qemu/target/hexagon/imported/float.idef
Taylor Simpson dd8705bdf5 Hexagon (target/hexagon) add F2_sfinvsqrta
Rd32,Pe4 = sfinvsqrta(Rs32)
    Square root approx

The helper packs the 2 32-bit results into a 64-bit value,
and the fGEN_TCG override unpacks them into the proper results.

Test cases in tests/tcg/hexagon/multi_result.c
FP exception tests added to tests/tcg/hexagon/fpstuff.c

Signed-off-by: Taylor Simpson <tsimpson@quicinc.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <1617930474-31979-19-git-send-email-tsimpson@quicinc.com>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
2021-05-01 08:31:43 -07:00

345 lines
12 KiB
Plaintext

/*
* Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
/*
* Floating-Point Instructions
*/
/*************************************/
/* Scalar FP */
/*************************************/
Q6INSN(F2_sfadd,"Rd32=sfadd(Rs32,Rt32)",ATTRIBS(),
"Floating-Point Add",
{ RdV=fUNFLOAT(fFLOAT(RsV)+fFLOAT(RtV));})
Q6INSN(F2_sfsub,"Rd32=sfsub(Rs32,Rt32)",ATTRIBS(),
"Floating-Point Subtract",
{ RdV=fUNFLOAT(fFLOAT(RsV)-fFLOAT(RtV));})
Q6INSN(F2_sfmpy,"Rd32=sfmpy(Rs32,Rt32)",ATTRIBS(),
"Floating-Point Multiply",
{ RdV=fUNFLOAT(fSFMPY(fFLOAT(RsV),fFLOAT(RtV)));})
Q6INSN(F2_sffma,"Rx32+=sfmpy(Rs32,Rt32)",ATTRIBS(),
"Floating-Point Fused Multiply Add",
{ RxV=fUNFLOAT(fFMAF(fFLOAT(RsV),fFLOAT(RtV),fFLOAT(RxV)));})
Q6INSN(F2_sffma_sc,"Rx32+=sfmpy(Rs32,Rt32,Pu4):scale",ATTRIBS(),
"Floating-Point Fused Multiply Add w/ Additional Scaling (2**Pu)",
{
fHIDE(size4s_t tmp;)
fCHECKSFNAN3(RxV,RxV,RsV,RtV);
tmp=fUNFLOAT(fFMAFX(fFLOAT(RsV),fFLOAT(RtV),fFLOAT(RxV),PuV));
if (!((fFLOAT(RxV) == 0.0) && fISZEROPROD(fFLOAT(RsV),fFLOAT(RtV)))) RxV = tmp;
})
Q6INSN(F2_sffms,"Rx32-=sfmpy(Rs32,Rt32)",ATTRIBS(),
"Floating-Point Fused Multiply Add",
{ RxV=fUNFLOAT(fFMAF(-fFLOAT(RsV),fFLOAT(RtV),fFLOAT(RxV))); })
Q6INSN(F2_sffma_lib,"Rx32+=sfmpy(Rs32,Rt32):lib",ATTRIBS(),
"Floating-Point Fused Multiply Add for Library Routines",
{ fFPSETROUND_NEAREST(); fHIDE(int infinp; int infminusinf; size4s_t tmp;)
infminusinf = ((isinf(fFLOAT(RxV))) &&
(fISINFPROD(fFLOAT(RsV),fFLOAT(RtV))) &&
(fGETBIT(31,RsV ^ RxV ^ RtV) != 0));
infinp = (isinf(fFLOAT(RxV))) || (isinf(fFLOAT(RtV))) || (isinf(fFLOAT(RsV)));
