894d354fd8
All targets have now migrated away from the old unassigned_access hook to the new do_transaction_failed hook. This means we can remove the core-code infrastructure for that hook and the code that calls it. Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-id: 20191108173732.11816-1-peter.maydell@linaro.org
2010 lines
66 KiB
C
2010 lines
66 KiB
C
/*
|
|
* Common CPU TLB handling
|
|
*
|
|
* Copyright (c) 2003 Fabrice Bellard
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "qemu/main-loop.h"
|
|
#include "cpu.h"
|
|
#include "exec/exec-all.h"
|
|
#include "exec/memory.h"
|
|
#include "exec/address-spaces.h"
|
|
#include "exec/cpu_ldst.h"
|
|
#include "exec/cputlb.h"
|
|
#include "exec/memory-internal.h"
|
|
#include "exec/ram_addr.h"
|
|
#include "tcg/tcg.h"
|
|
#include "qemu/error-report.h"
|
|
#include "exec/log.h"
|
|
#include "exec/helper-proto.h"
|
|
#include "qemu/atomic.h"
|
|
#include "qemu/atomic128.h"
|
|
#include "translate-all.h"
|
|
#ifdef CONFIG_PLUGIN
|
|
#include "qemu/plugin-memory.h"
|
|
#endif
|
|
|
|
/* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */
|
|
/* #define DEBUG_TLB */
|
|
/* #define DEBUG_TLB_LOG */
|
|
|
|
#ifdef DEBUG_TLB
|
|
# define DEBUG_TLB_GATE 1
|
|
# ifdef DEBUG_TLB_LOG
|
|
# define DEBUG_TLB_LOG_GATE 1
|
|
# else
|
|
# define DEBUG_TLB_LOG_GATE 0
|
|
# endif
|
|
#else
|
|
# define DEBUG_TLB_GATE 0
|
|
# define DEBUG_TLB_LOG_GATE 0
|
|
#endif
|
|
|
|
#define tlb_debug(fmt, ...) do { \
|
|
if (DEBUG_TLB_LOG_GATE) { \
|
|
qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \
|
|
## __VA_ARGS__); \
|
|
} else if (DEBUG_TLB_GATE) { \
|
|
fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \
|
|
} \
|
|
} while (0)
|
|
|
|
#define assert_cpu_is_self(cpu) do { \
|
|
if (DEBUG_TLB_GATE) { \
|
|
g_assert(!(cpu)->created || qemu_cpu_is_self(cpu)); \
|
|
} \
|
|
} while (0)
|
|
|
|
/* run_on_cpu_data.target_ptr should always be big enough for a
|
|
* target_ulong even on 32 bit builds */
|
|
QEMU_BUILD_BUG_ON(sizeof(target_ulong) > sizeof(run_on_cpu_data));
|
|
|
|
/* We currently can't handle more than 16 bits in the MMUIDX bitmask.
|
|
*/
|
|
QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16);
|
|
#define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1)
|
|
|
|
static inline size_t sizeof_tlb(CPUArchState *env, uintptr_t mmu_idx)
|
|
{
|
|
return env_tlb(env)->f[mmu_idx].mask + (1 << CPU_TLB_ENTRY_BITS);
|
|
}
|
|
|
|
static void tlb_window_reset(CPUTLBDesc *desc, int64_t ns,
|
|
size_t max_entries)
|
|
{
|
|
desc->window_begin_ns = ns;
|
|
desc->window_max_entries = max_entries;
|
|
}
|
|
|
|
static void tlb_dyn_init(CPUArchState *env)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < NB_MMU_MODES; i++) {
|
|
CPUTLBDesc *desc = &env_tlb(env)->d[i];
|
|
size_t n_entries = 1 << CPU_TLB_DYN_DEFAULT_BITS;
|
|
|
|
tlb_window_reset(desc, get_clock_realtime(), 0);
|
|
desc->n_used_entries = 0;
|
|
env_tlb(env)->f[i].mask = (n_entries - 1) << CPU_TLB_ENTRY_BITS;
|
|
env_tlb(env)->f[i].table = g_new(CPUTLBEntry, n_entries);
|
|
env_tlb(env)->d[i].iotlb = g_new(CPUIOTLBEntry, n_entries);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* tlb_mmu_resize_locked() - perform TLB resize bookkeeping; resize if necessary
|
|
* @env: CPU that owns the TLB
|
|
* @mmu_idx: MMU index of the TLB
|
|
*
|
|
* Called with tlb_lock_held.
|
|
*
|
|
* We have two main constraints when resizing a TLB: (1) we only resize it
|
|
* on a TLB flush (otherwise we'd have to take a perf hit by either rehashing
|
|
* the array or unnecessarily flushing it), which means we do not control how
|
|
* frequently the resizing can occur; (2) we don't have access to the guest's
|
|
* future scheduling decisions, and therefore have to decide the magnitude of
|
|
* the resize based on past observations.
|
|
*
|
|
* In general, a memory-hungry process can benefit greatly from an appropriately
|
|
* sized TLB, since a guest TLB miss is very expensive. This doesn't mean that
|
|
* we just have to make the TLB as large as possible; while an oversized TLB
|
|
* results in minimal TLB miss rates, it also takes longer to be flushed
|
|
* (flushes can be _very_ frequent), and the reduced locality can also hurt
|
|
* performance.
|
|
*
|
|
* To achieve near-optimal performance for all kinds of workloads, we:
|
|
*
|
|
* 1. Aggressively increase the size of the TLB when the use rate of the
|
|
* TLB being flushed is high, since it is likely that in the near future this
|
|
* memory-hungry process will execute again, and its memory hungriness will
|
|
* probably be similar.
|
|
*
|
|
* 2. Slowly reduce the size of the TLB as the use rate declines over a
|
|
* reasonably large time window. The rationale is that if in such a time window
|
|
* we have not observed a high TLB use rate, it is likely that we won't observe
|
|
* it in the near future. In that case, once a time window expires we downsize
|
|
* the TLB to match the maximum use rate observed in the window.
|
|
*
|
|
* 3. Try to keep the maximum use rate in a time window in the 30-70% range,
|
|
* since in that range performance is likely near-optimal. Recall that the TLB
|
|
* is direct mapped, so we want the use rate to be low (or at least not too
|
|
* high), since otherwise we are likely to have a significant amount of
|
|
* conflict misses.
|
|
*/
|
|
static void tlb_mmu_resize_locked(CPUArchState *env, int mmu_idx)
|
|
{
|
|
CPUTLBDesc *desc = &env_tlb(env)->d[mmu_idx];
|
|
size_t old_size = tlb_n_entries(env, mmu_idx);
|
|
size_t rate;
|
|
size_t new_size = old_size;
|
|
int64_t now = get_clock_realtime();
|
|
int64_t window_len_ms = 100;
|
|
int64_t window_len_ns = window_len_ms * 1000 * 1000;
|
|
bool window_expired = now > desc->window_begin_ns + window_len_ns;
|
|
|
|
if (desc->n_used_entries > desc->window_max_entries) {
|
|
desc->window_max_entries = desc->n_used_entries;
|
|
}
|
|
rate = desc->window_max_entries * 100 / old_size;
|
|
|
|
if (rate > 70) {
|
|
new_size = MIN(old_size << 1, 1 << CPU_TLB_DYN_MAX_BITS);
|
|
} else if (rate < 30 && window_expired) {
|
|
size_t ceil = pow2ceil(desc->window_max_entries);
|
|
size_t expected_rate = desc->window_max_entries * 100 / ceil;
|
|
|
|
/*
|
|
* Avoid undersizing when the max number of entries seen is just below
|
|
* a pow2. For instance, if max_entries == 1025, the expected use rate
|
|
* would be 1025/2048==50%. However, if max_entries == 1023, we'd get
|
|
* 1023/1024==99.9% use rate, so we'd likely end up doubling the size
|
|
* later. Thus, make sure that the expected use rate remains below 70%.
|
|
* (and since we double the size, that means the lowest rate we'd
|
|
* expect to get is 35%, which is still in the 30-70% range where
|
|
* we consider that the size is appropriate.)
|
|
*/
|
|
if (expected_rate > 70) {
|
|
ceil *= 2;
|
|
}
|
|
new_size = MAX(ceil, 1 << CPU_TLB_DYN_MIN_BITS);
|
|
}
|
|
|
|
if (new_size == old_size) {
|
|
if (window_expired) {
|
|
tlb_window_reset(desc, now, desc->n_used_entries);
|
|
}
|
|
return;
|
|
}
|
|
|
|
g_free(env_tlb(env)->f[mmu_idx].table);
|
|
g_free(env_tlb(env)->d[mmu_idx].iotlb);
|
|
|
|
tlb_window_reset(desc, now, 0);
|
|
/* desc->n_used_entries is cleared by the caller */
|
|
env_tlb(env)->f[mmu_idx].mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
|
|
env_tlb(env)->f[mmu_idx].table = g_try_new(CPUTLBEntry, new_size);
|
|
env_tlb(env)->d[mmu_idx].iotlb = g_try_new(CPUIOTLBEntry, new_size);
|
|
/*
|
|
* If the allocations fail, try smaller sizes. We just freed some
|
|
* memory, so going back to half of new_size has a good chance of working.
|
|
* Increased memory pressure elsewhere in the system might cause the
|
|
* allocations to fail though, so we progressively reduce the allocation
|
|
* size, aborting if we cannot even allocate the smallest TLB we support.
|
|
*/
|
|
while (env_tlb(env)->f[mmu_idx].table == NULL ||
|
|
env_tlb(env)->d[mmu_idx].iotlb == NULL) {
|
|
if (new_size == (1 << CPU_TLB_DYN_MIN_BITS)) {
|
|
error_report("%s: %s", __func__, strerror(errno));
|
|
abort();
|
|
}
|
|
new_size = MAX(new_size >> 1, 1 << CPU_TLB_DYN_MIN_BITS);
|
|
env_tlb(env)->f[mmu_idx].mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
|
|
|
|
g_free(env_tlb(env)->f[mmu_idx].table);
|
|
g_free(env_tlb(env)->d[mmu_idx].iotlb);
|
|
env_tlb(env)->f[mmu_idx].table = g_try_new(CPUTLBEntry, new_size);
|
|
env_tlb(env)->d[mmu_idx].iotlb = g_try_new(CPUIOTLBEntry, new_size);
|
|
}
|
|
}
|
|
|
|
static inline void tlb_table_flush_by_mmuidx(CPUArchState *env, int mmu_idx)
|
|
{
|
|
tlb_mmu_resize_locked(env, mmu_idx);
|
|
memset(env_tlb(env)->f[mmu_idx].table, -1, sizeof_tlb(env, mmu_idx));
|
|
env_tlb(env)->d[mmu_idx].n_used_entries = 0;
|
|
}
|
|
|
|
static inline void tlb_n_used_entries_inc(CPUArchState *env, uintptr_t mmu_idx)
|
|
{
|
|
env_tlb(env)->d[mmu_idx].n_used_entries++;
|
|
}
|
|
|
|
static inline void tlb_n_used_entries_dec(CPUArchState *env, uintptr_t mmu_idx)
|
|
{
|
|
env_tlb(env)->d[mmu_idx].n_used_entries--;
|
|
}
|
|
|
|
void tlb_init(CPUState *cpu)
|
|
{
|
|
CPUArchState *env = cpu->env_ptr;
|
|
|
|
qemu_spin_init(&env_tlb(env)->c.lock);
|
|
|
|
/* Ensure that cpu_reset performs a full flush. */
|
|
env_tlb(env)->c.dirty = ALL_MMUIDX_BITS;
|
|
|
|
tlb_dyn_init(env);
|
|
}
|
|
|
|
/* flush_all_helper: run fn across all cpus
|
|
*
|
|
* If the wait flag is set then the src cpu's helper will be queued as
|
|
* "safe" work and the loop exited creating a synchronisation point
|
|
* where all queued work will be finished before execution starts
|
|
* again.
