qemu/accel/tcg/plugin-gen.c
Richard Henderson 8a2927f290 plugins: Use emit_before_op for PLUGIN_GEN_FROM_MEM
Introduce a new plugin_mem_cb op to hold the address temp
and meminfo computed by tcg-op-ldst.c.  Because this now
has its own opcode, we no longer need PLUGIN_GEN_FROM_MEM.

Reviewed-by: Pierrick Bouvier <pierrick.bouvier@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
2024-04-30 16:12:05 -07:00

504 lines
16 KiB
C

/*
* plugin-gen.c - TCG-related bits of plugin infrastructure
*
* Copyright (C) 2018, Emilio G. Cota <cota@braap.org>
* License: GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*
* We support instrumentation at an instruction granularity. That is,
* if a plugin wants to instrument the memory accesses performed by a
* particular instruction, it can just do that instead of instrumenting
* all memory accesses. Thus, in order to do this we first have to
* translate a TB, so that plugins can decide what/where to instrument.
*
* Injecting the desired instrumentation could be done with a second
* translation pass that combined the instrumentation requests, but that
* would be ugly and inefficient since we would decode the guest code twice.
* Instead, during TB translation we add "empty" instrumentation calls for all
* possible instrumentation events, and then once we collect the instrumentation
* requests from plugins, we either "fill in" those empty events or remove them
* if they have no requests.
*
* When "filling in" an event we first copy the empty callback's TCG ops. This
* might seem unnecessary, but it is done to support an arbitrary number
* of callbacks per event. Take for example a regular instruction callback.
* We first generate a callback to an empty helper function. Then, if two
* plugins register one callback each for this instruction, we make two copies
* of the TCG ops generated for the empty callback, substituting the function
* pointer that points to the empty helper function with the plugins' desired
* callback functions. After that we remove the empty callback's ops.
*
* Note that the location in TCGOp.args[] of the pointer to a helper function
* varies across different guest and host architectures. Instead of duplicating
* the logic that figures this out, we rely on the fact that the empty
* callbacks point to empty functions that are unique pointers in the program.
* Thus, to find the right location we just have to look for a match in
* TCGOp.args[]. This is the main reason why we first copy an empty callback's
* TCG ops and then fill them in; regardless of whether we have one or many
* callbacks for that event, the logic to add all of them is the same.
*
* When generating more than one callback per event, we make a small
* optimization to avoid generating redundant operations. For instance, for the
* second and all subsequent callbacks of an event, we do not need to reload the
* CPU's index into a TCG temp, since the first callback did it already.
*/
#include "qemu/osdep.h"
#include "qemu/plugin.h"
#include "cpu.h"
#include "tcg/tcg.h"
#include "tcg/tcg-temp-internal.h"
#include "tcg/tcg-op.h"
#include "exec/exec-all.h"
#include "exec/plugin-gen.h"
#include "exec/translator.h"
#include "exec/helper-proto-common.h"
#define HELPER_H "accel/tcg/plugin-helpers.h"
#include "exec/helper-info.c.inc"
#undef HELPER_H
/*
* plugin_cb_start TCG op args[]:
* 0: enum plugin_gen_from
* 1: enum plugin_gen_cb
* 2: set to 1 for mem callback that is a write, 0 otherwise.
*/
enum plugin_gen_from {
PLUGIN_GEN_FROM_TB,
PLUGIN_GEN_FROM_INSN,
PLUGIN_GEN_AFTER_INSN,
PLUGIN_GEN_AFTER_TB,
PLUGIN_GEN_N_FROMS,
};
enum plugin_gen_cb {
PLUGIN_GEN_CB_UDATA,
PLUGIN_GEN_CB_UDATA_R,
PLUGIN_GEN_CB_INLINE,
PLUGIN_GEN_CB_MEM,
PLUGIN_GEN_ENABLE_MEM_HELPER,
PLUGIN_GEN_DISABLE_MEM_HELPER,
PLUGIN_GEN_N_CBS,
};
/*
* These helpers are stubs that get dynamically switched out for calls
* direct to the plugin if they are subscribed to.
