898dc008e8
Microchip PolarFire SoC integrates one Cadence SDHCI controller. On the Icicle Kit board, one eMMC chip and an external SD card connect to this controller depending on different configuration. As QEMU does not support eMMC yet, we just emulate the SD card configuration. To test this, the Hart Software Services (HSS) should choose the SD card configuration: $ cp boards/icicle-kit-es/def_config.sdcard .config $ make BOARD=icicle-kit-es The SD card image can be built from the Yocto BSP at: https://github.com/polarfire-soc/meta-polarfire-soc-yocto-bsp Note the generated SD card image should be resized before use: $ qemu-img resize /path/to/sdcard.img 4G Launch QEMU with the following command: $ qemu-system-riscv64 -nographic -M microchip-icicle-kit -sd sdcard.img Signed-off-by: Bin Meng <bin.meng@windriver.com> Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <1598924352-89526-9-git-send-email-bmeng.cn@gmail.com> Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
366 lines
15 KiB
C
366 lines
15 KiB
C
/*
|
|
* QEMU RISC-V Board Compatible with Microchip PolarFire SoC Icicle Kit
|
|
*
|
|
* Copyright (c) 2020 Wind River Systems, Inc.
|
|
*
|
|
* Author:
|
|
* Bin Meng <bin.meng@windriver.com>
|
|
*
|
|
* Provides a board compatible with the Microchip PolarFire SoC Icicle Kit
|
|
*
|
|
* 0) CLINT (Core Level Interruptor)
|
|
* 1) PLIC (Platform Level Interrupt Controller)
|
|
* 2) eNVM (Embedded Non-Volatile Memory)
|
|
* 3) MMUARTs (Multi-Mode UART)
|
|
* 4) Cadence eMMC/SDHC controller and an SD card connected to it
|
|
*
|
|
* This board currently generates devicetree dynamically that indicates at least
|
|
* two harts and up to five harts.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms and conditions of the GNU General Public License,
|
|
* version 2 or later, as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along with
|
|
* this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "qemu/error-report.h"
|
|
#include "qemu/log.h"
|
|
#include "qemu/units.h"
|
|
#include "qemu/cutils.h"
|
|
#include "qapi/error.h"
|
|
#include "hw/boards.h"
|
|
#include "hw/irq.h"
|
|
#include "hw/loader.h"
|
|
#include "hw/sysbus.h"
|
|
#include "chardev/char.h"
|
|
#include "hw/cpu/cluster.h"
|
|
#include "target/riscv/cpu.h"
|
|
#include "hw/misc/unimp.h"
|
|
#include "hw/riscv/boot.h"
|
|
#include "hw/riscv/riscv_hart.h"
|
|
#include "hw/riscv/sifive_clint.h"
|
|
#include "hw/riscv/sifive_plic.h"
|
|
#include "hw/riscv/microchip_pfsoc.h"
|
|
#include "sysemu/sysemu.h"
|
|
|
|
/*
|
|
* The BIOS image used by this machine is called Hart Software Services (HSS).
|
|
* See https://github.com/polarfire-soc/hart-software-services
|
|
*/
|
|
#define BIOS_FILENAME "hss.bin"
|
|
#define RESET_VECTOR 0x20220000
|
|
|
|
static const struct MemmapEntry {
|
|
hwaddr base;
|
|
hwaddr size;
|
|
} microchip_pfsoc_memmap[] = {
|
|
[MICROCHIP_PFSOC_DEBUG] = { 0x0, 0x1000 },
|
|
[MICROCHIP_PFSOC_E51_DTIM] = { 0x1000000, 0x2000 },
|
|
[MICROCHIP_PFSOC_BUSERR_UNIT0] = { 0x1700000, 0x1000 },
|
|
[MICROCHIP_PFSOC_BUSERR_UNIT1] = { 0x1701000, 0x1000 },
|
|
[MICROCHIP_PFSOC_BUSERR_UNIT2] = { 0x1702000, 0x1000 },
|
|
[MICROCHIP_PFSOC_BUSERR_UNIT3] = { 0x1703000, 0x1000 },
|
|