|
|
*/
|
|
static void flush_all_helper(CPUState *src, run_on_cpu_func fn,
|
|
run_on_cpu_data d)
|
|
{
|
|
CPUState *cpu;
|
|
|
|
CPU_FOREACH(cpu) {
|
|
if (cpu != src) {
|
|
async_run_on_cpu(cpu, fn, d);
|
|
}
|
|
}
|
|
}
|
|
|
|
void tlb_flush_counts(size_t *pfull, size_t *ppart, size_t *pelide)
|
|
{
|
|
CPUState *cpu;
|
|
size_t full = 0, part = 0, elide = 0;
|
|
|
|
CPU_FOREACH(cpu) {
|
|
CPUArchState *env = cpu->env_ptr;
|
|
|
|
full += atomic_read(&env_tlb(env)->c.full_flush_count);
|
|
part += atomic_read(&env_tlb(env)->c.part_flush_count);
|
|
elide += atomic_read(&env_tlb(env)->c.elide_flush_count);
|
|
}
|
|
*pfull = full;
|
|
*ppart = part;
|
|
*pelide = elide;
|
|
}
|
|
|
|
static void tlb_flush_one_mmuidx_locked(CPUArchState *env, int mmu_idx)
|
|
{
|
|
tlb_table_flush_by_mmuidx(env, mmu_idx);
|
|
env_tlb(env)->d[mmu_idx].large_page_addr = -1;
|
|
env_tlb(env)->d[mmu_idx].large_page_mask = -1;
|
|
env_tlb(env)->d[mmu_idx].vindex = 0;
|
|
memset(env_tlb(env)->d[mmu_idx].vtable, -1,
|
|
sizeof(env_tlb(env)->d[0].vtable));
|
|
}
|
|
|
|
static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data)
|
|
{
|
|
CPUArchState *env = cpu->env_ptr;
|
|
uint16_t asked = data.host_int;
|
|
uint16_t all_dirty, work, to_clean;
|
|
|
|
assert_cpu_is_self(cpu);
|
|
|
|
tlb_debug("mmu_idx:0x%04" PRIx16 "\n", asked);
|
|
|
|
qemu_spin_lock(&env_tlb(env)->c.lock);
|
|
|
|
all_dirty = env_tlb(env)->c.dirty;
|
|
to_clean = asked & all_dirty;
|
|
all_dirty &= ~to_clean;
|
|
env_tlb(env)->c.dirty = all_dirty;
|
|
|
|
for (work = to_clean; work != 0; work &= work - 1) {
|
|
int mmu_idx = ctz32(work);
|
|
tlb_flush_one_mmuidx_locked(env, mmu_idx);
|
|
}
|
|
|
|
qemu_spin_unlock(&env_tlb(env)->c.lock);
|
|
|
|
cpu_tb_jmp_cache_clear(cpu);
|
|
|
|
if (to_clean == ALL_MMUIDX_BITS) {
|
|
atomic_set(&env_tlb(env)->c.full_flush_count,
|
|
env_tlb(env)->c.full_flush_count + 1);
|
|
} else {
|
|
atomic_set(&env_tlb(env)->c.part_flush_count,
|
|
env_tlb(env)->c.part_flush_count + ctpop16(to_clean));
|
|
if (to_clean != asked) {
|
|
atomic_set(&env_tlb(env)->c.elide_flush_count,
|
|
env_tlb(env)->c.elide_flush_count +
|
|
ctpop16(asked & ~to_clean));
|
|
}
|
|
}
|
|
}
|
|
|
|
void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap)
|
|
{
|
|
tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap);
|
|
|
|
if (cpu->created && !qemu_cpu_is_self(cpu)) {
|
|
async_run_on_cpu(cpu, tlb_flush_by_mmuidx_async_work,
|
|
RUN_ON_CPU_HOST_INT(idxmap));
|
|
} else {
|
|
tlb_flush_by_mmuidx_async_work(cpu, RUN_ON_CPU_HOST_INT(idxmap));
|
|
}
|
|
}
|
|
|
|
void tlb_flush(CPUState *cpu)
|
|
{
|
|
tlb_flush_by_mmuidx(cpu, ALL_MMUIDX_BITS);
|
|
}
|
|
|
|
void tlb_flush_by_mmuidx_all_cpus(CPUState *src_cpu, uint16_t idxmap)
|
|
{
|
|
const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
|
|
|
|
tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
|
|
|
|
flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
|
|
fn(src_cpu, RUN_ON_CPU_HOST_INT(idxmap));
|
|
}
|
|
|
|
void tlb_flush_all_cpus(CPUState *src_cpu)
|
|
{
|
|
tlb_flush_by_mmuidx_all_cpus(src_cpu, ALL_MMUIDX_BITS);
|
|
}
|
|
|
|
void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu, uint16_t idxmap)
|
|
{
|
|
const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
|
|
|
|
tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
|
|
|
|
flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
|
|
async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
|
|
}
|
|
|
|
void tlb_flush_all_cpus_synced(CPUState *src_cpu)
|
|
{
|
|
tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, ALL_MMUIDX_BITS);
|
|
}
|
|
|
|
static inline bool tlb_hit_page_anyprot(CPUTLBEntry *tlb_entry,
|
|
target_ulong page)
|
|
{
|
|
return tlb_hit_page(tlb_entry->addr_read, page) ||
|
|
tlb_hit_page(tlb_addr_write(tlb_entry), page) ||
|
|
tlb_hit_page(tlb_entry->addr_code, page);
|
|
}
|
|
|
|
/**
|
|
* tlb_entry_is_empty - return true if the entry is not in use
|
|
* @te: pointer to CPUTLBEntry
|
|
*/
|
|
static inline bool tlb_entry_is_empty(const CPUTLBEntry *te)
|
|
{
|
|
return te->addr_read == -1 && te->addr_write == -1 && te->addr_code == -1;
|
|
}
|
|
|
|
/* Called with tlb_c.lock held */
|
|
static inline bool tlb_flush_entry_locked(CPUTLBEntry *tlb_entry,
|
|
target_ulong page)
|
|
{
|
|
if (tlb_hit_page_anyprot(tlb_entry, page)) {
|
|
memset(tlb_entry, -1, sizeof(*tlb_entry));
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* Called with tlb_c.lock held */
|
|
static inline void tlb_flush_vtlb_page_locked(CPUArchState *env, int mmu_idx,
|
|
target_ulong page)
|
|
{
|
|
CPUTLBDesc *d = &env_tlb(env)->d[mmu_idx];
|
|
int k;
|
|
|
|
assert_cpu_is_self(env_cpu(env));
|
|
for (k = 0; k < CPU_VTLB_SIZE; k++) {
|
|
if (tlb_flush_entry_locked(&d->vtable[k], page)) {
|
|
tlb_n_used_entries_dec(env, mmu_idx);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void tlb_flush_page_locked(CPUArchState *env, int midx,
|
|
target_ulong page)
|
|
{
|
|
target_ulong lp_addr = env_tlb(env)->d[midx].large_page_addr;
|
|
target_ulong lp_mask = env_tlb(env)->d[midx].large_page_mask;
|
|
|
|
/* Check if we need to flush due to large pages. */
|
|
if ((page & lp_mask) == lp_addr) {
|
|
tlb_debug("forcing full flush midx %d ("
|
|
TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
|
|
midx, lp_addr, lp_mask);
|
|
tlb_flush_one_mmuidx_locked(env, midx);
|
|
} else {
|
|
if (tlb_flush_entry_locked(tlb_entry(env, midx, page), page)) {
|
|
tlb_n_used_entries_dec(env, midx);
|
|
}
|
|
tlb_flush_vtlb_page_locked(env, midx, page);
|
|
}
|
|
}
|
|
|
|
/* As we are going to hijack the bottom bits of the page address for a
|
|
* mmuidx bit mask we need to fail to build if we can't do that
|
|
*/
|
|
QEMU_BUILD_BUG_ON(NB_MMU_MODES > TARGET_PAGE_BITS_MIN);
|
|
|
|
static void tlb_flush_page_by_mmuidx_async_work(CPUState *cpu,
|
|
run_on_cpu_data data)
|
|
{
|
|
CPUArchState *env = cpu->env_ptr;
|
|
target_ulong addr_and_mmuidx = (target_ulong) data.target_ptr;
|
|
target_ulong addr = addr_and_mmuidx & TARGET_PAGE_MASK;
|
|
unsigned long mmu_idx_bitmap = addr_and_mmuidx & ALL_MMUIDX_BITS;
|
|
int mmu_idx;
|
|
|
|
assert_cpu_is_self(cpu);
|
|
|
|
tlb_debug("page addr:" TARGET_FMT_lx " mmu_map:0x%lx\n",
|
|
addr, mmu_idx_bitmap);
|
|
|
|
qemu_spin_lock(&env_tlb(env)->c.lock);
|
|
for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
|
|
if (test_bit(mmu_idx, &mmu_idx_bitmap)) {
|
|
tlb_flush_page_locked(env, mmu_idx, addr);
|
|
}
|
|
}
|
|
qemu_spin_unlock(&env_tlb(env)->c.lock);
|
|
|
|
tb_flush_jmp_cache(cpu, addr);
|
|
}
|
|
|
|
void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr, uint16_t idxmap)
|
|
{
|
|
target_ulong addr_and_mmu_idx;
|
|
|
|
tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%" PRIx16 "\n", addr, idxmap);
|
|
|
|
/* This should already be page aligned */
|
|
addr_and_mmu_idx = addr & TARGET_PAGE_MASK;
|
|
addr_and_mmu_idx |= idxmap;
|
|
|
|
if (!qemu_cpu_is_self(cpu)) {
|
|
async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_work,
|
|
RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx));
|
|
} else {
|
|
tlb_flush_page_by_mmuidx_async_work(
|
|
cpu, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx));
|
|
}
|
|
}
|
|
|
|
void tlb_flush_page(CPUState *cpu, target_ulong addr)
|
|
{
|
|
tlb_flush_page_by_mmuidx(cpu, addr, ALL_MMUIDX_BITS);
|
|
}
|
|
|
|
void tlb_flush_page_by_mmuidx_all_cpus(CPUState *src_cpu, target_ulong addr,
|
|
uint16_t idxmap)
|
|
{
|
|
const run_on_cpu_func fn = tlb_flush_page_by_mmuidx_async_work;
|
|
target_ulong addr_and_mmu_idx;
|
|
|
|
tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap);
|
|
|
|
/* This should already be page aligned */
|
|
addr_and_mmu_idx = addr & TARGET_PAGE_MASK;
|
|
addr_and_mmu_idx |= idxmap;
|
|
|
|
flush_all_helper(src_cpu, fn, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx));
|
|
fn(src_cpu, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx));
|
|
}
|
|
|
|
void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr)
|
|
{
|
|
tlb_flush_page_by_mmuidx_all_cpus(src, addr, ALL_MMUIDX_BITS);
|
|
}
|
|
|
|
void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
|
|
target_ulong addr,
|
|
uint16_t idxmap)
|
|
{
|
|
const run_on_cpu_func fn = tlb_flush_page_by_mmuidx_async_work;
|
|
target_ulong addr_and_mmu_idx;
|
|
|
|
tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap);
|
|
|
|
/* This should already be page aligned */
|
|
addr_and_mmu_idx = addr & TARGET_PAGE_MASK;
|
|
addr_and_mmu_idx |= idxmap;
|
|
|
|
flush_all_helper(src_cpu, fn, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx));
|
|
async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx));
|
|
}
|
|
|
|
void tlb_flush_page_all_cpus_synced(CPUState *src, target_ulong addr)
|
|
{
|
|
tlb_flush_page_by_mmuidx_all_cpus_synced(src, addr, ALL_MMUIDX_BITS);
|
|
}
|
|
|
|
/* update the TLBs so that writes to code in the virtual page 'addr'
|
|
can be detected */
|
|
void tlb_protect_code(ram_addr_t ram_addr)
|
|
{
|
|
cpu_physical_memory_test_and_clear_dirty(ram_addr, TARGET_PAGE_SIZE,
|
|
DIRTY_MEMORY_CODE);
|
|
}
|
|
|
|
/* update the TLB so that writes in physical page 'phys_addr' are no longer
|
|
tested for self modifying code */
|
|
void tlb_unprotect_code(ram_addr_t ram_addr)
|
|
{
|
|
cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE);
|
|
}
|
|
|
|
|
|
/*
|
|
* Dirty write flag handling
|
|
*
|
|
* When the TCG code writes to a location it looks up the address in
|
|
* the TLB and uses that data to compute the final address. If any of
|
|
* the lower bits of the address are set then the slow path is forced.
