {
cpu->psci_version = 2; /* TCG and HVF implement PSCI 0.2 */
}
}
static Property arm_cpu_gt_cntfrq_property =
DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
NANOSECONDS_PER_SECOND / GTIMER_SCALE);
static Property arm_cpu_reset_cbar_property =
DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
static Property arm_cpu_reset_hivecs_property =
DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
static Property arm_cpu_rvbar_property =
DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
#ifndef CONFIG_USER_ONLY
static Property arm_cpu_has_el2_property =
DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
static Property arm_cpu_has_el3_property =
DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
#endif
static Property arm_cpu_cfgend_property =
DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
static Property arm_cpu_has_vfp_property =
DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
static Property arm_cpu_has_neon_property =
DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
static Property arm_cpu_has_dsp_property =
DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
static Property arm_cpu_has_mpu_property =
DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
/* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
* because the CPU initfn will have already set cpu->pmsav7_dregion to
* the right value for that particular CPU type, and we don't want
* to override that with an incorrect constant value.
*/
static Property arm_cpu_pmsav7_dregion_property =
DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
pmsav7_dregion,
qdev_prop_uint32, uint32_t);
static bool arm_get_pmu(Object *obj, Error **errp)
{
ARMCPU *cpu = ARM_CPU(obj);
return cpu->has_pmu;
}
static void arm_set_pmu(Object *obj, bool value, Error **errp)
{
ARMCPU *cpu = ARM_CPU(obj);
if (value) {
if (kvm_enabled() && !kvm_arm_pmu_supported()) {
error_setg(errp, "'pmu' feature not supported by KVM on this host");
return;
}
set_feature(&cpu->env, ARM_FEATURE_PMU);
} else {
unset_feature(&cpu->env, ARM_FEATURE_PMU);
}
cpu->has_pmu = value;
}
unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
{
/*
* The exact approach to calculating guest ticks is:
*
* muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
* NANOSECONDS_PER_SECOND);
*
* We don't do that. Rather we intentionally use integer division
* truncation below and in the caller for the conversion of host monotonic
* time to guest ticks to provide the exact inverse for the semantics of
* the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
* it loses precision when representing frequencies where
* `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
* provide an exact inverse leads to scheduling timers with negative
* periods, which in turn leads to sticky behaviour in the guest.
*
* Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
* cannot become zero.
*/
return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
}
void arm_cpu_post_init(Object *obj)
{
ARMCPU *cpu = ARM_CPU(obj);
/* M profile implies PMSA. We have to do this here rather than
* in realize with the other feature-implication checks because
* we look at the PMSA bit to see if we should add some properties.
*/
if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
set_feature(&cpu->env, ARM_FEATURE_PMSA);
}
if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
}
if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
}
if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property);
}
#ifndef CONFIG_USER_ONLY
if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
/* Add the has_el3 state CPU property only if EL3 is allowed. This will
* prevent "has_el3" from existing on CPUs which cannot support EL3.
*/
qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
object_property_add_link(obj, "secure-memory",
TYPE_MEMORY_REGION,
(Object **)&cpu->secure_memory,
qdev_prop_allow_set_link_before_realize,
OBJ_PROP_LINK_STRONG);
}
if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
}
#endif
if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
cpu->has_pmu = true;
object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
}
/*
* Allow user to turn off VFP and Neon support, but only for TCG --
* KVM does not currently allow us to lie to the guest about its
* ID/feature registers, so the guest always sees what the host has.
*/
if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
? cpu_isar_feature(aa64_fp_simd, cpu)
: cpu_isar_feature(aa32_vfp, cpu)) {
cpu->has_vfp = true;
if (!kvm_enabled()) {
qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property);
}
}
if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
cpu->has_neon = true;
if (!kvm_enabled()) {
qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
}
}
if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
}
if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
qdev_property_add_static(DEVICE(obj),
&arm_cpu_pmsav7_dregion_property);
}
}
if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
qdev_prop_allow_set_link_before_realize,
OBJ_PROP_LINK_STRONG);
/*
* M profile: initial value of the Secure VTOR. We can't just use
* a simple DEFINE_PROP_UINT32 for this because we want to permit
* the property to be set after realize.