*/
void HELPER(plugin_vcpu_udata_cb_no_wg)(uint32_t cpu_index, void *udata)
{ }
void HELPER(plugin_vcpu_udata_cb_no_rwg)(uint32_t cpu_index, void *udata)
{ }
void HELPER(plugin_vcpu_mem_cb)(unsigned int vcpu_index,
qemu_plugin_meminfo_t info, uint64_t vaddr,
void *userdata)
{ }
static void plugin_gen_empty_callback(enum plugin_gen_from from)
{
switch (from) {
case PLUGIN_GEN_AFTER_INSN:
case PLUGIN_GEN_FROM_TB:
case PLUGIN_GEN_FROM_INSN:
tcg_gen_plugin_cb(from);
break;
default:
g_assert_not_reached();
}
}
/* called before finishing a TB with exit_tb, goto_tb or goto_ptr */
void plugin_gen_disable_mem_helpers(void)
{
if (tcg_ctx->plugin_insn) {
tcg_gen_plugin_cb(PLUGIN_GEN_AFTER_TB);
}
}
static void gen_enable_mem_helper(struct qemu_plugin_tb *ptb,
struct qemu_plugin_insn *insn)
{
GArray *cbs[2];
GArray *arr;
size_t n_cbs;
/*
* Tracking memory accesses performed from helpers requires extra work.
* If an instruction is emulated with helpers, we do two things:
* (1) copy the CB descriptors, and keep track of it so that they can be
* freed later on, and (2) point CPUState.plugin_mem_cbs to the
* descriptors, so that we can read them at run-time
* (i.e. when the helper executes).
* This run-time access is performed from qemu_plugin_vcpu_mem_cb.
*
* Note that plugin_gen_disable_mem_helpers undoes (2). Since it
* is possible that the code we generate after the instruction is
* dead, we also add checks before generating tb_exit etc.
*/
if (!insn->calls_helpers) {
return;
}
cbs[0] = insn->cbs[PLUGIN_CB_MEM][PLUGIN_CB_REGULAR];
cbs[1] = insn->cbs[PLUGIN_CB_MEM][PLUGIN_CB_INLINE];
n_cbs = cbs[0]->len + cbs[1]->len;
if (n_cbs == 0) {
insn->mem_helper = false;
return;
}
insn->mem_helper = true;
ptb->mem_helper = true;
arr = g_array_sized_new(false, false,
sizeof(struct qemu_plugin_dyn_cb), n_cbs);
g_array_append_vals(arr, cbs[0]->data, cbs[0]->len);
g_array_append_vals(arr, cbs[1]->data, cbs[1]->len);
qemu_plugin_add_dyn_cb_arr(arr);
tcg_gen_st_ptr(tcg_constant_ptr((intptr_t)arr), tcg_env,
offsetof(CPUState, plugin_mem_cbs) -
offsetof(ArchCPU, env));
}
static void gen_disable_mem_helper(void)
{
tcg_gen_st_ptr(tcg_constant_ptr(0), tcg_env,
offsetof(CPUState, plugin_mem_cbs) -
offsetof(ArchCPU, env));
}
static void gen_udata_cb(struct qemu_plugin_dyn_cb *cb)
{
TCGv_i32 cpu_index = tcg_temp_ebb_new_i32();
tcg_gen_ld_i32(cpu_index, tcg_env,
-offsetof(ArchCPU, env) + offsetof(CPUState, cpu_index));
tcg_gen_call2(cb->regular.f.vcpu_udata, cb->regular.info, NULL,
tcgv_i32_temp(cpu_index),
tcgv_ptr_temp(tcg_constant_ptr(cb->userp)));
tcg_temp_free_i32(cpu_index);
}
static void gen_inline_cb(struct qemu_plugin_dyn_cb *cb)
{
GArray *arr = cb->inline_insn.entry.score->data;
size_t offset = cb->inline_insn.entry.offset;
TCGv_i32 cpu_index = tcg_temp_ebb_new_i32();
TCGv_i64 val = tcg_temp_ebb_new_i64();
TCGv_ptr ptr = tcg_temp_ebb_new_ptr();
tcg_gen_ld_i32(cpu_index, tcg_env,
-offsetof(ArchCPU, env) + offsetof(CPUState, cpu_index));
tcg_gen_muli_i32(cpu_index, cpu_index, g_array_get_element_size(arr));
tcg_gen_ext_i32_ptr(ptr, cpu_index);
tcg_temp_free_i32(cpu_index);
tcg_gen_addi_ptr(ptr, ptr, (intptr_t)arr->data);
tcg_gen_ld_i64(val, ptr, offset);
tcg_gen_addi_i64(val, val, cb->inline_insn.imm);
tcg_gen_st_i64(val, ptr, offset);