[MICROCHIP_PFSOC_BUSERR_UNIT4] = { 0x1704000, 0x1000 },
|
|
[MICROCHIP_PFSOC_CLINT] = { 0x2000000, 0x10000 },
|
|
[MICROCHIP_PFSOC_L2CC] = { 0x2010000, 0x1000 },
|
|
[MICROCHIP_PFSOC_L2LIM] = { 0x8000000, 0x2000000 },
|
|
[MICROCHIP_PFSOC_PLIC] = { 0xc000000, 0x4000000 },
|
|
[MICROCHIP_PFSOC_MMUART0] = { 0x20000000, 0x1000 },
|
|
[MICROCHIP_PFSOC_SYSREG] = { 0x20002000, 0x2000 },
|
|
[MICROCHIP_PFSOC_MPUCFG] = { 0x20005000, 0x1000 },
|
|
[MICROCHIP_PFSOC_EMMC_SD] = { 0x20008000, 0x1000 },
|
|
[MICROCHIP_PFSOC_MMUART1] = { 0x20100000, 0x1000 },
|
|
[MICROCHIP_PFSOC_MMUART2] = { 0x20102000, 0x1000 },
|
|
[MICROCHIP_PFSOC_MMUART3] = { 0x20104000, 0x1000 },
|
|
[MICROCHIP_PFSOC_MMUART4] = { 0x20106000, 0x1000 },
|
|
[MICROCHIP_PFSOC_ENVM_CFG] = { 0x20200000, 0x1000 },
|
|
[MICROCHIP_PFSOC_ENVM_DATA] = { 0x20220000, 0x20000 },
|
|
[MICROCHIP_PFSOC_IOSCB_CFG] = { 0x37080000, 0x1000 },
|
|
[MICROCHIP_PFSOC_DRAM] = { 0x80000000, 0x0 },
|
|
};
|
|
|
|
static void microchip_pfsoc_soc_instance_init(Object *obj)
|
|
{
|
|
MachineState *ms = MACHINE(qdev_get_machine());
|
|
MicrochipPFSoCState *s = MICROCHIP_PFSOC(obj);
|
|
|
|
object_initialize_child(obj, "e-cluster", &s->e_cluster, TYPE_CPU_CLUSTER);
|
|
qdev_prop_set_uint32(DEVICE(&s->e_cluster), "cluster-id", 0);
|
|
|
|
object_initialize_child(OBJECT(&s->e_cluster), "e-cpus", &s->e_cpus,
|
|
TYPE_RISCV_HART_ARRAY);
|
|
qdev_prop_set_uint32(DEVICE(&s->e_cpus), "num-harts", 1);
|
|
qdev_prop_set_uint32(DEVICE(&s->e_cpus), "hartid-base", 0);
|
|
qdev_prop_set_string(DEVICE(&s->e_cpus), "cpu-type",
|
|
TYPE_RISCV_CPU_SIFIVE_E51);
|
|
qdev_prop_set_uint64(DEVICE(&s->e_cpus), "resetvec", RESET_VECTOR);
|
|
|
|
object_initialize_child(obj, "u-cluster", &s->u_cluster, TYPE_CPU_CLUSTER);
|
|
qdev_prop_set_uint32(DEVICE(&s->u_cluster), "cluster-id", 1);
|
|
|
|
object_initialize_child(OBJECT(&s->u_cluster), "u-cpus", &s->u_cpus,
|
|
TYPE_RISCV_HART_ARRAY);
|
|
qdev_prop_set_uint32(DEVICE(&s->u_cpus), "num-harts", ms->smp.cpus - 1);
|
|
qdev_prop_set_uint32(DEVICE(&s->u_cpus), "hartid-base", 1);
|
|
qdev_prop_set_string(DEVICE(&s->u_cpus), "cpu-type",
|
|
TYPE_RISCV_CPU_SIFIVE_U54);
|
|
qdev_prop_set_uint64(DEVICE(&s->u_cpus), "resetvec", RESET_VECTOR);
|
|
|
|
object_initialize_child(obj, "sd-controller", &s->sdhci,
|
|
TYPE_CADENCE_SDHCI);
|
|
}
|
|
|
|
static void microchip_pfsoc_soc_realize(DeviceState *dev, Error **errp)
|
|
{
|
|
MachineState *ms = MACHINE(qdev_get_machine());
|
|
MicrochipPFSoCState *s = MICROCHIP_PFSOC(dev);
|
|
const struct MemmapEntry *memmap = microchip_pfsoc_memmap;
|
|
MemoryRegion *system_memory = get_system_memory();
|
|
MemoryRegion *e51_dtim_mem = g_new(MemoryRegion, 1);
|
|
MemoryRegion *l2lim_mem = g_new(MemoryRegion, 1);
|
|
MemoryRegion *envm_data = g_new(MemoryRegion, 1);
|
|
char *plic_hart_config;
|
|
size_t plic_hart_config_len;
|
|
int i;
|
|
|
|
sysbus_realize(SYS_BUS_DEVICE(&s->e_cpus), &error_abort);
|
|
sysbus_realize(SYS_BUS_DEVICE(&s->u_cpus), &error_abort);
|
|
/*
|
|
* The cluster must be realized after the RISC-V hart array container,
|
|
* as the container's CPU object is only created on realize, and the
|
|
* CPU must exist and have been parented into the cluster before the
|
|
* cluster is realized.