fCHECKSFNAN3(RxV,RxV,RsV,RtV);
tmp=fUNFLOAT(fFMAF(fFLOAT(RsV),fFLOAT(RtV),fFLOAT(RxV)));
if (!((fFLOAT(RxV) == 0.0) && fISZEROPROD(fFLOAT(RsV),fFLOAT(RtV)))) RxV = tmp;
fFPCANCELFLAGS();
if (isinf(fFLOAT(RxV)) && !infinp) RxV = RxV - 1;
if (infminusinf) RxV = 0;
})
Q6INSN(F2_sffms_lib,"Rx32-=sfmpy(Rs32,Rt32):lib",ATTRIBS(),
"Floating-Point Fused Multiply Add for Library Routines",
{ fFPSETROUND_NEAREST(); fHIDE(int infinp; int infminusinf; size4s_t tmp;)
infminusinf = ((isinf(fFLOAT(RxV))) &&
(fISINFPROD(fFLOAT(RsV),fFLOAT(RtV))) &&
(fGETBIT(31,RsV ^ RxV ^ RtV) == 0));
infinp = (isinf(fFLOAT(RxV))) || (isinf(fFLOAT(RtV))) || (isinf(fFLOAT(RsV)));
fCHECKSFNAN3(RxV,RxV,RsV,RtV);
tmp=fUNFLOAT(fFMAF(-fFLOAT(RsV),fFLOAT(RtV),fFLOAT(RxV)));
if (!((fFLOAT(RxV) == 0.0) && fISZEROPROD(fFLOAT(RsV),fFLOAT(RtV)))) RxV = tmp;
fFPCANCELFLAGS();
if (isinf(fFLOAT(RxV)) && !infinp) RxV = RxV - 1;
if (infminusinf) RxV = 0;
})
Q6INSN(F2_sfcmpeq,"Pd4=sfcmp.eq(Rs32,Rt32)",ATTRIBS(),
"Floating Point Compare for Equal",
{PdV=f8BITSOF(fFLOAT(RsV)==fFLOAT(RtV));})
Q6INSN(F2_sfcmpgt,"Pd4=sfcmp.gt(Rs32,Rt32)",ATTRIBS(),
"Floating-Point Compare for Greater Than",
{PdV=f8BITSOF(fFLOAT(RsV)>fFLOAT(RtV));})
/* cmpge is not the same as !cmpgt(swapops) in IEEE */
Q6INSN(F2_sfcmpge,"Pd4=sfcmp.ge(Rs32,Rt32)",ATTRIBS(),
"Floating-Point Compare for Greater Than / Equal To",
{PdV=f8BITSOF(fFLOAT(RsV)>=fFLOAT(RtV));})
/* Everyone seems to have this... */
Q6INSN(F2_sfcmpuo,"Pd4=sfcmp.uo(Rs32,Rt32)",ATTRIBS(),
"Floating-Point Compare for Unordered",
{PdV=f8BITSOF(isunordered(fFLOAT(RsV),fFLOAT(RtV)));})
Q6INSN(F2_sfmax,"Rd32=sfmax(Rs32,Rt32)",ATTRIBS(),
"Maximum of Floating-Point values",
{ RdV = fUNFLOAT(fSF_MAX(fFLOAT(RsV),fFLOAT(RtV))); })
Q6INSN(F2_sfmin,"Rd32=sfmin(Rs32,Rt32)",ATTRIBS(),
"Minimum of Floating-Point values",
{ RdV = fUNFLOAT(fSF_MIN(fFLOAT(RsV),fFLOAT(RtV))); })
Q6INSN(F2_sfclass,"Pd4=sfclass(Rs32,#u5)",ATTRIBS(),
"Classify Floating-Point Value",
{
fHIDE(int class;)
PdV = 0;
class = fpclassify(fFLOAT(RsV));
/* Is the value zero? */
if (fGETBIT(0,uiV) && (class == FP_ZERO)) PdV = 0xff;
if (fGETBIT(1,uiV) && (class == FP_NORMAL)) PdV = 0xff;
if (fGETBIT(2,uiV) && (class == FP_SUBNORMAL)) PdV = 0xff;