tcg_temp_free_i64(val);
tcg_temp_free_ptr(ptr);
}
static void gen_mem_cb(struct qemu_plugin_dyn_cb *cb,
qemu_plugin_meminfo_t meminfo, TCGv_i64 addr)
{
TCGv_i32 cpu_index = tcg_temp_ebb_new_i32();
tcg_gen_ld_i32(cpu_index, tcg_env,
-offsetof(ArchCPU, env) + offsetof(CPUState, cpu_index));
tcg_gen_call4(cb->regular.f.vcpu_mem, cb->regular.info, NULL,
tcgv_i32_temp(cpu_index),
tcgv_i32_temp(tcg_constant_i32(meminfo)),
tcgv_i64_temp(addr),
tcgv_ptr_temp(tcg_constant_ptr(cb->userp)));
tcg_temp_free_i32(cpu_index);
}
/* #define DEBUG_PLUGIN_GEN_OPS */
static void pr_ops(void)
{
#ifdef DEBUG_PLUGIN_GEN_OPS
TCGOp *op;
int i = 0;
QTAILQ_FOREACH(op, &tcg_ctx->ops, link) {
const char *name = "";
const char *type = "";
if (op->opc == INDEX_op_plugin_cb_start) {
switch (op->args[0]) {
case PLUGIN_GEN_FROM_TB:
name = "tb";
break;
case PLUGIN_GEN_FROM_INSN:
name = "insn";
break;
case PLUGIN_GEN_FROM_MEM:
name = "mem";
break;
case PLUGIN_GEN_AFTER_INSN:
name = "after insn";
break;
default:
break;
}
switch (op->args[1]) {
case PLUGIN_GEN_CB_UDATA:
type = "udata";
break;
case PLUGIN_GEN_CB_INLINE:
type = "inline";
break;
case PLUGIN_GEN_CB_MEM:
type = "mem";
break;
case PLUGIN_GEN_ENABLE_MEM_HELPER:
type = "enable mem helper";
break;
case PLUGIN_GEN_DISABLE_MEM_HELPER:
type = "disable mem helper";
break;
default:
break;
}
}
printf("op[%2i]: %s %s %s\n", i, tcg_op_defs[op->opc].name, name, type);
i++;
}
#endif
}
static void plugin_gen_inject(struct qemu_plugin_tb *plugin_tb)
{
TCGOp *op, *next;
int insn_idx = -1;
pr_ops();
/*
* While injecting code, we cannot afford to reuse any ebb temps
* that might be live within the existing opcode stream.
* The simplest solution is to release them all and create new.
*/
memset(tcg_ctx->free_temps, 0, sizeof(tcg_ctx->free_temps));
QTAILQ_FOREACH_SAFE(op, &tcg_ctx->ops, link, next) {
switch (op->opc) {
case INDEX_op_insn_start:
insn_idx++;
break;
case INDEX_op_plugin_cb:
{
enum plugin_gen_from from = op->args[0];
struct qemu_plugin_insn *insn = NULL;
const GArray *cbs;
int i, n;
if (insn_idx >= 0) {
insn = g_ptr_array_index(plugin_tb->insns, insn_idx);
}
tcg_ctx->emit_before_op = op;
switch (from) {
case PLUGIN_GEN_AFTER_TB:
if (plugin_tb->mem_helper) {
gen_disable_mem_helper();
}
break;
case PLUGIN_GEN_AFTER_INSN:
assert(insn != NULL);
if (insn->mem_helper) {
gen_disable_mem_helper();
}
break;
case PLUGIN_GEN_FROM_TB:
assert(insn == NULL);
cbs = plugin_tb->cbs[PLUGIN_CB_REGULAR];
for (i = 0, n = (cbs ? cbs->len : 0); i < n; i++) {
struct qemu_plugin_dyn_cb *cb =
&g_array_index(cbs, struct qemu_plugin_dyn_cb, i);
gen_udata_cb(cb);
}
cbs = plugin_tb->cbs[PLUGIN_CB_INLINE];
for (i = 0, n = (cbs ? cbs->len : 0); i < n; i++) {
struct qemu_plugin_dyn_cb *cb =
&g_array_index(cbs, struct qemu_plugin_dyn_cb, i);
gen_inline_cb(cb);
}
break;
case PLUGIN_GEN_FROM_INSN:
assert(insn != NULL);
gen_enable_mem_helper(plugin_tb, insn);
cbs = insn->cbs[PLUGIN_CB_INSN][PLUGIN_CB_REGULAR];
for (i = 0, n = (cbs ? cbs->len : 0); i < n; i++) {
struct qemu_plugin_dyn_cb *cb =
&g_array_index(cbs, struct qemu_plugin_dyn_cb, i);
gen_udata_cb(cb);
}
cbs = insn->cbs[PLUGIN_CB_INSN][PLUGIN_CB_INLINE];
for (i = 0, n = (cbs ? cbs->len : 0); i < n; i++) {
struct qemu_plugin_dyn_cb *cb =