*/
object_property_add_uint32_ptr(obj, "init-svtor",
&cpu->init_svtor,
OBJ_PROP_FLAG_READWRITE);
}
if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
/*
* Initial value of the NS VTOR (for cores without the Security
* extension, this is the only VTOR)
*/
object_property_add_uint32_ptr(obj, "init-nsvtor",
&cpu->init_nsvtor,
OBJ_PROP_FLAG_READWRITE);
}
qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
}
if (kvm_enabled()) {
kvm_arm_add_vcpu_properties(obj);
}
#ifndef CONFIG_USER_ONLY
if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) &&
cpu_isar_feature(aa64_mte, cpu)) {
object_property_add_link(obj, "tag-memory",
TYPE_MEMORY_REGION,
(Object **)&cpu->tag_memory,
qdev_prop_allow_set_link_before_realize,
OBJ_PROP_LINK_STRONG);
if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
object_property_add_link(obj, "secure-tag-memory",
TYPE_MEMORY_REGION,
(Object **)&cpu->secure_tag_memory,
qdev_prop_allow_set_link_before_realize,
OBJ_PROP_LINK_STRONG);
}
}
#endif
}
static void arm_cpu_finalizefn(Object *obj)
{
ARMCPU *cpu = ARM_CPU(obj);
ARMELChangeHook *hook, *next;
g_hash_table_destroy(cpu->cp_regs);
QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
QLIST_REMOVE(hook, node);
g_free(hook);
}
QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
QLIST_REMOVE(hook, node);
g_free(hook);
}
#ifndef CONFIG_USER_ONLY
if (cpu->pmu_timer) {
timer_free(cpu->pmu_timer);
}
#endif
}
void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
{
Error *local_err = NULL;
if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
arm_cpu_sve_finalize(cpu, &local_err);
if (local_err != NULL) {
error_propagate(errp, local_err);
return;
}
/*
* KVM does not support modifications to this feature.
* We have not registered the cpu properties when KVM
* is in use, so the user will not be able to set them.
*/
if (!kvm_enabled()) {
arm_cpu_pauth_finalize(cpu, &local_err);
if (local_err != NULL) {
error_propagate(errp, local_err);
return;
}
}
}
if (kvm_enabled()) {
kvm_arm_steal_time_finalize(cpu, &local_err);
if (local_err != NULL) {
error_propagate(errp, local_err);
return;
}
}
}
static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
{
CPUState *cs = CPU(dev);
ARMCPU *cpu = ARM_CPU(dev);
ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
CPUARMState *env = &cpu->env;
int pagebits;
Error *local_err = NULL;
bool no_aa32 = false;
/* If we needed to query the host kernel for the CPU features
* then it's possible that might have failed in the initfn, but
* this is the first point where we can report it.
*/
if (cpu->host_cpu_probe_failed) {
if (!kvm_enabled() && !hvf_enabled()) {
error_setg(errp, "The 'host' CPU type can only be used with KVM or HVF");
} else {
error_setg(errp, "Failed to retrieve host CPU features");
}
return;
}
#ifndef CONFIG_USER_ONLY
/* The NVIC and M-profile CPU are two halves of a single piece of
* hardware; trying to use one without the other is a command line
* error and will result in segfaults if not caught here.
*/
if (arm_feature(env, ARM_FEATURE_M)) {
if (!env->nvic) {
error_setg(errp, "This board cannot be used with Cortex-M CPUs");
return;
}
} else {
if (env->nvic) {
error_setg(errp, "This board can only be used with Cortex-M CPUs");
return;
}
}
if (kvm_enabled()) {
/*
* Catch all the cases which might cause us to create more than one
* address space for the CPU (otherwise we will assert() later in
* cpu_address_space_init()).