|
|
* There are a number of reasons to do this but for normal RAM the
|
|
* most usual is detecting writes to code regions which may invalidate
|
|
* generated code.
|
|
*
|
|
* Other vCPUs might be reading their TLBs during guest execution, so we update
|
|
* te->addr_write with atomic_set. We don't need to worry about this for
|
|
* oversized guests as MTTCG is disabled for them.
|
|
*
|
|
* Called with tlb_c.lock held.
|
|
*/
|
|
static void tlb_reset_dirty_range_locked(CPUTLBEntry *tlb_entry,
|
|
uintptr_t start, uintptr_t length)
|
|
{
|
|
uintptr_t addr = tlb_entry->addr_write;
|
|
|
|
if ((addr & (TLB_INVALID_MASK | TLB_MMIO |
|
|
TLB_DISCARD_WRITE | TLB_NOTDIRTY)) == 0) {
|
|
addr &= TARGET_PAGE_MASK;
|
|
addr += tlb_entry->addend;
|
|
if ((addr - start) < length) {
|
|
#if TCG_OVERSIZED_GUEST
|
|
tlb_entry->addr_write |= TLB_NOTDIRTY;
|
|
#else
|
|
atomic_set(&tlb_entry->addr_write,
|
|
tlb_entry->addr_write | TLB_NOTDIRTY);
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Called with tlb_c.lock held.
|
|
* Called only from the vCPU context, i.e. the TLB's owner thread.
|
|
*/
|
|
static inline void copy_tlb_helper_locked(CPUTLBEntry *d, const CPUTLBEntry *s)
|
|
{
|
|
*d = *s;
|
|
}
|
|
|
|
/* This is a cross vCPU call (i.e. another vCPU resetting the flags of
|
|
* the target vCPU).
|
|
* We must take tlb_c.lock to avoid racing with another vCPU update. The only
|
|
* thing actually updated is the target TLB entry ->addr_write flags.
|
|
*/
|
|
void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length)
|
|
{
|
|
CPUArchState *env;
|
|
|
|
int mmu_idx;
|
|
|
|
env = cpu->env_ptr;
|
|
qemu_spin_lock(&env_tlb(env)->c.lock);
|
|
for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
|
|
unsigned int i;
|
|
unsigned int n = tlb_n_entries(env, mmu_idx);
|
|
|
|
for (i = 0; i < n; i++) {
|
|
tlb_reset_dirty_range_locked(&env_tlb(env)->f[mmu_idx].table[i],
|
|
start1, length);
|
|
}
|
|
|
|
for (i = 0; i < CPU_VTLB_SIZE; i++) {
|
|
tlb_reset_dirty_range_locked(&env_tlb(env)->d[mmu_idx].vtable[i],
|
|
start1, length);
|
|
}
|
|
}
|
|
qemu_spin_unlock(&env_tlb(env)->c.lock);
|
|
}
|
|
|
|
/* Called with tlb_c.lock held */
|
|
static inline void tlb_set_dirty1_locked(CPUTLBEntry *tlb_entry,
|
|
target_ulong vaddr)
|
|
{
|
|
if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) {
|
|
tlb_entry->addr_write = vaddr;
|
|
}
|
|
}
|
|
|
|
/* update the TLB corresponding to virtual page vaddr
|
|
so that it is no longer dirty */
|
|
void tlb_set_dirty(CPUState *cpu, target_ulong vaddr)
|
|
{
|
|
CPUArchState *env = cpu->env_ptr;
|
|
int mmu_idx;
|
|
|
|
assert_cpu_is_self(cpu);
|
|
|
|
vaddr &= TARGET_PAGE_MASK;
|
|
qemu_spin_lock(&env_tlb(env)->c.lock);
|
|
for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
|
|
tlb_set_dirty1_locked(tlb_entry(env, mmu_idx, vaddr), vaddr);
|
|
}
|
|
|
|
for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
|
|
int k;
|
|
for (k = 0; k < CPU_VTLB_SIZE; k++) {
|
|
tlb_set_dirty1_locked(&env_tlb(env)->d[mmu_idx].vtable[k], vaddr);
|
|
}
|
|
}
|
|
qemu_spin_unlock(&env_tlb(env)->c.lock);
|
|
}
|
|
|
|
/* Our TLB does not support large pages, so remember the area covered by
|
|
large pages and trigger a full TLB flush if these are invalidated. */
|
|
static void tlb_add_large_page(CPUArchState *env, int mmu_idx,
|
|
target_ulong vaddr, target_ulong size)
|
|
{
|
|
target_ulong lp_addr = env_tlb(env)->d[mmu_idx].large_page_addr;
|
|
target_ulong lp_mask = ~(size - 1);
|
|
|
|
if (lp_addr == (target_ulong)-1) {
|
|
/* No previous large page. */
|
|
lp_addr = vaddr;
|
|
} else {
|
|
/* Extend the existing region to include the new page.
|
|
This is a compromise between unnecessary flushes and
|
|
the cost of maintaining a full variable size TLB. */
|
|
lp_mask &= env_tlb(env)->d[mmu_idx].large_page_mask;
|
|
while (((lp_addr ^ vaddr) & lp_mask) != 0) {
|
|
lp_mask <<= 1;
|
|
}
|
|
}
|
|
env_tlb(env)->d[mmu_idx].large_page_addr = lp_addr & lp_mask;
|
|
env_tlb(env)->d[mmu_idx].large_page_mask = lp_mask;
|
|
}
|
|
|
|
/* Add a new TLB entry. At most one entry for a given virtual address
|
|
* is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
|
|
* supplied size is only used by tlb_flush_page.
|
|
*
|
|
* Called from TCG-generated code, which is under an RCU read-side
|
|
* critical section.
|
|
*/
|
|
void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr,
|
|
hwaddr paddr, MemTxAttrs attrs, int prot,
|
|
int mmu_idx, target_ulong size)
|
|
{
|
|
CPUArchState *env = cpu->env_ptr;
|
|
CPUTLB *tlb = env_tlb(env);
|
|
CPUTLBDesc *desc = &tlb->d[mmu_idx];
|
|
MemoryRegionSection *section;
|
|
unsigned int index;
|
|
target_ulong address;
|
|
target_ulong write_address;
|
|
uintptr_t addend;
|
|
CPUTLBEntry *te, tn;
|
|
hwaddr iotlb, xlat, sz, paddr_page;
|
|
target_ulong vaddr_page;
|
|
int asidx = cpu_asidx_from_attrs(cpu, attrs);
|
|
int wp_flags;
|
|
bool is_ram, is_romd;
|
|
|
|
assert_cpu_is_self(cpu);
|
|
|
|
if (size <= TARGET_PAGE_SIZE) {
|
|
sz = TARGET_PAGE_SIZE;
|
|
} else {
|
|
tlb_add_large_page(env, mmu_idx, vaddr, size);
|
|
sz = size;
|
|
}
|
|
vaddr_page = vaddr & TARGET_PAGE_MASK;
|
|
paddr_page = paddr & TARGET_PAGE_MASK;
|
|
|
|
section = address_space_translate_for_iotlb(cpu, asidx, paddr_page,
|
|
&xlat, &sz, attrs, &prot);
|
|
assert(sz >= TARGET_PAGE_SIZE);
|
|
|
|
tlb_debug("vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
|
|
" prot=%x idx=%d\n",
|
|
vaddr, paddr, prot, mmu_idx);
|
|
|
|
address = vaddr_page;
|
|
if (size < TARGET_PAGE_SIZE) {
|
|
/* Repeat the MMU check and TLB fill on every access. */
|
|
address |= TLB_INVALID_MASK;
|
|
}
|
|
if (attrs.byte_swap) {
|
|
address |= TLB_BSWAP;
|
|
}
|
|
|
|
is_ram = memory_region_is_ram(section->mr);
|
|
is_romd = memory_region_is_romd(section->mr);
|
|
|
|
if (is_ram || is_romd) {
|
|
/* RAM and ROMD both have associated host memory. */
|
|
addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat;
|
|
} else {
|
|
/* I/O does not; force the host address to NULL. */
|
|
addend = 0;
|
|
}
|
|
|
|
write_address = address;
|
|
if (is_ram) {
|
|
iotlb = memory_region_get_ram_addr(section->mr) + xlat;
|
|
/*
|
|
* Computing is_clean is expensive; avoid all that unless
|
|
* the page is actually writable.