|
|
*/
|
|
qdev_realize(DEVICE(&s->e_cluster), NULL, &error_abort);
|
|
qdev_realize(DEVICE(&s->u_cluster), NULL, &error_abort);
|
|
|
|
/* E51 DTIM */
|
|
memory_region_init_ram(e51_dtim_mem, NULL, "microchip.pfsoc.e51_dtim_mem",
|
|
memmap[MICROCHIP_PFSOC_E51_DTIM].size, &error_fatal);
|
|
memory_region_add_subregion(system_memory,
|
|
memmap[MICROCHIP_PFSOC_E51_DTIM].base,
|
|
e51_dtim_mem);
|
|
|
|
/* Bus Error Units */
|
|
create_unimplemented_device("microchip.pfsoc.buserr_unit0_mem",
|
|
memmap[MICROCHIP_PFSOC_BUSERR_UNIT0].base,
|
|
memmap[MICROCHIP_PFSOC_BUSERR_UNIT0].size);
|
|
create_unimplemented_device("microchip.pfsoc.buserr_unit1_mem",
|
|
memmap[MICROCHIP_PFSOC_BUSERR_UNIT1].base,
|
|
memmap[MICROCHIP_PFSOC_BUSERR_UNIT1].size);
|
|
create_unimplemented_device("microchip.pfsoc.buserr_unit2_mem",
|
|
memmap[MICROCHIP_PFSOC_BUSERR_UNIT2].base,
|
|
memmap[MICROCHIP_PFSOC_BUSERR_UNIT2].size);
|
|
create_unimplemented_device("microchip.pfsoc.buserr_unit3_mem",
|
|
memmap[MICROCHIP_PFSOC_BUSERR_UNIT3].base,
|
|
memmap[MICROCHIP_PFSOC_BUSERR_UNIT3].size);
|
|
create_unimplemented_device("microchip.pfsoc.buserr_unit4_mem",
|
|
memmap[MICROCHIP_PFSOC_BUSERR_UNIT4].base,
|
|
memmap[MICROCHIP_PFSOC_BUSERR_UNIT4].size);
|
|
|
|
/* CLINT */
|
|
sifive_clint_create(memmap[MICROCHIP_PFSOC_CLINT].base,
|
|
memmap[MICROCHIP_PFSOC_CLINT].size, 0, ms->smp.cpus,
|
|
SIFIVE_SIP_BASE, SIFIVE_TIMECMP_BASE, SIFIVE_TIME_BASE, false);
|
|
|
|
/* L2 cache controller */
|
|
create_unimplemented_device("microchip.pfsoc.l2cc",
|
|
memmap[MICROCHIP_PFSOC_L2CC].base, memmap[MICROCHIP_PFSOC_L2CC].size);
|
|
|
|
/*
|
|
* Add L2-LIM at reset size.
|
|
* This should be reduced in size as the L2 Cache Controller WayEnable
|
|
* register is incremented. Unfortunately I don't see a nice (or any) way
|
|
* to handle reducing or blocking out the L2 LIM while still allowing it
|
|
* be re returned to all enabled after a reset. For the time being, just
|
|
* leave it enabled all the time. This won't break anything, but will be
|
|
* too generous to misbehaving guests.