*/
if (arm_feature(env, ARM_FEATURE_M)) {
error_setg(errp,
"Cannot enable KVM when using an M-profile guest CPU");
return;
}
if (cpu->has_el3) {
error_setg(errp,
"Cannot enable KVM when guest CPU has EL3 enabled");
return;
}
if (cpu->tag_memory) {
error_setg(errp,
"Cannot enable KVM when guest CPUs has MTE enabled");
return;
}
}
{
uint64_t scale;
if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
if (!cpu->gt_cntfrq_hz) {
error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
cpu->gt_cntfrq_hz);
return;
}
scale = gt_cntfrq_period_ns(cpu);
} else {
scale = GTIMER_SCALE;
}
cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
arm_gt_ptimer_cb, cpu);
cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
arm_gt_vtimer_cb, cpu);
cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
arm_gt_htimer_cb, cpu);
cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
arm_gt_stimer_cb, cpu);
cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
arm_gt_hvtimer_cb, cpu);
}
#endif
cpu_exec_realizefn(cs, &local_err);
if (local_err != NULL) {
error_propagate(errp, local_err);
return;
}
arm_cpu_finalize_features(cpu, &local_err);
if (local_err != NULL) {
error_propagate(errp, local_err);
return;
}
if (arm_feature(env, ARM_FEATURE_AARCH64) &&
cpu->has_vfp != cpu->has_neon) {
/*
* This is an architectural requirement for AArch64; AArch32 is
* more flexible and permits VFP-no-Neon and Neon-no-VFP.
*/
error_setg(errp,
"AArch64 CPUs must have both VFP and Neon or neither");
return;
}
if (!cpu->has_vfp) {
uint64_t t;
uint32_t u;
t = cpu->isar.id_aa64isar1;
t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
cpu->isar.id_aa64isar1 = t;
t = cpu->isar.id_aa64pfr0;
t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
cpu->isar.id_aa64pfr0 = t;
u = cpu->isar.id_isar6;
u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
cpu->isar.id_isar6 = u;
u = cpu->isar.mvfr0;
u = FIELD_DP32(u, MVFR0, FPSP, 0);
u = FIELD_DP32(u, MVFR0, FPDP, 0);
u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
u = FIELD_DP32(u, MVFR0, FPROUND, 0);
if (!arm_feature(env, ARM_FEATURE_M)) {
u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
}
cpu->isar.mvfr0 = u;
u = cpu->isar.mvfr1;
u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
u = FIELD_DP32(u, MVFR1, FPHP, 0);
if (arm_feature(env, ARM_FEATURE_M)) {
u = FIELD_DP32(u, MVFR1, FP16, 0);
}
cpu->isar.mvfr1 = u;
u = cpu->isar.mvfr2;
u = FIELD_DP32(u, MVFR2, FPMISC, 0);
cpu->isar.mvfr2 = u;
}
if (!cpu->has_neon) {
uint64_t t;
uint32_t u;
unset_feature(env, ARM_FEATURE_NEON);
t = cpu->isar.id_aa64isar0;
t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
cpu->isar.id_aa64isar0 = t;
t = cpu->isar.id_aa64isar1;
t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 0);
t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 0);
cpu->isar.id_aa64isar1 = t;
t = cpu->isar.id_aa64pfr0;
t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
cpu->isar.id_aa64pfr0 = t;
u = cpu->isar.id_isar5;
u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
cpu->isar.id_isar5 = u;
u = cpu->isar.id_isar6;
u = FIELD_DP32(u, ID_ISAR6, DP, 0);
u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
u = FIELD_DP32(u, ID_ISAR6, I8MM, 0);
cpu->isar.id_isar6 = u;
if (!arm_feature(env, ARM_FEATURE_M)) {
u = cpu->isar.mvfr1;
u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
cpu->isar.mvfr1 = u;
u = cpu->isar.mvfr2;
u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
cpu->isar.mvfr2 = u;
}
}
if (!cpu->has_neon && !cpu->has_vfp) {
uint64_t t;
uint32_t u;
t = cpu->isar.id_aa64isar0;
t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
cpu->isar.id_aa64isar0 = t;
t = cpu->isar.id_aa64isar1;
t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
cpu->isar.id_aa64isar1 = t;
u = cpu->isar.mvfr0;
u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
cpu->isar.mvfr0 = u;
/* Despite the name, this field covers both VFP and Neon */
u = cpu->isar.mvfr1;
u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
cpu->isar.mvfr1 = u;
}
if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
uint32_t u;
unset_feature(env, ARM_FEATURE_THUMB_DSP);
u = cpu->isar.id_isar1;
u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
cpu->isar.id_isar1 = u;
u = cpu->isar.id_isar2;
u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
cpu->isar.id_isar2 = u;
u = cpu->isar.id_isar3;
u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
cpu->isar.id_isar3 = u;
}
/* Some features automatically imply others: */
if (arm_feature(env, ARM_FEATURE_V8)) {
if (arm_feature(env, ARM_FEATURE_M)) {
set_feature(env, ARM_FEATURE_V7);
} else {
set_feature(env, ARM_FEATURE_V7VE);
}
}
/*
* There exist AArch64 cpus without AArch32 support. When KVM
* queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
* Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
* As a general principle, we also do not make ID register
* consistency checks anywhere unless using TCG, because only
* for TCG would a consistency-check failure be a QEMU bug.