if (fGETBIT(3,uiV) && (class == FP_INFINITE)) PdV = 0xff;
if (fGETBIT(4,uiV) && (class == FP_NAN)) PdV = 0xff;
fFPCANCELFLAGS();
})
/* Range: +/- (1.0 .. 1+(63/64)) * 2**(-6 .. +9) */
/* More immediate bits should probably be used for more precision? */
Q6INSN(F2_sfimm_p,"Rd32=sfmake(#u10):pos",ATTRIBS(),
"Make Floating Point Value",
{
RdV = (127 - 6) << 23;
RdV += uiV << 17;
})
Q6INSN(F2_sfimm_n,"Rd32=sfmake(#u10):neg",ATTRIBS(),
"Make Floating Point Value",
{
RdV = (127 - 6) << 23;
RdV += (uiV << 17);
RdV |= (1 << 31);
})
Q6INSN(F2_sfrecipa,"Rd32,Pe4=sfrecipa(Rs32,Rt32)",ATTRIBS(),
"Reciprocal Approximation for Division",
{
fHIDE(int idx;)
fHIDE(int adjust;)
fHIDE(int mant;)
fHIDE(int exp;)
if (fSF_RECIP_COMMON(RsV,RtV,RdV,adjust)) {
PeV = adjust;
idx = (RtV >> 16) & 0x7f;
mant = (fSF_RECIP_LOOKUP(idx) << 15) | 1;
exp = fSF_BIAS() - (fSF_GETEXP(RtV) - fSF_BIAS()) - 1;
RdV = fMAKESF(fGETBIT(31,RtV),exp,mant);
}
})
Q6INSN(F2_sffixupn,"Rd32=sffixupn(Rs32,Rt32)",ATTRIBS(),
"Fix Up Numerator",
{
fHIDE(int adjust;)
fSF_RECIP_COMMON(RsV,RtV,RdV,adjust);
RdV = RsV;
})
Q6INSN(F2_sffixupd,"Rd32=sffixupd(Rs32,Rt32)",ATTRIBS(),
"Fix Up Denominator",
{
fHIDE(int adjust;)
fSF_RECIP_COMMON(RsV,RtV,RdV,adjust);
RdV = RtV;
})
Q6INSN(F2_sfinvsqrta,"Rd32,Pe4=sfinvsqrta(Rs32)",ATTRIBS(),
"Reciprocal Square Root Approximation",
{
fHIDE(int idx;)
fHIDE(int adjust;)
fHIDE(int mant;)
fHIDE(int exp;)
if (fSF_INVSQRT_COMMON(RsV,RdV,adjust)) {
PeV = adjust;
idx = (RsV >> 17) & 0x7f;
mant = (fSF_INVSQRT_LOOKUP(idx) << 15);
exp = fSF_BIAS() - ((fSF_GETEXP(RsV) - fSF_BIAS()) >> 1) - 1;
RdV = fMAKESF(fGETBIT(31,RsV),exp,mant);
}
})
Q6INSN(F2_sffixupr,"Rd32=sffixupr(Rs32)",ATTRIBS(),
"Fix Up Radicand",
{
fHIDE(int adjust;)
fSF_INVSQRT_COMMON(RsV,RdV,adjust);
RdV = RsV;
})
/*************************************/
/* Scalar DP */
/*************************************/
Q6INSN(F2_dfadd,"Rdd32=dfadd(Rss32,Rtt32)",ATTRIBS(),
"Floating-Point Add",
{ RddV=fUNDOUBLE(fDOUBLE(RssV)+fDOUBLE(RttV));})
Q6INSN(F2_dfsub,"Rdd32=dfsub(Rss32,Rtt32)",ATTRIBS(),
"Floating-Point Subtract",
{ RddV=fUNDOUBLE(fDOUBLE(RssV)-fDOUBLE(RttV));})
Q6INSN(F2_dfmax,"Rdd32=dfmax(Rss32,Rtt32)",ATTRIBS(),
"Maximum of Floating-Point values",