|
|
*/
|
|
memory_region_init_ram(l2lim_mem, NULL, "microchip.pfsoc.l2lim",
|
|
memmap[MICROCHIP_PFSOC_L2LIM].size, &error_fatal);
|
|
memory_region_add_subregion(system_memory,
|
|
memmap[MICROCHIP_PFSOC_L2LIM].base,
|
|
l2lim_mem);
|
|
|
|
/* create PLIC hart topology configuration string */
|
|
plic_hart_config_len = (strlen(MICROCHIP_PFSOC_PLIC_HART_CONFIG) + 1) *
|
|
ms->smp.cpus;
|
|
plic_hart_config = g_malloc0(plic_hart_config_len);
|
|
for (i = 0; i < ms->smp.cpus; i++) {
|
|
if (i != 0) {
|
|
strncat(plic_hart_config, "," MICROCHIP_PFSOC_PLIC_HART_CONFIG,
|
|
plic_hart_config_len);
|
|
} else {
|
|
strncat(plic_hart_config, "M", plic_hart_config_len);
|
|
}
|
|
plic_hart_config_len -= (strlen(MICROCHIP_PFSOC_PLIC_HART_CONFIG) + 1);
|
|
}
|
|
|
|
/* PLIC */
|
|
s->plic = sifive_plic_create(memmap[MICROCHIP_PFSOC_PLIC].base,
|
|
plic_hart_config, 0,
|
|
MICROCHIP_PFSOC_PLIC_NUM_SOURCES,
|
|
MICROCHIP_PFSOC_PLIC_NUM_PRIORITIES,
|
|
MICROCHIP_PFSOC_PLIC_PRIORITY_BASE,
|
|
MICROCHIP_PFSOC_PLIC_PENDING_BASE,
|
|
MICROCHIP_PFSOC_PLIC_ENABLE_BASE,
|
|
MICROCHIP_PFSOC_PLIC_ENABLE_STRIDE,
|
|
MICROCHIP_PFSOC_PLIC_CONTEXT_BASE,
|
|
MICROCHIP_PFSOC_PLIC_CONTEXT_STRIDE,
|
|
memmap[MICROCHIP_PFSOC_PLIC].size);
|
|
g_free(plic_hart_config);
|
|
|
|
/* SYSREG */
|
|
create_unimplemented_device("microchip.pfsoc.sysreg",
|
|
memmap[MICROCHIP_PFSOC_SYSREG].base,
|
|
memmap[MICROCHIP_PFSOC_SYSREG].size);
|
|
|
|
/* MPUCFG */
|
|
create_unimplemented_device("microchip.pfsoc.mpucfg",
|
|
memmap[MICROCHIP_PFSOC_MPUCFG].base,
|
|
memmap[MICROCHIP_PFSOC_MPUCFG].size);
|
|
|
|
/* SDHCI */
|
|
sysbus_realize(SYS_BUS_DEVICE(&s->sdhci), errp);
|
|
sysbus_mmio_map(SYS_BUS_DEVICE(&s->sdhci), 0,
|
|
memmap[MICROCHIP_PFSOC_EMMC_SD].base);
|
|
sysbus_connect_irq(SYS_BUS_DEVICE(&s->sdhci), 0,
|
|
qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_EMMC_SD_IRQ));
|
|
|
|
/* MMUARTs */
|
|
s->serial0 = mchp_pfsoc_mmuart_create(system_memory,
|
|
memmap[MICROCHIP_PFSOC_MMUART0].base,
|
|
qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART0_IRQ),
|
|
serial_hd(0));
|
|
s->serial1 = mchp_pfsoc_mmuart_create(system_memory,
|
|
memmap[MICROCHIP_PFSOC_MMUART1].base,
|
|
qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART1_IRQ),
|
|
serial_hd(1));
|
|
s->serial2 = mchp_pfsoc_mmuart_create(system_memory,
|
|
memmap[MICROCHIP_PFSOC_MMUART2].base,
|
|
qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART2_IRQ),
|
|
serial_hd(2));
|
|
s->serial3 = mchp_pfsoc_mmuart_create(system_memory,
|
|
memmap[MICROCHIP_PFSOC_MMUART3].base,
|
|
qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART3_IRQ),
|
|
serial_hd(3));
|
|
s->serial4 = mchp_pfsoc_mmuart_create(system_memory,
|
|
memmap[MICROCHIP_PFSOC_MMUART4].base,
|
|
qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART4_IRQ),
|
|
serial_hd(4));
|
|
|
|
/* eNVM */
|
|
memory_region_init_rom(envm_data, OBJECT(dev), "microchip.pfsoc.envm.data",
|
|
memmap[MICROCHIP_PFSOC_ENVM_DATA].size,
|
|
&error_fatal);
|
|
memory_region_add_subregion(system_memory,
|
|
memmap[MICROCHIP_PFSOC_ENVM_DATA].base,
|
|
envm_data);
|
|
|
|
/* IOSCBCFG */
|
|
create_unimplemented_device("microchip.pfsoc.ioscb.cfg",
|
|
memmap[MICROCHIP_PFSOC_IOSCB_CFG].base,
|
|
memmap[MICROCHIP_PFSOC_IOSCB_CFG].size);