*/
if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
}
if (arm_feature(env, ARM_FEATURE_V7VE)) {
/* v7 Virtualization Extensions. In real hardware this implies
* EL2 and also the presence of the Security Extensions.
* For QEMU, for backwards-compatibility we implement some
* CPUs or CPU configs which have no actual EL2 or EL3 but do
* include the various other features that V7VE implies.
* Presence of EL2 itself is ARM_FEATURE_EL2, and of the
* Security Extensions is ARM_FEATURE_EL3.
*/
assert(!tcg_enabled() || no_aa32 ||
cpu_isar_feature(aa32_arm_div, cpu));
set_feature(env, ARM_FEATURE_LPAE);
set_feature(env, ARM_FEATURE_V7);
}
if (arm_feature(env, ARM_FEATURE_V7)) {
set_feature(env, ARM_FEATURE_VAPA);
set_feature(env, ARM_FEATURE_THUMB2);
set_feature(env, ARM_FEATURE_MPIDR);
if (!arm_feature(env, ARM_FEATURE_M)) {
set_feature(env, ARM_FEATURE_V6K);
} else {
set_feature(env, ARM_FEATURE_V6);
}
/* Always define VBAR for V7 CPUs even if it doesn't exist in
* non-EL3 configs. This is needed by some legacy boards.
*/
set_feature(env, ARM_FEATURE_VBAR);
}
if (arm_feature(env, ARM_FEATURE_V6K)) {
set_feature(env, ARM_FEATURE_V6);
set_feature(env, ARM_FEATURE_MVFR);
}
if (arm_feature(env, ARM_FEATURE_V6)) {
set_feature(env, ARM_FEATURE_V5);
if (!arm_feature(env, ARM_FEATURE_M)) {
assert(!tcg_enabled() || no_aa32 ||
cpu_isar_feature(aa32_jazelle, cpu));
set_feature(env, ARM_FEATURE_AUXCR);
}
}
if (arm_feature(env, ARM_FEATURE_V5)) {
set_feature(env, ARM_FEATURE_V4T);
}
if (arm_feature(env, ARM_FEATURE_LPAE)) {
set_feature(env, ARM_FEATURE_V7MP);
}
if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
set_feature(env, ARM_FEATURE_CBAR);
}
if (arm_feature(env, ARM_FEATURE_THUMB2) &&
!arm_feature(env, ARM_FEATURE_M)) {
set_feature(env, ARM_FEATURE_THUMB_DSP);
}
/*
* We rely on no XScale CPU having VFP so we can use the same bits in the
* TB flags field for VECSTRIDE and XSCALE_CPAR.
*/
assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) ||
!cpu_isar_feature(aa32_vfp_simd, cpu) ||
!arm_feature(env, ARM_FEATURE_XSCALE));
if (arm_feature(env, ARM_FEATURE_V7) &&
!arm_feature(env, ARM_FEATURE_M) &&
!arm_feature(env, ARM_FEATURE_PMSA)) {
/* v7VMSA drops support for the old ARMv5 tiny pages, so we
* can use 4K pages.