&g_array_index(cbs, struct qemu_plugin_dyn_cb, i);
gen_inline_cb(cb);
}
break;
default:
g_assert_not_reached();
}
tcg_ctx->emit_before_op = NULL;
tcg_op_remove(tcg_ctx, op);
break;
}
case INDEX_op_plugin_mem_cb:
{
TCGv_i64 addr = temp_tcgv_i64(arg_temp(op->args[0]));
qemu_plugin_meminfo_t meminfo = op->args[1];
struct qemu_plugin_insn *insn;
const GArray *cbs;
int i, n, rw;
assert(insn_idx >= 0);
insn = g_ptr_array_index(plugin_tb->insns, insn_idx);
rw = qemu_plugin_mem_is_store(meminfo) ? 2 : 1;
tcg_ctx->emit_before_op = op;
cbs = insn->cbs[PLUGIN_CB_MEM][PLUGIN_CB_REGULAR];
for (i = 0, n = (cbs ? cbs->len : 0); i < n; i++) {
struct qemu_plugin_dyn_cb *cb =
&g_array_index(cbs, struct qemu_plugin_dyn_cb, i);
if (cb->rw & rw) {
gen_mem_cb(cb, meminfo, addr);
}
}
cbs = insn->cbs[PLUGIN_CB_MEM][PLUGIN_CB_INLINE];
for (i = 0, n = (cbs ? cbs->len : 0); i < n; i++) {
struct qemu_plugin_dyn_cb *cb =
&g_array_index(cbs, struct qemu_plugin_dyn_cb, i);
if (cb->rw & rw) {
gen_inline_cb(cb);
}
}
tcg_ctx->emit_before_op = NULL;
tcg_op_remove(tcg_ctx, op);
break;
}
default:
/* plugins don't care about any other ops */
break;
}
}
pr_ops();
}
bool plugin_gen_tb_start(CPUState *cpu, const DisasContextBase *db,
bool mem_only)
{
bool ret = false;
if (test_bit(QEMU_PLUGIN_EV_VCPU_TB_TRANS, cpu->plugin_state->event_mask)) {
struct qemu_plugin_tb *ptb = tcg_ctx->plugin_tb;
int i;
/* reset callbacks */
for (i = 0; i < PLUGIN_N_CB_SUBTYPES; i++) {
if (ptb->cbs[i]) {
g_array_set_size(ptb->cbs[i], 0);
}
}
ptb->n = 0;
ret = true;
ptb->vaddr = db->pc_first;
ptb->vaddr2 = -1;
ptb->haddr1 = db->host_addr[0];
ptb->haddr2 = NULL;
ptb->mem_only = mem_only;
ptb->mem_helper = false;
plugin_gen_empty_callback(PLUGIN_GEN_FROM_TB);
}
tcg_ctx->plugin_insn = NULL;
return ret;
}
void plugin_gen_insn_start(CPUState *cpu, const DisasContextBase *db)
{
struct qemu_plugin_tb *ptb = tcg_ctx->plugin_tb;
struct qemu_plugin_insn *pinsn;
pinsn = qemu_plugin_tb_insn_get(ptb, db->pc_next);
tcg_ctx->plugin_insn = pinsn;
plugin_gen_empty_callback(PLUGIN_GEN_FROM_INSN);
/*
* Detect page crossing to get the new host address.
* Note that we skip this when haddr1 == NULL, e.g. when we're
* fetching instructions from a region not backed by RAM.
*/
if (ptb->haddr1 == NULL) {
pinsn->haddr = NULL;
} else if (is_same_page(db, db->pc_next)) {
pinsn->haddr = ptb->haddr1 + pinsn->vaddr - ptb->vaddr;
} else {
if (ptb->vaddr2 == -1) {
ptb->vaddr2 = TARGET_PAGE_ALIGN(db->pc_first);
get_page_addr_code_hostp(cpu_env(cpu), ptb->vaddr2, &ptb->haddr2);
}
pinsn->haddr = ptb->haddr2 + pinsn->vaddr - ptb->vaddr2;
}
}
void plugin_gen_insn_end(void)
{
plugin_gen_empty_callback(PLUGIN_GEN_AFTER_INSN);
}
/*
* There are cases where we never get to finalise a translation - for
* example a page fault during translation. As a result we shouldn't
* do any clean-up here and make sure things are reset in
* plugin_gen_tb_start.
*/
void plugin_gen_tb_end(CPUState *cpu, size_t num_insns)
{
struct qemu_plugin_tb *ptb = tcg_ctx->plugin_tb;
/* translator may have removed instructions, update final count */
g_assert(num_insns <= ptb->n);
ptb->n = num_insns;
/* collect instrumentation requests */
qemu_plugin_tb_trans_cb(cpu, ptb);
/* inject the instrumentation at the appropriate places */
plugin_gen_inject(ptb);
}