|
|
}
|
|
|
|
static void microchip_pfsoc_soc_class_init(ObjectClass *oc, void *data)
|
|
{
|
|
DeviceClass *dc = DEVICE_CLASS(oc);
|
|
|
|
dc->realize = microchip_pfsoc_soc_realize;
|
|
/* Reason: Uses serial_hds in realize function, thus can't be used twice */
|
|
dc->user_creatable = false;
|
|
}
|
|
|
|
static const TypeInfo microchip_pfsoc_soc_type_info = {
|
|
.name = TYPE_MICROCHIP_PFSOC,
|
|
.parent = TYPE_DEVICE,
|
|
.instance_size = sizeof(MicrochipPFSoCState),
|
|
.instance_init = microchip_pfsoc_soc_instance_init,
|
|
.class_init = microchip_pfsoc_soc_class_init,
|
|
};
|
|
|
|
static void microchip_pfsoc_soc_register_types(void)
|
|
{
|
|
type_register_static(µchip_pfsoc_soc_type_info);
|
|
}
|
|
|
|
type_init(microchip_pfsoc_soc_register_types)
|
|
|
|
static void microchip_icicle_kit_machine_init(MachineState *machine)
|
|
{
|
|
MachineClass *mc = MACHINE_GET_CLASS(machine);
|
|
const struct MemmapEntry *memmap = microchip_pfsoc_memmap;
|
|
MicrochipIcicleKitState *s = MICROCHIP_ICICLE_KIT_MACHINE(machine);
|
|
MemoryRegion *system_memory = get_system_memory();
|
|
MemoryRegion *main_mem = g_new(MemoryRegion, 1);
|
|
DriveInfo *dinfo = drive_get_next(IF_SD);
|
|
|
|
/* Sanity check on RAM size */
|
|
if (machine->ram_size < mc->default_ram_size) {
|
|
char *sz = size_to_str(mc->default_ram_size);
|
|
error_report("Invalid RAM size, should be bigger than %s", sz);
|
|
g_free(sz);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
/* Initialize SoC */
|
|
object_initialize_child(OBJECT(machine), "soc", &s->soc,
|
|
TYPE_MICROCHIP_PFSOC);
|
|
qdev_realize(DEVICE(&s->soc), NULL, &error_abort);
|
|
|
|
/* Register RAM */
|
|
memory_region_init_ram(main_mem, NULL, "microchip.icicle.kit.ram",
|
|
machine->ram_size, &error_fatal);
|
|
memory_region_add_subregion(system_memory,
|
|
memmap[MICROCHIP_PFSOC_DRAM].base, main_mem);
|
|
|
|
/* Load the firmware */
|
|
riscv_find_and_load_firmware(machine, BIOS_FILENAME, RESET_VECTOR, NULL);
|
|
|
|
/* Attach an SD card */
|
|
if (dinfo) {
|
|
CadenceSDHCIState *sdhci = &(s->soc.sdhci);
|
|
DeviceState *card = qdev_new(TYPE_SD_CARD);
|
|
|
|
qdev_prop_set_drive_err(card, "drive", blk_by_legacy_dinfo(dinfo),
|
|
&error_fatal);
|
|
qdev_realize_and_unref(card, sdhci->bus, &error_fatal);
|
|
}
|
|
}
|
|
|
|
static void microchip_icicle_kit_machine_class_init(ObjectClass *oc, void *data)
|
|
{
|
|
MachineClass *mc = MACHINE_CLASS(oc);
|
|
|
|
mc->desc = "Microchip PolarFire SoC Icicle Kit";
|
|
mc->init = microchip_icicle_kit_machine_init;
|
|
mc->max_cpus = MICROCHIP_PFSOC_MANAGEMENT_CPU_COUNT +
|
|
MICROCHIP_PFSOC_COMPUTE_CPU_COUNT;
|
|
mc->min_cpus = MICROCHIP_PFSOC_MANAGEMENT_CPU_COUNT + 1;
|
|
mc->default_cpus = mc->min_cpus;
|
|
mc->default_ram_size = 1 * GiB;
|
|
}
|
|
|
|
static const TypeInfo microchip_icicle_kit_machine_typeinfo = {
|
|
.name = MACHINE_TYPE_NAME("microchip-icicle-kit"),
|
|
.parent = TYPE_MACHINE,
|
|
.class_init = microchip_icicle_kit_machine_class_init,
|
|
.instance_size = sizeof(MicrochipIcicleKitState),
|
|
};
|
|
|
|
static void microchip_icicle_kit_machine_init_register_types(void)
|
|
{
|
|
type_register_static(µchip_icicle_kit_machine_typeinfo);
|
|
}
|
|
|
|
type_init(microchip_icicle_kit_machine_init_register_types)
|