*/
pagebits = 12;
} else {
/* For CPUs which might have tiny 1K pages, or which have an
* MPU and might have small region sizes, stick with 1K pages.
*/
pagebits = 10;
}
if (!set_preferred_target_page_bits(pagebits)) {
/* This can only ever happen for hotplugging a CPU, or if
* the board code incorrectly creates a CPU which it has
* promised via minimum_page_size that it will not.
*/
error_setg(errp, "This CPU requires a smaller page size than the "
"system is using");
return;
}
/* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
* We don't support setting cluster ID ([16..23]) (known as Aff2
* in later ARM ARM versions), or any of the higher affinity level fields,
* so these bits always RAZ.
*/
if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
ARM_DEFAULT_CPUS_PER_CLUSTER);
}
if (cpu->reset_hivecs) {
cpu->reset_sctlr |= (1 << 13);
}
if (cpu->cfgend) {
if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
cpu->reset_sctlr |= SCTLR_EE;
} else {
cpu->reset_sctlr |= SCTLR_B;
}
}
if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) {
/* If the has_el3 CPU property is disabled then we need to disable the
* feature.
*/
unset_feature(env, ARM_FEATURE_EL3);
/* Disable the security extension feature bits in the processor feature
* registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
*/
cpu->isar.id_pfr1 &= ~0xf0;
cpu->isar.id_aa64pfr0 &= ~0xf000;
}
if (!cpu->has_el2) {
unset_feature(env, ARM_FEATURE_EL2);
}
if (!cpu->has_pmu) {
unset_feature(env, ARM_FEATURE_PMU);
}
if (arm_feature(env, ARM_FEATURE_PMU)) {
pmu_init(cpu);
if (!kvm_enabled()) {
arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
}
#ifndef CONFIG_USER_ONLY
cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
cpu);
#endif
} else {
cpu->isar.id_aa64dfr0 =
FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
cpu->pmceid0 = 0;
cpu->pmceid1 = 0;
}
if (!arm_feature(env, ARM_FEATURE_EL2)) {
/* Disable the hypervisor feature bits in the processor feature
* registers if we don't have EL2. These are id_pfr1[15:12] and
* id_aa64pfr0_el1[11:8].
*/
cpu->isar.id_aa64pfr0 &= ~0xf00;
cpu->isar.id_pfr1 &= ~0xf000;
}
#ifndef CONFIG_USER_ONLY
if (cpu->tag_memory == NULL && cpu_isar_feature(aa64_mte, cpu)) {
/*
* Disable the MTE feature bits if we do not have tag-memory
* provided by the machine.
*/
cpu->isar.id_aa64pfr1 =
FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 0);
}
#endif
/* MPU can be configured out of a PMSA CPU either by setting has-mpu
* to false or by setting pmsav7-dregion to 0.
*/
if (!cpu->has_mpu) {
cpu->pmsav7_dregion = 0;
}
if (cpu->pmsav7_dregion == 0) {
cpu->has_mpu = false;
}
if (arm_feature(env, ARM_FEATURE_PMSA) &&
arm_feature(env, ARM_FEATURE_V7)) {
uint32_t nr = cpu->pmsav7_dregion;
if (nr > 0xff) {
error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
return;
}
if (nr) {
if (arm_feature(env, ARM_FEATURE_V8)) {
/* PMSAv8 */
env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
}
} else {
env->pmsav7.drbar = g_new0(uint32_t, nr);
env->pmsav7.drsr = g_new0(uint32_t, nr);
env->pmsav7.dracr = g_new0(uint32_t, nr);
}
}
}
if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
uint32_t nr = cpu->sau_sregion;
if (nr > 0xff) {
error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
return;
}
if (nr) {
env->sau.rbar = g_new0(uint32_t, nr);
env->sau.rlar = g_new0(uint32_t, nr);
}
}
if (arm_feature(env, ARM_FEATURE_EL3)) {
set_feature(env, ARM_FEATURE_VBAR);
}
register_cp_regs_for_features(cpu);
arm_cpu_register_gdb_regs_for_features(cpu);
init_cpreg_list(cpu);
#ifndef CONFIG_USER_ONLY
MachineState *ms = MACHINE(qdev_get_machine());
unsigned int smp_cpus = ms->smp.cpus;
bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY);
/*
* We must set cs->num_ases to the final value before
* the first call to cpu_address_space_init.