|
|
*/
|
|
if (prot & PAGE_WRITE) {
|
|
if (section->readonly) {
|
|
write_address |= TLB_DISCARD_WRITE;
|
|
} else if (cpu_physical_memory_is_clean(iotlb)) {
|
|
write_address |= TLB_NOTDIRTY;
|
|
}
|
|
}
|
|
} else {
|
|
/* I/O or ROMD */
|
|
iotlb = memory_region_section_get_iotlb(cpu, section) + xlat;
|
|
/*
|
|
* Writes to romd devices must go through MMIO to enable write.
|
|
* Reads to romd devices go through the ram_ptr found above,
|
|
* but of course reads to I/O must go through MMIO.
|
|
*/
|
|
write_address |= TLB_MMIO;
|
|
if (!is_romd) {
|
|
address = write_address;
|
|
}
|
|
}
|
|
|
|
wp_flags = cpu_watchpoint_address_matches(cpu, vaddr_page,
|
|
TARGET_PAGE_SIZE);
|
|
|
|
index = tlb_index(env, mmu_idx, vaddr_page);
|
|
te = tlb_entry(env, mmu_idx, vaddr_page);
|
|
|
|
/*
|
|
* Hold the TLB lock for the rest of the function. We could acquire/release
|
|
* the lock several times in the function, but it is faster to amortize the
|
|
* acquisition cost by acquiring it just once. Note that this leads to
|
|
* a longer critical section, but this is not a concern since the TLB lock
|
|
* is unlikely to be contended.
|
|
*/
|
|
qemu_spin_lock(&tlb->c.lock);
|
|
|
|
/* Note that the tlb is no longer clean. */
|
|
tlb->c.dirty |= 1 << mmu_idx;
|
|
|
|
/* Make sure there's no cached translation for the new page. */
|
|
tlb_flush_vtlb_page_locked(env, mmu_idx, vaddr_page);
|
|
|
|
/*
|
|
* Only evict the old entry to the victim tlb if it's for a
|
|
* different page; otherwise just overwrite the stale data.
|
|
*/
|
|
if (!tlb_hit_page_anyprot(te, vaddr_page) && !tlb_entry_is_empty(te)) {
|
|
unsigned vidx = desc->vindex++ % CPU_VTLB_SIZE;
|
|
CPUTLBEntry *tv = &desc->vtable[vidx];
|
|
|
|
/* Evict the old entry into the victim tlb. */
|
|
copy_tlb_helper_locked(tv, te);
|
|
desc->viotlb[vidx] = desc->iotlb[index];
|
|
tlb_n_used_entries_dec(env, mmu_idx);
|
|
}
|
|
|
|
/* refill the tlb */
|
|
/*
|
|
* At this point iotlb contains a physical section number in the lower
|
|
* TARGET_PAGE_BITS, and either
|
|
* + the ram_addr_t of the page base of the target RAM (RAM)
|
|
* + the offset within section->mr of the page base (I/O, ROMD)
|
|
* We subtract the vaddr_page (which is page aligned and thus won't
|
|
* disturb the low bits) to give an offset which can be added to the
|
|
* (non-page-aligned) vaddr of the eventual memory access to get
|
|
* the MemoryRegion offset for the access. Note that the vaddr we
|
|
* subtract here is that of the page base, and not the same as the
|
|
* vaddr we add back in io_readx()/io_writex()/get_page_addr_code().
|
|
*/
|
|
desc->iotlb[index].addr = iotlb - vaddr_page;
|
|
desc->iotlb[index].attrs = attrs;
|
|
|
|
/* Now calculate the new entry */
|
|
tn.addend = addend - vaddr_page;
|
|
if (prot & PAGE_READ) {
|
|
tn.addr_read = address;
|
|
if (wp_flags & BP_MEM_READ) {
|
|
tn.addr_read |= TLB_WATCHPOINT;
|
|
}
|
|
} else {
|
|
tn.addr_read = -1;
|
|
}
|
|
|
|
if (prot & PAGE_EXEC) {
|
|
tn.addr_code = address;
|
|
} else {
|
|
tn.addr_code = -1;
|
|
}
|
|
|
|
tn.addr_write = -1;
|
|
if (prot & PAGE_WRITE) {
|
|
tn.addr_write = write_address;
|
|
if (prot & PAGE_WRITE_INV) {
|
|
tn.addr_write |= TLB_INVALID_MASK;
|
|
}
|
|
if (wp_flags & BP_MEM_WRITE) {
|
|
tn.addr_write |= TLB_WATCHPOINT;
|
|
}
|
|
}
|
|
|
|
copy_tlb_helper_locked(te, &tn);
|
|
tlb_n_used_entries_inc(env, mmu_idx);
|
|
qemu_spin_unlock(&tlb->c.lock);
|
|
}
|
|
|
|
/* Add a new TLB entry, but without specifying the memory
|
|
* transaction attributes to be used.
|
|
*/
|
|
void tlb_set_page(CPUState *cpu, target_ulong vaddr,
|
|
hwaddr paddr, int prot,
|
|
int mmu_idx, target_ulong size)
|
|
{
|
|
tlb_set_page_with_attrs(cpu, vaddr, paddr, MEMTXATTRS_UNSPECIFIED,
|
|
prot, mmu_idx, size);
|
|
}
|
|
|
|
static inline ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
|
|
{
|
|
ram_addr_t ram_addr;
|
|
|
|
ram_addr = qemu_ram_addr_from_host(ptr);
|
|
if (ram_addr == RAM_ADDR_INVALID) {
|
|
error_report("Bad ram pointer %p", ptr);
|
|
abort();
|
|
}
|
|
return ram_addr;
|
|
}
|
|
|
|
/*
|
|
* Note: tlb_fill() can trigger a resize of the TLB. This means that all of the
|
|
* caller's prior references to the TLB table (e.g. CPUTLBEntry pointers) must
|
|
* be discarded and looked up again (e.g. via tlb_entry()).
|
|
*/
|
|
static void tlb_fill(CPUState *cpu, target_ulong addr, int size,
|
|
MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
|
|
{
|
|
CPUClass *cc = CPU_GET_CLASS(cpu);
|
|
bool ok;
|
|
|
|
/*
|
|
* This is not a probe, so only valid return is success; failure
|
|
* should result in exception + longjmp to the cpu loop.
|
|
*/
|
|
ok = cc->tlb_fill(cpu, addr, size, access_type, mmu_idx, false, retaddr);
|
|
assert(ok);
|
|
}
|
|
|
|
static uint64_t io_readx(CPUArchState *env, CPUIOTLBEntry *iotlbentry,
|
|
int mmu_idx, target_ulong addr, uintptr_t retaddr,
|
|
MMUAccessType access_type, MemOp op)
|
|
{
|
|
CPUState *cpu = env_cpu(env);
|
|
hwaddr mr_offset;
|
|
MemoryRegionSection *section;
|
|
MemoryRegion *mr;
|
|
uint64_t val;
|
|
bool locked = false;
|
|
MemTxResult r;
|
|
|
|
section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs);
|
|
mr = section->mr;
|
|
mr_offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr;
|
|
cpu->mem_io_pc = retaddr;
|
|
if (!cpu->can_do_io) {
|
|
cpu_io_recompile(cpu, retaddr);
|
|
}
|
|
|
|
if (mr->global_locking && !qemu_mutex_iothread_locked()) {
|
|
qemu_mutex_lock_iothread();
|
|
locked = true;
|
|
}
|
|
r = memory_region_dispatch_read(mr, mr_offset, &val, op, iotlbentry->attrs);
|
|
if (r != MEMTX_OK) {
|
|
hwaddr physaddr = mr_offset +
|
|
section->offset_within_address_space -
|
|
section->offset_within_region;
|
|
|
|
cpu_transaction_failed(cpu, physaddr, addr, memop_size(op), access_type,
|
|
mmu_idx, iotlbentry->attrs, r, retaddr);
|
|
}
|
|
if (locked) {
|
|
qemu_mutex_unlock_iothread();
|
|
}
|
|
|
|
return val;
|
|
}
|
|
|
|
static void io_writex(CPUArchState *env, CPUIOTLBEntry *iotlbentry,
|
|
int mmu_idx, uint64_t val, target_ulong addr,
|
|
uintptr_t retaddr, MemOp op)
|
|
{
|
|
CPUState *cpu = env_cpu(env);
|
|
hwaddr mr_offset;
|
|
MemoryRegionSection *section;
|
|
MemoryRegion *mr;
|
|
bool locked = false;
|
|
MemTxResult r;
|
|
|
|
section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs);
|
|
mr = section->mr;
|
|
mr_offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr;
|
|
if (!cpu->can_do_io) {
|
|
cpu_io_recompile(cpu, retaddr);
|
|
}
|
|
cpu->mem_io_pc = retaddr;
|
|
|
|
if (mr->global_locking && !qemu_mutex_iothread_locked()) {
|
|
qemu_mutex_lock_iothread();
|
|
locked = true;
|
|
}
|
|
r = memory_region_dispatch_write(mr, mr_offset, val, op, iotlbentry->attrs);
|
|
if (r != MEMTX_OK) {
|
|
hwaddr physaddr = mr_offset +
|
|
section->offset_within_address_space -
|
|
section->offset_within_region;
|
|
|
|
cpu_transaction_failed(cpu, physaddr, addr, memop_size(op),
|
|
MMU_DATA_STORE, mmu_idx, iotlbentry->attrs, r,
|
|
retaddr);
|
|
}
|
|
if (locked) {
|
|
qemu_mutex_unlock_iothread();
|
|
}
|
|
}
|
|
|
|
static inline target_ulong tlb_read_ofs(CPUTLBEntry *entry, size_t ofs)
|
|
{
|
|
#if TCG_OVERSIZED_GUEST
|
|
return *(target_ulong *)((uintptr_t)entry + ofs);
|
|
#else
|
|
/* ofs might correspond to .addr_write, so use atomic_read */
|
|
return atomic_read((target_ulong *)((uintptr_t)entry + ofs));
|
|
#endif
|
|
}
|
|
|
|
/* Return true if ADDR is present in the victim tlb, and has been copied
|
|
back to the main tlb. */
|
|
static bool victim_tlb_hit(CPUArchState *env, size_t mmu_idx, size_t index,
|
|
size_t elt_ofs, target_ulong page)
|
|
{
|
|
size_t vidx;
|
|
|
|
assert_cpu_is_self(env_cpu(env));
|
|
for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) {
|
|
CPUTLBEntry *vtlb = &env_tlb(env)->d[mmu_idx].vtable[vidx];
|
|
target_ulong cmp;
|
|
|
|
/* elt_ofs might correspond to .addr_write, so use atomic_read */
|
|
#if TCG_OVERSIZED_GUEST
|
|
cmp = *(target_ulong *)((uintptr_t)vtlb + elt_ofs);
|
|
#else
|
|
cmp = atomic_read((target_ulong *)((uintptr_t)vtlb + elt_ofs));
|
|
#endif
|
|
|
|
if (cmp == page) {
|
|
/* Found entry in victim tlb, swap tlb and iotlb. */
|
|
CPUTLBEntry tmptlb, *tlb = &env_tlb(env)->f[mmu_idx].table[index];
|
|
|
|
qemu_spin_lock(&env_tlb(env)->c.lock);
|
|
copy_tlb_helper_locked(&tmptlb, tlb);
|
|
copy_tlb_helper_locked(tlb, vtlb);
|
|
copy_tlb_helper_locked(vtlb, &tmptlb);
|
|
qemu_spin_unlock(&env_tlb(env)->c.lock);
|
|
|
|
CPUIOTLBEntry tmpio, *io = &env_tlb(env)->d[mmu_idx].iotlb[index];
|
|
CPUIOTLBEntry *vio = &env_tlb(env)->d[mmu_idx].viotlb[vidx];
|
|
tmpio = *io; *io = *vio; *vio = tmpio;
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* Macro to call the above, with local variables from the use context. */
|
|
#define VICTIM_TLB_HIT(TY, ADDR) \
|
|
victim_tlb_hit(env, mmu_idx, index, offsetof(CPUTLBEntry, TY), \
|
|
(ADDR) & TARGET_PAGE_MASK)
|
|
|
|
/*
|
|
* Return a ram_addr_t for the virtual address for execution.