{ RddV = fUNDOUBLE(fDF_MAX(fDOUBLE(RssV),fDOUBLE(RttV))); })
Q6INSN(F2_dfmin,"Rdd32=dfmin(Rss32,Rtt32)",ATTRIBS(),
"Minimum of Floating-Point values",
{ RddV = fUNDOUBLE(fDF_MIN(fDOUBLE(RssV),fDOUBLE(RttV))); })
Q6INSN(F2_dfmpyfix,"Rdd32=dfmpyfix(Rss32,Rtt32)",ATTRIBS(),
"Fix Up Multiplicand for Multiplication",
{
if (fDF_ISDENORM(RssV) && fDF_ISBIG(RttV) && fDF_ISNORMAL(RttV)) RddV = fUNDOUBLE(fDOUBLE(RssV) * 0x1.0p52);
else if (fDF_ISDENORM(RttV) && fDF_ISBIG(RssV) && fDF_ISNORMAL(RssV)) RddV = fUNDOUBLE(fDOUBLE(RssV) * 0x1.0p-52);
else RddV = RssV;
})
Q6INSN(F2_dfmpyll,"Rdd32=dfmpyll(Rss32,Rtt32)",ATTRIBS(),
"Multiply low*low and shift off low 32 bits into sticky (in MSB)",
{
fHIDE(size8u_t prod;)
prod = fMPY32UU(fGETUWORD(0,RssV),fGETUWORD(0,RttV));
RddV = (prod >> 32) << 1;
if (fGETUWORD(0,prod) != 0) fSETBIT(0,RddV,1);
})
Q6INSN(F2_dfmpylh,"Rxx32+=dfmpylh(Rss32,Rtt32)",ATTRIBS(),
"Multiply low*high and accumulate",
{
RxxV += (fGETUWORD(0,RssV) * (0x00100000 | fZXTN(20,64,fGETUWORD(1,RttV)))) << 1;
})
Q6INSN(F2_dfmpyhh,"Rxx32+=dfmpyhh(Rss32,Rtt32)",ATTRIBS(),
"Multiply high*high and accumulate with L*H value",
{
RxxV = fUNDOUBLE(fDF_MPY_HH(fDOUBLE(RssV),fDOUBLE(RttV),RxxV));
})
Q6INSN(F2_dfcmpeq,"Pd4=dfcmp.eq(Rss32,Rtt32)",ATTRIBS(),
"Floating Point Compare for Equal",
{PdV=f8BITSOF(fDOUBLE(RssV)==fDOUBLE(RttV));})
Q6INSN(F2_dfcmpgt,"Pd4=dfcmp.gt(Rss32,Rtt32)",ATTRIBS(),
"Floating-Point Compare for Greater Than",
{PdV=f8BITSOF(fDOUBLE(RssV)>fDOUBLE(RttV));})
/* cmpge is not the same as !cmpgt(swapops) in IEEE */
Q6INSN(F2_dfcmpge,"Pd4=dfcmp.ge(Rss32,Rtt32)",ATTRIBS(),
"Floating-Point Compare for Greater Than / Equal To",
{PdV=f8BITSOF(fDOUBLE(RssV)>=fDOUBLE(RttV));})
/* Everyone seems to have this... */
Q6INSN(F2_dfcmpuo,"Pd4=dfcmp.uo(Rss32,Rtt32)",ATTRIBS(),
"Floating-Point Compare for Unordered",
{PdV=f8BITSOF(isunordered(fDOUBLE(RssV),fDOUBLE(RttV)));})
Q6INSN(F2_dfclass,"Pd4=dfclass(Rss32,#u5)",ATTRIBS(),
"Classify Floating-Point Value",
{
fHIDE(int class;)
PdV = 0;
class = fpclassify(fDOUBLE(RssV));
/* Is the value zero? */
if (fGETBIT(0,uiV) && (class == FP_ZERO)) PdV = 0xff;
if (fGETBIT(1,uiV) && (class == FP_NORMAL)) PdV = 0xff;
if (fGETBIT(2,uiV) && (class == FP_SUBNORMAL)) PdV = 0xff;