*/
if (cpu->tag_memory != NULL) {
cs->num_ases = 3 + has_secure;
} else {
cs->num_ases = 1 + has_secure;
}
if (has_secure) {
if (!cpu->secure_memory) {
cpu->secure_memory = cs->memory;
}
cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
cpu->secure_memory);
}
if (cpu->tag_memory != NULL) {
cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory",
cpu->tag_memory);
if (has_secure) {
cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory",
cpu->secure_tag_memory);
}
}
cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
/* No core_count specified, default to smp_cpus. */
if (cpu->core_count == -1) {
cpu->core_count = smp_cpus;
}
#endif
if (tcg_enabled()) {
int dcz_blocklen = 4 << cpu->dcz_blocksize;
/*
* We only support DCZ blocklen that fits on one page.
*
* Architectually this is always true. However TARGET_PAGE_SIZE
* is variable and, for compatibility with -machine virt-2.7,
* is only 1KiB, as an artifact of legacy ARMv5 subpage support.
* But even then, while the largest architectural DCZ blocklen
* is 2KiB, no cpu actually uses such a large blocklen.
*/
assert(dcz_blocklen <= TARGET_PAGE_SIZE);
/*
* We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
* both nibbles of each byte storing tag data may be written at once.
* Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
*/
if (cpu_isar_feature(aa64_mte, cpu)) {
assert(dcz_blocklen >= 2 * TAG_GRANULE);
}
}
qemu_init_vcpu(cs);
cpu_reset(cs);
acc->parent_realize(dev, errp);
}
static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
{
ObjectClass *oc;
char *typename;
char **cpuname;
const char *cpunamestr;
cpuname = g_strsplit(cpu_model, ",", 1);
cpunamestr = cpuname[0];
#ifdef CONFIG_USER_ONLY
/* For backwards compatibility usermode emulation allows "-cpu any",
* which has the same semantics as "-cpu max".
*/
if (!strcmp(cpunamestr, "any")) {
cpunamestr = "max";
}
#endif
typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
oc = object_class_by_name(typename);
g_strfreev(cpuname);
g_free(typename);
if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
object_class_is_abstract(oc)) {
return NULL;
}
return oc;
}
static Property arm_cpu_properties[] = {
DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
mp_affinity, ARM64_AFFINITY_INVALID),
DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
DEFINE_PROP_END_OF_LIST()
};
static gchar *arm_gdb_arch_name(CPUState *cs)
{
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
return g_strdup("iwmmxt");
}
return g_strdup("arm");
}
#ifndef CONFIG_USER_ONLY
#include "hw/core/sysemu-cpu-ops.h"
static const struct SysemuCPUOps arm_sysemu_ops = {
.get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug,
.asidx_from_attrs = arm_asidx_from_attrs,
.write_elf32_note = arm_cpu_write_elf32_note,
.write_elf64_note = arm_cpu_write_elf64_note,
.virtio_is_big_endian = arm_cpu_virtio_is_big_endian,
.legacy_vmsd = &vmstate_arm_cpu,
};
#endif
#ifdef CONFIG_TCG
static const struct TCGCPUOps arm_tcg_ops = {
.initialize = arm_translate_init,
.synchronize_from_tb = arm_cpu_synchronize_from_tb,
.tlb_fill = arm_cpu_tlb_fill,
.debug_excp_handler = arm_debug_excp_handler,
#if !defined(CONFIG_USER_ONLY)