|
|
*
|
|
* Return -1 if we can't translate and execute from an entire page
|
|
* of RAM. This will force us to execute by loading and translating
|
|
* one insn at a time, without caching.
|
|
*
|
|
* NOTE: This function will trigger an exception if the page is
|
|
* not executable.
|
|
*/
|
|
tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, target_ulong addr,
|
|
void **hostp)
|
|
{
|
|
uintptr_t mmu_idx = cpu_mmu_index(env, true);
|
|
uintptr_t index = tlb_index(env, mmu_idx, addr);
|
|
CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
|
|
void *p;
|
|
|
|
if (unlikely(!tlb_hit(entry->addr_code, addr))) {
|
|
if (!VICTIM_TLB_HIT(addr_code, addr)) {
|
|
tlb_fill(env_cpu(env), addr, 0, MMU_INST_FETCH, mmu_idx, 0);
|
|
index = tlb_index(env, mmu_idx, addr);
|
|
entry = tlb_entry(env, mmu_idx, addr);
|
|
|
|
if (unlikely(entry->addr_code & TLB_INVALID_MASK)) {
|
|
/*
|
|
* The MMU protection covers a smaller range than a target
|
|
* page, so we must redo the MMU check for every insn.
|
|
*/
|
|
return -1;
|
|
}
|
|
}
|
|
assert(tlb_hit(entry->addr_code, addr));
|
|
}
|
|
|
|
if (unlikely(entry->addr_code & TLB_MMIO)) {
|
|
/* The region is not backed by RAM. */
|
|
if (hostp) {
|
|
*hostp = NULL;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
p = (void *)((uintptr_t)addr + entry->addend);
|
|
if (hostp) {
|
|
*hostp = p;
|
|
}
|
|
return qemu_ram_addr_from_host_nofail(p);
|
|
}
|
|
|
|
tb_page_addr_t get_page_addr_code(CPUArchState *env, target_ulong addr)
|
|
{
|
|
return get_page_addr_code_hostp(env, addr, NULL);
|
|
}
|
|
|
|
static void notdirty_write(CPUState *cpu, vaddr mem_vaddr, unsigned size,
|
|
CPUIOTLBEntry *iotlbentry, uintptr_t retaddr)
|
|
{
|
|
ram_addr_t ram_addr = mem_vaddr + iotlbentry->addr;
|
|
|
|
trace_memory_notdirty_write_access(mem_vaddr, ram_addr, size);
|
|
|
|
if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
|
|
struct page_collection *pages
|
|
= page_collection_lock(ram_addr, ram_addr + size);
|
|
tb_invalidate_phys_page_fast(pages, ram_addr, size, retaddr);
|
|
page_collection_unlock(pages);
|
|
}
|
|
|
|
/*
|
|
* Set both VGA and migration bits for simplicity and to remove
|
|
* the notdirty callback faster.
|
|
*/
|
|
cpu_physical_memory_set_dirty_range(ram_addr, size, DIRTY_CLIENTS_NOCODE);
|
|
|
|
/* We remove the notdirty callback only if the code has been flushed. */
|
|
if (!cpu_physical_memory_is_clean(ram_addr)) {
|
|
trace_memory_notdirty_set_dirty(mem_vaddr);
|
|
tlb_set_dirty(cpu, mem_vaddr);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Probe for whether the specified guest access is permitted. If it is not
|
|
* permitted then an exception will be taken in the same way as if this
|
|
* were a real access (and we will not return).
|
|
* If the size is 0 or the page requires I/O access, returns NULL; otherwise,
|
|
* returns the address of the host page similar to tlb_vaddr_to_host().
|
|
*/
|
|
void *probe_access(CPUArchState *env, target_ulong addr, int size,
|
|
MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
|
|
{
|
|
uintptr_t index = tlb_index(env, mmu_idx, addr);
|
|
CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
|
|
target_ulong tlb_addr;
|
|
size_t elt_ofs;
|
|
int wp_access;
|
|
|
|
g_assert(-(addr | TARGET_PAGE_MASK) >= size);
|
|
|
|
switch (access_type) {
|
|
case MMU_DATA_LOAD:
|
|
elt_ofs = offsetof(CPUTLBEntry, addr_read);
|
|
wp_access = BP_MEM_READ;
|
|
break;
|
|
case MMU_DATA_STORE:
|
|
elt_ofs = offsetof(CPUTLBEntry, addr_write);
|
|
wp_access = BP_MEM_WRITE;
|
|
break;
|
|
case MMU_INST_FETCH:
|
|
elt_ofs = offsetof(CPUTLBEntry, addr_code);
|
|
wp_access = BP_MEM_READ;
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
tlb_addr = tlb_read_ofs(entry, elt_ofs);
|
|
|
|
if (unlikely(!tlb_hit(tlb_addr, addr))) {
|
|
if (!victim_tlb_hit(env, mmu_idx, index, elt_ofs,
|
|
addr & TARGET_PAGE_MASK)) {
|
|
tlb_fill(env_cpu(env), addr, size, access_type, mmu_idx, retaddr);
|
|
/* TLB resize via tlb_fill may have moved the entry. */
|
|
index = tlb_index(env, mmu_idx, addr);
|
|
entry = tlb_entry(env, mmu_idx, addr);
|
|
}
|
|
tlb_addr = tlb_read_ofs(entry, elt_ofs);
|
|
}
|
|
|
|
if (!size) {
|
|
return NULL;
|
|
}
|
|
|
|
if (unlikely(tlb_addr & TLB_FLAGS_MASK)) {
|
|
CPUIOTLBEntry *iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index];
|
|
|
|
/* Reject I/O access, or other required slow-path. */
|
|
if (tlb_addr & (TLB_MMIO | TLB_BSWAP | TLB_DISCARD_WRITE)) {
|
|
return NULL;
|
|
}
|
|
|
|
/* Handle watchpoints. */
|
|
if (tlb_addr & TLB_WATCHPOINT) {
|
|
cpu_check_watchpoint(env_cpu(env), addr, size,
|
|
iotlbentry->attrs, wp_access, retaddr);
|
|
}
|
|
|
|
/* Handle clean RAM pages. */
|
|
if (tlb_addr & TLB_NOTDIRTY) {
|
|
notdirty_write(env_cpu(env), addr, size, iotlbentry, retaddr);
|
|
}
|
|
}
|
|
|
|
return (void *)((uintptr_t)addr + entry->addend);
|
|
}
|
|
|
|
void *tlb_vaddr_to_host(CPUArchState *env, abi_ptr addr,
|
|
MMUAccessType access_type, int mmu_idx)
|
|
{
|
|
CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
|
|
target_ulong tlb_addr, page;
|
|
size_t elt_ofs;
|
|
|
|
switch (access_type) {
|
|
case MMU_DATA_LOAD:
|
|
elt_ofs = offsetof(CPUTLBEntry, addr_read);
|
|
break;
|
|
case MMU_DATA_STORE:
|
|
elt_ofs = offsetof(CPUTLBEntry, addr_write);
|
|
break;
|
|
case MMU_INST_FETCH:
|
|
elt_ofs = offsetof(CPUTLBEntry, addr_code);
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
page = addr & TARGET_PAGE_MASK;
|
|
tlb_addr = tlb_read_ofs(entry, elt_ofs);
|
|
|
|
if (!tlb_hit_page(tlb_addr, page)) {
|
|
uintptr_t index = tlb_index(env, mmu_idx, addr);
|
|
|
|
if (!victim_tlb_hit(env, mmu_idx, index, elt_ofs, page)) {
|
|
CPUState *cs = env_cpu(env);
|
|
CPUClass *cc = CPU_GET_CLASS(cs);
|
|
|
|
if (!cc->tlb_fill(cs, addr, 0, access_type, mmu_idx, true, 0)) {
|
|
/* Non-faulting page table read failed. */
|
|
return NULL;
|
|
}
|
|
|
|
/* TLB resize via tlb_fill may have moved the entry. */
|
|
entry = tlb_entry(env, mmu_idx, addr);
|
|
}
|
|
tlb_addr = tlb_read_ofs(entry, elt_ofs);
|
|
}
|
|
|
|
if (tlb_addr & ~TARGET_PAGE_MASK) {
|
|
/* IO access */
|
|
return NULL;
|
|
}
|
|
|
|
return (void *)((uintptr_t)addr + entry->addend);
|
|
}
|
|
|
|
|
|
#ifdef CONFIG_PLUGIN
|
|
/*
|
|
* Perform a TLB lookup and populate the qemu_plugin_hwaddr structure.
|
|
* This should be a hot path as we will have just looked this path up
|
|
* in the softmmu lookup code (or helper). We don't handle re-fills or
|
|
* checking the victim table. This is purely informational.
|
|
*
|
|
* This should never fail as the memory access being instrumented
|
|
* should have just filled the TLB.