if (fGETBIT(3,uiV) && (class == FP_INFINITE)) PdV = 0xff;
if (fGETBIT(4,uiV) && (class == FP_NAN)) PdV = 0xff;
fFPCANCELFLAGS();
})
/* Range: +/- (1.0 .. 1+(63/64)) * 2**(-6 .. +9) */
/* More immediate bits should probably be used for more precision? */
Q6INSN(F2_dfimm_p,"Rdd32=dfmake(#u10):pos",ATTRIBS(),
"Make Floating Point Value",
{
RddV = (1023ULL - 6) << 52;
RddV += (fHIDE((size8u_t))uiV) << 46;
})
Q6INSN(F2_dfimm_n,"Rdd32=dfmake(#u10):neg",ATTRIBS(),
"Make Floating Point Value",
{
RddV = (1023ULL - 6) << 52;
RddV += (fHIDE((size8u_t))uiV) << 46;
RddV |= ((1ULL) << 63);
})
/* CONVERSION */
#define CONVERT(TAG,DEST,DESTV,SRC,SRCV,OUTCAST,OUTTYPE,INCAST,INTYPE,MODETAG,MODESYN,MODEBEH) \
Q6INSN(F2_conv_##TAG##MODETAG,#DEST"=convert_"#TAG"("#SRC")"#MODESYN,ATTRIBS(), \
"Floating point format conversion", \
{ MODEBEH DESTV = OUTCAST(conv_##INTYPE##_to_##OUTTYPE(INCAST(SRCV))); })
CONVERT(sf2df,Rdd32,RddV,Rs32,RsV,fUNDOUBLE,df,fFLOAT,sf,,,)
CONVERT(df2sf,Rd32,RdV,Rss32,RssV,fUNFLOAT,sf,fDOUBLE,df,,,)
#define ALLINTDST(TAGSTART,SRC,SRCV,INCAST,INTYPE,MODETAG,MODESYN,MODEBEH) \
CONVERT(TAGSTART##uw,Rd32,RdV,SRC,SRCV,fCAST4u,4u,INCAST,INTYPE,MODETAG,MODESYN,MODEBEH) \
CONVERT(TAGSTART##w,Rd32,RdV,SRC,SRCV,fCAST4s,4s,INCAST,INTYPE,MODETAG,MODESYN,MODEBEH) \
CONVERT(TAGSTART##ud,Rdd32,RddV,SRC,SRCV,fCAST8u,8u,INCAST,INTYPE,MODETAG,MODESYN,MODEBEH) \
CONVERT(TAGSTART##d,Rdd32,RddV,SRC,SRCV,fCAST8s,8s,INCAST,INTYPE,MODETAG,MODESYN,MODEBEH)
#define ALLFPDST(TAGSTART,SRC,SRCV,INCAST,INTYPE,MODETAG,MODESYN,MODEBEH) \
CONVERT(TAGSTART##sf,Rd32,RdV,SRC,SRCV,fUNFLOAT,sf,INCAST,INTYPE,MODETAG,MODESYN,MODEBEH) \
CONVERT(TAGSTART##df,Rdd32,RddV,SRC,SRCV,fUNDOUBLE,df,INCAST,INTYPE,MODETAG,MODESYN,MODEBEH)
#define ALLINTSRC(GEN,MODETAG,MODESYN,MODEBEH) \
GEN(uw##2,Rs32,RsV,fCAST4u,4u,MODETAG,MODESYN,MODEBEH) \
GEN(w##2,Rs32,RsV,fCAST4s,4s,MODETAG,MODESYN,MODEBEH) \
GEN(ud##2,Rss32,RssV,fCAST8u,8u,MODETAG,MODESYN,MODEBEH) \
GEN(d##2,Rss32,RssV,fCAST8s,8s,MODETAG,MODESYN,MODEBEH)
#define ALLFPSRC(GEN,MODETAG,MODESYN,MODEBEH) \
GEN(sf##2,Rs32,RsV,fFLOAT,sf,MODETAG,MODESYN,MODEBEH) \
GEN(df##2,Rss32,RssV,fDOUBLE,df,MODETAG,MODESYN,MODEBEH)
ALLINTSRC(ALLFPDST,,,)
ALLFPSRC(ALLINTDST,,,)
ALLFPSRC(ALLINTDST,_chop,:chop,fFPSETROUND_CHOP();)