.cpu_exec_interrupt = arm_cpu_exec_interrupt,
.do_interrupt = arm_cpu_do_interrupt,
.do_transaction_failed = arm_cpu_do_transaction_failed,
.do_unaligned_access = arm_cpu_do_unaligned_access,
.adjust_watchpoint_address = arm_adjust_watchpoint_address,
.debug_check_watchpoint = arm_debug_check_watchpoint,
.debug_check_breakpoint = arm_debug_check_breakpoint,
#endif /* !CONFIG_USER_ONLY */
};
#endif /* CONFIG_TCG */
static void arm_cpu_class_init(ObjectClass *oc, void *data)
{
ARMCPUClass *acc = ARM_CPU_CLASS(oc);
CPUClass *cc = CPU_CLASS(acc);
DeviceClass *dc = DEVICE_CLASS(oc);
device_class_set_parent_realize(dc, arm_cpu_realizefn,
&acc->parent_realize);
device_class_set_props(dc, arm_cpu_properties);
device_class_set_parent_reset(dc, arm_cpu_reset, &acc->parent_reset);
cc->class_by_name = arm_cpu_class_by_name;
cc->has_work = arm_cpu_has_work;
cc->dump_state = arm_cpu_dump_state;
cc->set_pc = arm_cpu_set_pc;
cc->gdb_read_register = arm_cpu_gdb_read_register;
cc->gdb_write_register = arm_cpu_gdb_write_register;
#ifndef CONFIG_USER_ONLY
cc->sysemu_ops = &arm_sysemu_ops;
#endif
cc->gdb_num_core_regs = 26;
cc->gdb_core_xml_file = "arm-core.xml";
cc->gdb_arch_name = arm_gdb_arch_name;
cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
cc->gdb_stop_before_watchpoint = true;
cc->disas_set_info = arm_disas_set_info;
#ifdef CONFIG_TCG
cc->tcg_ops = &arm_tcg_ops;
#endif /* CONFIG_TCG */
}
#if defined(CONFIG_KVM) || defined(CONFIG_HVF)
static void arm_host_initfn(Object *obj)
{
ARMCPU *cpu = ARM_CPU(obj);
#ifdef CONFIG_KVM
kvm_arm_set_cpu_features_from_host(cpu);
if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
aarch64_add_sve_properties(obj);
}
#else
hvf_arm_set_cpu_features_from_host(cpu);
#endif
arm_cpu_post_init(obj);
}
static const TypeInfo host_arm_cpu_type_info = {
.name = TYPE_ARM_HOST_CPU,
.parent = TYPE_AARCH64_CPU,
.instance_init = arm_host_initfn,
};
#endif
static void arm_cpu_instance_init(Object *obj)
{
ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
acc->info->initfn(obj);
arm_cpu_post_init(obj);
}
static void cpu_register_class_init(ObjectClass *oc, void *data)
{
ARMCPUClass *acc = ARM_CPU_CLASS(oc);
acc->info = data;
}
void arm_cpu_register(const ARMCPUInfo *info)
{
TypeInfo type_info = {
.parent = TYPE_ARM_CPU,
.instance_size = sizeof(ARMCPU),
.instance_align = __alignof__(ARMCPU),
.instance_init = arm_cpu_instance_init,
.class_size = sizeof(ARMCPUClass),
.class_init = info->class_init ?: cpu_register_class_init,
.class_data = (void *)info,
};
type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
type_register(&type_info);
g_free((void *)type_info.name);
}
static const TypeInfo arm_cpu_type_info = {
.name = TYPE_ARM_CPU,
.parent = TYPE_CPU,
.instance_size = sizeof(ARMCPU),
.instance_align = __alignof__(ARMCPU),
.instance_init = arm_cpu_initfn,
.instance_finalize = arm_cpu_finalizefn,
.abstract = true,
.class_size = sizeof(ARMCPUClass),
.class_init = arm_cpu_class_init,
};
static void arm_cpu_register_types(void)
{
type_register_static(&arm_cpu_type_info);
#if defined(CONFIG_KVM) || defined(CONFIG_HVF)
type_register_static(&host_arm_cpu_type_info);
#endif
}
type_init(arm_cpu_register_types)