|
|
*/
|
|
|
|
bool tlb_plugin_lookup(CPUState *cpu, target_ulong addr, int mmu_idx,
|
|
bool is_store, struct qemu_plugin_hwaddr *data)
|
|
{
|
|
CPUArchState *env = cpu->env_ptr;
|
|
CPUTLBEntry *tlbe = tlb_entry(env, mmu_idx, addr);
|
|
uintptr_t index = tlb_index(env, mmu_idx, addr);
|
|
target_ulong tlb_addr = is_store ? tlb_addr_write(tlbe) : tlbe->addr_read;
|
|
|
|
if (likely(tlb_hit(tlb_addr, addr))) {
|
|
/* We must have an iotlb entry for MMIO */
|
|
if (tlb_addr & TLB_MMIO) {
|
|
CPUIOTLBEntry *iotlbentry;
|
|
iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index];
|
|
data->is_io = true;
|
|
data->v.io.section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs);
|
|
data->v.io.offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr;
|
|
} else {
|
|
data->is_io = false;
|
|
data->v.ram.hostaddr = addr + tlbe->addend;
|
|
}
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
#endif
|
|
|
|
/* Probe for a read-modify-write atomic operation. Do not allow unaligned
|
|
* operations, or io operations to proceed. Return the host address. */
|
|
static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr,
|
|
TCGMemOpIdx oi, uintptr_t retaddr)
|
|
{
|
|
size_t mmu_idx = get_mmuidx(oi);
|
|
uintptr_t index = tlb_index(env, mmu_idx, addr);
|
|
CPUTLBEntry *tlbe = tlb_entry(env, mmu_idx, addr);
|
|
target_ulong tlb_addr = tlb_addr_write(tlbe);
|
|
MemOp mop = get_memop(oi);
|
|
int a_bits = get_alignment_bits(mop);
|
|
int s_bits = mop & MO_SIZE;
|
|
void *hostaddr;
|
|
|
|
/* Adjust the given return address. */
|
|
retaddr -= GETPC_ADJ;
|
|
|
|
/* Enforce guest required alignment. */
|
|
if (unlikely(a_bits > 0 && (addr & ((1 << a_bits) - 1)))) {
|
|
/* ??? Maybe indicate atomic op to cpu_unaligned_access */
|
|
cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE,
|
|
mmu_idx, retaddr);
|
|
}
|
|
|
|
/* Enforce qemu required alignment. */
|
|
if (unlikely(addr & ((1 << s_bits) - 1))) {
|
|
/* We get here if guest alignment was not requested,
|
|
or was not enforced by cpu_unaligned_access above.
|
|
We might widen the access and emulate, but for now
|
|
mark an exception and exit the cpu loop. */
|
|
goto stop_the_world;
|
|
}
|
|
|
|
/* Check TLB entry and enforce page permissions. */
|
|
if (!tlb_hit(tlb_addr, addr)) {
|
|
if (!VICTIM_TLB_HIT(addr_write, addr)) {
|
|
tlb_fill(env_cpu(env), addr, 1 << s_bits, MMU_DATA_STORE,
|
|
mmu_idx, retaddr);
|
|
index = tlb_index(env, mmu_idx, addr);
|
|
tlbe = tlb_entry(env, mmu_idx, addr);
|
|
}
|
|
tlb_addr = tlb_addr_write(tlbe) & ~TLB_INVALID_MASK;
|
|
}
|
|
|
|
/* Notice an IO access or a needs-MMU-lookup access */
|
|
if (unlikely(tlb_addr & TLB_MMIO)) {
|
|
/* There's really nothing that can be done to
|
|
support this apart from stop-the-world. */
|
|
goto stop_the_world;
|
|
}
|
|
|
|
/* Let the guest notice RMW on a write-only page. */
|
|
if (unlikely(tlbe->addr_read != (tlb_addr & ~TLB_NOTDIRTY))) {
|
|
tlb_fill(env_cpu(env), addr, 1 << s_bits, MMU_DATA_LOAD,
|
|
mmu_idx, retaddr);
|
|
/* Since we don't support reads and writes to different addresses,
|
|
and we do have the proper page loaded for write, this shouldn't
|
|
ever return. But just in case, handle via stop-the-world. */
|
|
goto stop_the_world;
|
|
}
|
|
|
|
hostaddr = (void *)((uintptr_t)addr + tlbe->addend);
|
|
|
|
if (unlikely(tlb_addr & TLB_NOTDIRTY)) {
|
|
notdirty_write(env_cpu(env), addr, 1 << s_bits,
|
|
&env_tlb(env)->d[mmu_idx].iotlb[index], retaddr);
|
|
}
|
|
|
|
return hostaddr;
|
|
|
|
stop_the_world:
|
|
cpu_loop_exit_atomic(env_cpu(env), retaddr);
|
|
}
|
|
|
|
/*
|
|
* Load Helpers
|
|
*
|
|
* We support two different access types. SOFTMMU_CODE_ACCESS is
|
|
* specifically for reading instructions from system memory. It is
|
|
* called by the translation loop and in some helpers where the code
|
|
* is disassembled. It shouldn't be called directly by guest code.
|
|
*/
|
|
|
|
typedef uint64_t FullLoadHelper(CPUArchState *env, target_ulong addr,
|
|
TCGMemOpIdx oi, uintptr_t retaddr);
|
|
|
|
static inline uint64_t QEMU_ALWAYS_INLINE
|
|
load_memop(const void *haddr, MemOp op)
|
|
{
|
|
switch (op) {
|
|
case MO_UB:
|
|
return ldub_p(haddr);
|
|
case MO_BEUW:
|
|
return lduw_be_p(haddr);
|
|
case MO_LEUW:
|
|
return lduw_le_p(haddr);
|
|
case MO_BEUL:
|
|
return (uint32_t)ldl_be_p(haddr);
|
|
case MO_LEUL:
|
|
return (uint32_t)ldl_le_p(haddr);
|
|
case MO_BEQ:
|
|
return ldq_be_p(haddr);
|
|
case MO_LEQ:
|
|
return ldq_le_p(haddr);
|
|
default:
|
|
qemu_build_not_reached();
|
|
}
|
|
}
|
|
|
|
static inline uint64_t QEMU_ALWAYS_INLINE
|
|
load_helper(CPUArchState *env, target_ulong addr, TCGMemOpIdx oi,
|
|
uintptr_t retaddr, MemOp op, bool code_read,
|
|
FullLoadHelper *full_load)
|
|
{
|
|
uintptr_t mmu_idx = get_mmuidx(oi);
|
|
uintptr_t index = tlb_index(env, mmu_idx, addr);
|
|
CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
|
|
target_ulong tlb_addr = code_read ? entry->addr_code : entry->addr_read;
|
|
const size_t tlb_off = code_read ?
|
|
offsetof(CPUTLBEntry, addr_code) : offsetof(CPUTLBEntry, addr_read);
|
|
const MMUAccessType access_type =
|
|
code_read ? MMU_INST_FETCH : MMU_DATA_LOAD;
|
|
unsigned a_bits = get_alignment_bits(get_memop(oi));
|
|
void *haddr;
|
|
uint64_t res;
|
|
size_t size = memop_size(op);
|
|
|
|
/* Handle CPU specific unaligned behaviour */
|
|
if (addr & ((1 << a_bits) - 1)) {
|
|
cpu_unaligned_access(env_cpu(env), addr, access_type,
|
|
mmu_idx, retaddr);
|
|
}
|
|
|
|
/* If the TLB entry is for a different page, reload and try again. */
|
|
if (!tlb_hit(tlb_addr, addr)) {
|
|
if (!victim_tlb_hit(env, mmu_idx, index, tlb_off,
|
|
addr & TARGET_PAGE_MASK)) {
|
|
tlb_fill(env_cpu(env), addr, size,
|
|
access_type, mmu_idx, retaddr);
|
|
index = tlb_index(env, mmu_idx, addr);
|
|
entry = tlb_entry(env, mmu_idx, addr);
|
|
}
|
|
tlb_addr = code_read ? entry->addr_code : entry->addr_read;
|
|
tlb_addr &= ~TLB_INVALID_MASK;
|
|
}
|
|
|
|
/* Handle anything that isn't just a straight memory access. */
|
|
if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
|
|
CPUIOTLBEntry *iotlbentry;
|
|
bool need_swap;
|
|
|
|
/* For anything that is unaligned, recurse through full_load. */
|
|
if ((addr & (size - 1)) != 0) {
|
|
goto do_unaligned_access;
|
|
}
|
|
|
|
iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index];
|
|
|
|
/* Handle watchpoints. */
|
|
if (unlikely(tlb_addr & TLB_WATCHPOINT)) {
|
|
/* On watchpoint hit, this will longjmp out. */
|
|
cpu_check_watchpoint(env_cpu(env), addr, size,
|
|
iotlbentry->attrs, BP_MEM_READ, retaddr);
|
|
}
|
|
|
|
need_swap = size > 1 && (tlb_addr & TLB_BSWAP);
|
|
|
|
/* Handle I/O access. */
|
|
if (likely(tlb_addr & TLB_MMIO)) {
|
|
return io_readx(env, iotlbentry, mmu_idx, addr, retaddr,
|
|
access_type, op ^ (need_swap * MO_BSWAP));
|
|
}
|
|
|
|
haddr = (void *)((uintptr_t)addr + entry->addend);
|
|
|
|
/*
|
|
* Keep these two load_memop separate to ensure that the compiler
|
|
* is able to fold the entire function to a single instruction.
|
|
* There is a build-time assert inside to remind you of this. ;-)
|
|
*/
|
|
if (unlikely(need_swap)) {
|
|
return load_memop(haddr, op ^ MO_BSWAP);
|
|
}
|
|
return load_memop(haddr, op);
|
|
}
|
|
|
|
/* Handle slow unaligned access (it spans two pages or IO). */
|
|
if (size > 1
|
|
&& unlikely((addr & ~TARGET_PAGE_MASK) + size - 1
|
|
>= TARGET_PAGE_SIZE)) {
|
|
target_ulong addr1, addr2;
|
|
uint64_t r1, r2;
|
|
unsigned shift;
|
|
do_unaligned_access:
|
|
addr1 = addr & ~((target_ulong)size - 1);
|
|
addr2 = addr1 + size;
|
|
r1 = full_load(env, addr1, oi, retaddr);
|
|
r2 = full_load(env, addr2, oi, retaddr);
|
|
shift = (addr & (size - 1)) * 8;
|
|
|
|
if (memop_big_endian(op)) {
|
|
/* Big-endian combine. */
|
|
res = (r1 << shift) | (r2 >> ((size * 8) - shift));
|
|
} else {
|
|
/* Little-endian combine. */
|
|
res = (r1 >> shift) | (r2 << ((size * 8) - shift));
|
|
}
|
|
return res & MAKE_64BIT_MASK(0, size * 8);
|
|
}
|
|
|
|
haddr = (void *)((uintptr_t)addr + entry->addend);
|
|
return load_memop(haddr, op);
|
|
}
|
|
|
|
/*
|
|
* For the benefit of TCG generated code, we want to avoid the
|
|
* complication of ABI-specific return type promotion and always
|
|
* return a value extended to the register size of the host. This is
|
|
* tcg_target_long, except in the case of a 32-bit host and 64-bit
|
|
* data, and for that we always have uint64_t.
|
|
*
|
|
* We don't bother with this widened value for SOFTMMU_CODE_ACCESS.
|
|
*/
|
|
|
|
static uint64_t full_ldub_mmu(CPUArchState *env, target_ulong addr,
|
|
TCGMemOpIdx oi, uintptr_t retaddr)
|
|
{
|
|
return load_helper(env, addr, oi, retaddr, MO_UB, false, full_ldub_mmu);
|
|
}
|
|
|
|
tcg_target_ulong helper_ret_ldub_mmu(CPUArchState *env, target_ulong addr,
|
|
TCGMemOpIdx oi, uintptr_t retaddr)
|
|
{
|
|
return full_ldub_mmu(env, addr, oi, retaddr);
|
|
}
|
|
|
|
static uint64_t full_le_lduw_mmu(CPUArchState *env, target_ulong addr,
|
|
TCGMemOpIdx oi, uintptr_t retaddr)
|
|
{
|
|
return load_helper(env, addr, oi, retaddr, MO_LEUW, false,
|
|
full_le_lduw_mmu);
|
|
}
|
|
|
|
tcg_target_ulong helper_le_lduw_mmu(CPUArchState *env, target_ulong addr,
|
|
TCGMemOpIdx oi, uintptr_t retaddr)
|
|
{
|
|
return full_le_lduw_mmu(env, addr, oi, retaddr);
|
|
}
|
|
|
|
static uint64_t full_be_lduw_mmu(CPUArchState *env, target_ulong addr,
|
|
TCGMemOpIdx oi, uintptr_t retaddr)
|
|
{
|
|
return load_helper(env, addr, oi, retaddr, MO_BEUW, false,
|
|
full_be_lduw_mmu);
|
|
}
|
|
|
|
tcg_target_ulong helper_be_lduw_mmu(CPUArchState *env, target_ulong addr,
|
|
TCGMemOpIdx oi, uintptr_t retaddr)
|
|
{
|
|
return full_be_lduw_mmu(env, addr, oi, retaddr);
|
|
}
|
|
|
|
static uint64_t full_le_ldul_mmu(CPUArchState *env, target_ulong addr,
|
|
TCGMemOpIdx oi, uintptr_t retaddr)
|
|
{
|
|
return load_helper(env, addr, oi, retaddr, MO_LEUL, false,
|
|
full_le_ldul_mmu);
|
|
}
|
|
|
|
tcg_target_ulong helper_le_ldul_mmu(CPUArchState *env, target_ulong addr,
|
|
TCGMemOpIdx oi, uintptr_t retaddr)
|
|
{
|
|
return full_le_ldul_mmu(env, addr, oi, retaddr);
|
|
}
|
|
|
|
static uint64_t full_be_ldul_mmu(CPUArchState *env, target_ulong addr,
|
|
TCGMemOpIdx oi, uintptr_t retaddr)
|
|
{
|
|
return load_helper(env, addr, oi, retaddr, MO_BEUL, false,
|
|
full_be_ldul_mmu);
|
|
}
|
|
|
|
tcg_target_ulong helper_be_ldul_mmu(CPUArchState *env, target_ulong addr,
|
|
TCGMemOpIdx oi, uintptr_t retaddr)
|
|
{
|
|
return full_be_ldul_mmu(env, addr, oi, retaddr);
|
|
}
|
|
|
|
uint64_t helper_le_ldq_mmu(CPUArchState *env, target_ulong addr,
|
|
TCGMemOpIdx oi, uintptr_t retaddr)
|
|
{
|
|
return load_helper(env, addr, oi, retaddr, MO_LEQ, false,
|
|
helper_le_ldq_mmu);
|
|
}
|
|
|
|
uint64_t helper_be_ldq_mmu(CPUArchState *env, target_ulong addr,
|
|
TCGMemOpIdx oi, uintptr_t retaddr)
|
|
{
|
|
return load_helper(env, addr, oi, retaddr, MO_BEQ, false,
|
|
helper_be_ldq_mmu);
|
|
}
|
|
|
|
/*
|
|
* Provide signed versions of the load routines as well. We can of course
|
|
* avoid this for 64-bit data, or for 32-bit data on 32-bit host.
|
|
*/
|
|
|
|
|
|
tcg_target_ulong helper_ret_ldsb_mmu(CPUArchState *env, target_ulong addr,
|
|
TCGMemOpIdx oi, uintptr_t retaddr)
|
|
{
|
|
return (int8_t)helper_ret_ldub_mmu(env, addr, oi, retaddr);
|
|
}
|
|
|
|
tcg_target_ulong helper_le_ldsw_mmu(CPUArchState *env, target_ulong addr,
|
|
TCGMemOpIdx oi, uintptr_t retaddr)
|
|
{
|
|
return (int16_t)helper_le_lduw_mmu(env, addr, oi, retaddr);
|
|
}
|
|
|
|
tcg_target_ulong helper_be_ldsw_mmu(CPUArchState *env, target_ulong addr,
|
|
TCGMemOpIdx oi, uintptr_t retaddr)
|
|
{
|
|
return (int16_t)helper_be_lduw_mmu(env, addr, oi, retaddr);
|
|
}
|
|
|
|
tcg_target_ulong helper_le_ldsl_mmu(CPUArchState *env, target_ulong addr,
|
|
TCGMemOpIdx oi, uintptr_t retaddr)
|
|
{
|
|
return (int32_t)helper_le_ldul_mmu(env, addr, oi, retaddr);
|
|
}
|
|
|
|
tcg_target_ulong helper_be_ldsl_mmu(CPUArchState *env, target_ulong addr,
|
|
TCGMemOpIdx oi, uintptr_t retaddr)
|
|
{
|
|
return (int32_t)helper_be_ldul_mmu(env, addr, oi, retaddr);
|
|
}
|
|
|
|
/*
|
|
* Store Helpers
|
|
*/
|
|
|
|
static inline void QEMU_ALWAYS_INLINE
|
|
store_memop(void *haddr, uint64_t val, MemOp op)
|
|
{
|
|
switch (op) {
|
|
case MO_UB:
|
|
stb_p(haddr, val);
|
|
break;
|
|
case MO_BEUW:
|
|
stw_be_p(haddr, val);
|
|
break;
|
|
case MO_LEUW:
|
|
stw_le_p(haddr, val);
|
|
break;
|
|
case MO_BEUL:
|
|
stl_be_p(haddr, val);
|
|
break;
|
|
case MO_LEUL:
|
|
stl_le_p(haddr, val);
|
|
break;
|
|
case MO_BEQ:
|
|
stq_be_p(haddr, val);
|
|
break;
|
|
case MO_LEQ:
|
|
stq_le_p(haddr, val);
|
|
break;
|
|
default:
|
|
qemu_build_not_reached();
|
|
}
|
|
}
|
|
|
|
static inline void QEMU_ALWAYS_INLINE
|
|
store_helper(CPUArchState *env, target_ulong addr, uint64_t val,
|
|
TCGMemOpIdx oi, uintptr_t retaddr, MemOp op)
|
|
{
|
|
uintptr_t mmu_idx = get_mmuidx(oi);
|
|
uintptr_t index = tlb_index(env, mmu_idx, addr);
|
|
CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
|
|
target_ulong tlb_addr = tlb_addr_write(entry);
|
|
const size_t tlb_off = offsetof(CPUTLBEntry, addr_write);
|
|
unsigned a_bits = get_alignment_bits(get_memop(oi));
|
|
void *haddr;
|
|
size_t size = memop_size(op);
|
|
|
|
/* Handle CPU specific unaligned behaviour */
|
|
if (addr & ((1 << a_bits) - 1)) {
|
|
cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE,
|
|
mmu_idx, retaddr);
|
|
}
|
|
|
|
/* If the TLB entry is for a different page, reload and try again. */
|
|
if (!tlb_hit(tlb_addr, addr)) {
|
|
if (!victim_tlb_hit(env, mmu_idx, index, tlb_off,
|
|
addr & TARGET_PAGE_MASK)) {
|
|
tlb_fill(env_cpu(env), addr, size, MMU_DATA_STORE,
|
|
mmu_idx, retaddr);
|
|
index = tlb_index(env, mmu_idx, addr);
|
|
entry = tlb_entry(env, mmu_idx, addr);
|
|
}
|
|
tlb_addr = tlb_addr_write(entry) & ~TLB_INVALID_MASK;
|
|
}
|
|
|
|
/* Handle anything that isn't just a straight memory access. */
|
|
if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
|
|
CPUIOTLBEntry *iotlbentry;
|
|
bool need_swap;
|
|
|
|
/* For anything that is unaligned, recurse through byte stores. */
|
|
if ((addr & (size - 1)) != 0) {
|
|
goto do_unaligned_access;
|
|
}
|
|
|
|
iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index];
|
|
|
|
/* Handle watchpoints. */
|
|
if (unlikely(tlb_addr & TLB_WATCHPOINT)) {
|
|
/* On watchpoint hit, this will longjmp out. */
|
|
cpu_check_watchpoint(env_cpu(env), addr, size,
|
|
iotlbentry->attrs, BP_MEM_WRITE, retaddr);
|
|
}
|
|
|
|
need_swap = size > 1 && (tlb_addr & TLB_BSWAP);
|
|
|
|
/* Handle I/O access. */
|
|
if (tlb_addr & TLB_MMIO) {
|
|
io_writex(env, iotlbentry, mmu_idx, val, addr, retaddr,
|
|
op ^ (need_swap * MO_BSWAP));
|
|
return;
|
|
}
|
|
|
|
/* Ignore writes to ROM. */
|
|
if (unlikely(tlb_addr & TLB_DISCARD_WRITE)) {
|
|
return;
|
|
}
|
|
|
|
/* Handle clean RAM pages. */
|
|
if (tlb_addr & TLB_NOTDIRTY) {
|
|
notdirty_write(env_cpu(env), addr, size, iotlbentry, retaddr);
|
|
}
|
|
|
|
haddr = (void *)((uintptr_t)addr + entry->addend);
|
|
|
|
/*
|
|
* Keep these two store_memop separate to ensure that the compiler
|
|
* is able to fold the entire function to a single instruction.
|
|
* There is a build-time assert inside to remind you of this. ;-)
|
|
*/
|
|
if (unlikely(need_swap)) {
|
|
store_memop(haddr, val, op ^ MO_BSWAP);
|
|
} else {
|
|
store_memop(haddr, val, op);
|
|
}
|
|
return;
|
|
}
|
|
|
|
/* Handle slow unaligned access (it spans two pages or IO). */
|
|
if (size > 1
|
|
&& unlikely((addr & ~TARGET_PAGE_MASK) + size - 1
|
|
>= TARGET_PAGE_SIZE)) {
|
|
int i;
|
|
uintptr_t index2;
|
|
CPUTLBEntry *entry2;
|
|
target_ulong page2, tlb_addr2;
|
|
size_t size2;
|
|
|
|
do_unaligned_access:
|
|
/*
|
|
* Ensure the second page is in the TLB. Note that the first page
|
|
* is already guaranteed to be filled, and that the second page
|
|
* cannot evict the first.
|
|
*/
|
|
page2 = (addr + size) & TARGET_PAGE_MASK;
|
|
size2 = (addr + size) & ~TARGET_PAGE_MASK;
|
|
index2 = tlb_index(env, mmu_idx, page2);
|
|
entry2 = tlb_entry(env, mmu_idx, page2);
|
|
tlb_addr2 = tlb_addr_write(entry2);
|
|
if (!tlb_hit_page(tlb_addr2, page2)) {
|
|
if (!victim_tlb_hit(env, mmu_idx, index2, tlb_off, page2)) {
|
|
tlb_fill(env_cpu(env), page2, size2, MMU_DATA_STORE,
|
|
mmu_idx, retaddr);
|
|
index2 = tlb_index(env, mmu_idx, page2);
|
|
entry2 = tlb_entry(env, mmu_idx, page2);
|
|
}
|
|
tlb_addr2 = tlb_addr_write(entry2);
|
|
}
|
|
|
|
/*
|
|
* Handle watchpoints. Since this may trap, all checks
|
|
* must happen before any store.
|
|
*/
|
|
if (unlikely(tlb_addr & TLB_WATCHPOINT)) {
|
|
cpu_check_watchpoint(env_cpu(env), addr, size - size2,
|
|
env_tlb(env)->d[mmu_idx].iotlb[index].attrs,
|
|
BP_MEM_WRITE, retaddr);
|
|
}
|
|
if (unlikely(tlb_addr2 & TLB_WATCHPOINT)) {
|
|
cpu_check_watchpoint(env_cpu(env), page2, size2,
|
|
env_tlb(env)->d[mmu_idx].iotlb[index2].attrs,
|
|
BP_MEM_WRITE, retaddr);
|
|
}
|
|
|
|
/*
|
|
* XXX: not efficient, but simple.
|
|
* This loop must go in the forward direction to avoid issues
|
|
* with self-modifying code in Windows 64-bit.
|
|
*/
|
|
for (i = 0; i < size; ++i) {
|
|
uint8_t val8;
|
|
if (memop_big_endian(op)) {
|
|
/* Big-endian extract. */
|
|
val8 = val >> (((size - 1) * 8) - (i * 8));
|
|
} else {
|
|
/* Little-endian extract. */
|
|
val8 = val >> (i * 8);
|
|
}
|
|
helper_ret_stb_mmu(env, addr + i, val8, oi, retaddr);
|
|
}
|
|
return;
|
|
}
|
|
|
|
haddr = (void *)((uintptr_t)addr + entry->addend);
|
|
store_memop(haddr, val, op);
|
|
}
|
|
|
|
void helper_ret_stb_mmu(CPUArchState *env, target_ulong addr, uint8_t val,
|
|
TCGMemOpIdx oi, uintptr_t retaddr)
|
|
{
|
|
store_helper(env, addr, val, oi, retaddr, MO_UB);
|
|
}
|
|
|
|
void helper_le_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val,
|
|
TCGMemOpIdx oi, uintptr_t retaddr)
|
|
{
|
|
store_helper(env, addr, val, oi, retaddr, MO_LEUW);
|
|
}
|
|
|
|
void helper_be_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val,
|
|
TCGMemOpIdx oi, uintptr_t retaddr)
|
|
{
|
|
store_helper(env, addr, val, oi, retaddr, MO_BEUW);
|
|
}
|
|
|
|
void helper_le_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
|
|
TCGMemOpIdx oi, uintptr_t retaddr)
|
|
{
|
|
store_helper(env, addr, val, oi, retaddr, MO_LEUL);
|
|
}
|
|
|
|
void helper_be_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
|
|
TCGMemOpIdx oi, uintptr_t retaddr)
|
|
{
|
|
store_helper(env, addr, val, oi, retaddr, MO_BEUL);
|
|
}
|
|
|
|
void helper_le_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
|
|
TCGMemOpIdx oi, uintptr_t retaddr)
|
|
{
|
|
store_helper(env, addr, val, oi, retaddr, MO_LEQ);
|
|
}
|
|
|
|
void helper_be_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
|
|
TCGMemOpIdx oi, uintptr_t retaddr)
|
|
{
|
|
store_helper(env, addr, val, oi, retaddr, MO_BEQ);
|
|
}
|
|
|
|
/* First set of helpers allows passing in of OI and RETADDR. This makes
|
|
them callable from other helpers. */
|
|
|
|
#define EXTRA_ARGS , TCGMemOpIdx oi, uintptr_t retaddr
|
|
#define ATOMIC_NAME(X) \
|
|
HELPER(glue(glue(glue(atomic_ ## X, SUFFIX), END), _mmu))
|
|
#define ATOMIC_MMU_DECLS
|
|
#define ATOMIC_MMU_LOOKUP atomic_mmu_lookup(env, addr, oi, retaddr)
|
|
#define ATOMIC_MMU_CLEANUP
|
|
#define ATOMIC_MMU_IDX get_mmuidx(oi)
|
|
|
|
#include "atomic_common.inc.c"
|
|
|
|
#define DATA_SIZE 1
|
|
#include "atomic_template.h"
|
|
|
|
#define DATA_SIZE 2
|
|
#include "atomic_template.h"
|
|
|
|
#define DATA_SIZE 4
|
|
#include "atomic_template.h"
|
|
|
|
#ifdef CONFIG_ATOMIC64
|
|
#define DATA_SIZE 8
|
|
#include "atomic_template.h"
|
|
#endif
|
|
|
|
#if HAVE_CMPXCHG128 || HAVE_ATOMIC128
|
|
#define DATA_SIZE 16
|
|
#include "atomic_template.h"
|
|
#endif
|
|
|
|
/* Second set of helpers are directly callable from TCG as helpers. */
|
|
|
|
#undef EXTRA_ARGS
|
|
#undef ATOMIC_NAME
|
|
#undef ATOMIC_MMU_LOOKUP
|
|
#define EXTRA_ARGS , TCGMemOpIdx oi
|
|
#define ATOMIC_NAME(X) HELPER(glue(glue(atomic_ ## X, SUFFIX), END))
|
|
#define ATOMIC_MMU_LOOKUP atomic_mmu_lookup(env, addr, oi, GETPC())
|
|
|
|
#define DATA_SIZE 1
|
|
#include "atomic_template.h"
|
|
|
|
#define DATA_SIZE 2
|
|
#include "atomic_template.h"
|
|
|
|
#define DATA_SIZE 4
|
|
#include "atomic_template.h"
|
|
|
|
#ifdef CONFIG_ATOMIC64
|
|
#define DATA_SIZE 8
|
|
#include "atomic_template.h"
|
|
#endif
|
|
#undef ATOMIC_MMU_IDX
|
|
|
|
/* Code access functions. */
|
|
|
|
static uint64_t full_ldub_cmmu(CPUArchState *env, target_ulong addr,
|
|
TCGMemOpIdx oi, uintptr_t retaddr)
|
|
{
|
|
return load_helper(env, addr, oi, retaddr, MO_8, true, full_ldub_cmmu);
|
|
}
|
|
|
|
uint8_t helper_ret_ldub_cmmu(CPUArchState *env, target_ulong addr,
|
|
TCGMemOpIdx oi, uintptr_t retaddr)
|
|
{
|
|
return full_ldub_cmmu(env, addr, oi, retaddr);
|
|
}
|
|
|
|
int8_t helper_ret_ldsb_cmmu(CPUArchState *env, target_ulong addr,
|
|
TCGMemOpIdx oi, uintptr_t retaddr)
|
|
{
|
|
return (int8_t) full_ldub_cmmu(env, addr, oi, retaddr);
|
|
}
|
|
|
|
static uint64_t full_le_lduw_cmmu(CPUArchState *env, target_ulong addr,
|
|
TCGMemOpIdx oi, uintptr_t retaddr)
|
|
{
|
|
return load_helper(env, addr, oi, retaddr, MO_LEUW, true,
|
|
full_le_lduw_cmmu);
|
|
}
|
|
|
|
uint16_t helper_le_lduw_cmmu(CPUArchState *env, target_ulong addr,
|
|
TCGMemOpIdx oi, uintptr_t retaddr)
|
|
{
|
|
return full_le_lduw_cmmu(env, addr, oi, retaddr);
|
|
}
|
|
|
|
int16_t helper_le_ldsw_cmmu(CPUArchState *env, target_ulong addr,
|
|
TCGMemOpIdx oi, uintptr_t retaddr)
|
|
{
|
|
return (int16_t) full_le_lduw_cmmu(env, addr, oi, retaddr);
|
|
}
|
|
|
|
static uint64_t full_be_lduw_cmmu(CPUArchState *env, target_ulong addr,
|
|
TCGMemOpIdx oi, uintptr_t retaddr)
|
|
{
|
|
return load_helper(env, addr, oi, retaddr, MO_BEUW, true,
|
|
full_be_lduw_cmmu);
|
|
}
|
|
|
|
uint16_t helper_be_lduw_cmmu(CPUArchState *env, target_ulong addr,
|
|
TCGMemOpIdx oi, uintptr_t retaddr)
|
|
{
|
|
return full_be_lduw_cmmu(env, addr, oi, retaddr);
|
|
}
|
|
|
|
int16_t helper_be_ldsw_cmmu(CPUArchState *env, target_ulong addr,
|
|
TCGMemOpIdx oi, uintptr_t retaddr)
|
|
{
|
|
return (int16_t) full_be_lduw_cmmu(env, addr, oi, retaddr);
|
|
}
|
|
|
|
static uint64_t full_le_ldul_cmmu(CPUArchState *env, target_ulong addr,
|
|
TCGMemOpIdx oi, uintptr_t retaddr)
|
|
{
|
|
return load_helper(env, addr, oi, retaddr, MO_LEUL, true,
|
|
full_le_ldul_cmmu);
|
|
}
|
|
|
|
uint32_t helper_le_ldl_cmmu(CPUArchState *env, target_ulong addr,
|
|
TCGMemOpIdx oi, uintptr_t retaddr)
|
|
{
|
|
return full_le_ldul_cmmu(env, addr, oi, retaddr);
|
|
}
|
|
|
|
static uint64_t full_be_ldul_cmmu(CPUArchState *env, target_ulong addr,
|
|
TCGMemOpIdx oi, uintptr_t retaddr)
|
|
{
|
|
return load_helper(env, addr, oi, retaddr, MO_BEUL, true,
|
|
full_be_ldul_cmmu);
|
|
}
|
|
|
|
uint32_t helper_be_ldl_cmmu(CPUArchState *env, target_ulong addr,
|
|
TCGMemOpIdx oi, uintptr_t retaddr)
|
|
{
|
|
return full_be_ldul_cmmu(env, addr, oi, retaddr);
|
|
}
|
|
|
|
uint64_t helper_le_ldq_cmmu(CPUArchState *env, target_ulong addr,
|
|
TCGMemOpIdx oi, uintptr_t retaddr)
|
|
{
|
|
return load_helper(env, addr, oi, retaddr, MO_LEQ, true,
|
|
helper_le_ldq_cmmu);
|
|
}
|
|
|
|
uint64_t helper_be_ldq_cmmu(CPUArchState *env, target_ulong addr,
|
|
TCGMemOpIdx oi, uintptr_t retaddr)
|
|
{
|
|
return load_helper(env, addr, oi, retaddr, MO_BEQ, true,
|
|
helper_be_ldq_cmmu);
|
|
}
|