qemu/target/m68k/op_helper.c
Emilio G. Cota f0ddf11b23 target/m68k: check CF_PARALLEL instead of parallel_cpus
Thereby decoupling the resulting translated code from the current state
of the system.

Reviewed-by: Richard Henderson <rth@twiddle.net>
Signed-off-by: Emilio G. Cota <cota@braap.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
2017-10-24 13:53:41 -07:00

685 lines
18 KiB
C

/*
* M68K helper routines
*
* Copyright (c) 2007 CodeSourcery
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "cpu.h"
#include "exec/helper-proto.h"
#include "exec/exec-all.h"
#include "exec/cpu_ldst.h"
#include "exec/semihost.h"
#if defined(CONFIG_USER_ONLY)
void m68k_cpu_do_interrupt(CPUState *cs)
{
cs->exception_index = -1;
}
static inline void do_interrupt_m68k_hardirq(CPUM68KState *env)
{
}
#else
/* Try to fill the TLB and return an exception if error. If retaddr is
NULL, it means that the function was called in C code (i.e. not
from generated code or from helper.c) */
void tlb_fill(CPUState *cs, target_ulong addr, MMUAccessType access_type,
int mmu_idx, uintptr_t retaddr)
{
int ret;
ret = m68k_cpu_handle_mmu_fault(cs, addr, access_type, mmu_idx);
if (unlikely(ret)) {
if (retaddr) {
/* now we have a real cpu fault */
cpu_restore_state(cs, retaddr);
}
cpu_loop_exit(cs);
}
}
static void do_rte(CPUM68KState *env)
{
uint32_t sp;
uint32_t fmt;
sp = env->aregs[7];
fmt = cpu_ldl_kernel(env, sp);
env->pc = cpu_ldl_kernel(env, sp + 4);
sp |= (fmt >> 28) & 3;
env->aregs[7] = sp + 8;
helper_set_sr(env, fmt);
}
static void do_interrupt_all(CPUM68KState *env, int is_hw)
{
CPUState *cs = CPU(m68k_env_get_cpu(env));
uint32_t sp;
uint32_t fmt;
uint32_t retaddr;
uint32_t vector;
fmt = 0;
retaddr = env->pc;
if (!is_hw) {
switch (cs->exception_index) {
case EXCP_RTE:
/* Return from an exception. */
do_rte(env);
return;
case EXCP_HALT_INSN:
if (semihosting_enabled()
&& (env->sr & SR_S) != 0
&& (env->pc & 3) == 0
&& cpu_lduw_code(env, env->pc - 4) == 0x4e71
&& cpu_ldl_code(env, env->pc) == 0x4e7bf000) {
env->pc += 4;
do_m68k_semihosting(env, env->dregs[0]);
return;
}
cs->halted = 1;
cs->exception_index = EXCP_HLT;
cpu_loop_exit(cs);
return;
}
if (cs->exception_index >= EXCP_TRAP0
&& cs->exception_index <= EXCP_TRAP15) {
/* Move the PC after the trap instruction. */
retaddr += 2;
}
}
vector = cs->exception_index << 2;
fmt |= 0x40000000;
fmt |= vector << 16;
fmt |= env->sr;
fmt |= cpu_m68k_get_ccr(env);
env->sr |= SR_S;
if (is_hw) {
env->sr = (env->sr & ~SR_I) | (env->pending_level << SR_I_SHIFT);
env->sr &= ~SR_M;
}
m68k_switch_sp(env);
sp = env->aregs[7];
fmt |= (sp & 3) << 28;
/* ??? This could cause MMU faults. */
sp &= ~3;
sp -= 4;
cpu_stl_kernel(env, sp, retaddr);
sp -= 4;
cpu_stl_kernel(env, sp, fmt);
env->aregs[7] = sp;
/* Jump to vector. */
env->pc = cpu_ldl_kernel(env, env->vbr + vector);
}
void m68k_cpu_do_interrupt(CPUState *cs)
{
M68kCPU *cpu = M68K_CPU(cs);
CPUM68KState *env = &cpu->env;
do_interrupt_all(env, 0);
}
static inline void do_interrupt_m68k_hardirq(CPUM68KState *env)
{
do_interrupt_all(env, 1);
}
#endif
bool m68k_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
{
M68kCPU *cpu = M68K_CPU(cs);
CPUM68KState *env = &cpu->env;
if (interrupt_request & CPU_INTERRUPT_HARD
&& ((env->sr & SR_I) >> SR_I_SHIFT) < env->pending_level) {
/* Real hardware gets the interrupt vector via an IACK cycle
at this point. Current emulated hardware doesn't rely on
this, so we provide/save the vector when the interrupt is
first signalled. */
cs->exception_index = env->pending_vector;
do_interrupt_m68k_hardirq(env);
return true;
}
return false;
}
static void raise_exception_ra(CPUM68KState *env, int tt, uintptr_t raddr)
{
CPUState *cs = CPU(m68k_env_get_cpu(env));
cs->exception_index = tt;
cpu_loop_exit_restore(cs, raddr);
}
static void raise_exception(CPUM68KState *env, int tt)
{
raise_exception_ra(env, tt, 0);
}
void HELPER(raise_exception)(CPUM68KState *env, uint32_t tt)
{
raise_exception(env, tt);
}
void HELPER(divuw)(CPUM68KState *env, int destr, uint32_t den)
{
uint32_t num = env->dregs[destr];
uint32_t quot, rem;
if (den == 0) {
raise_exception_ra(env, EXCP_DIV0, GETPC());
}
quot = num / den;
rem = num % den;
env->cc_c = 0; /* always cleared, even if overflow */
if (quot > 0xffff) {
env->cc_v = -1;
/* real 68040 keeps N and unset Z on overflow,
* whereas documentation says "undefined"
*/
env->cc_z = 1;
return;
}
env->dregs[destr] = deposit32(quot, 16, 16, rem);
env->cc_z = (int16_t)quot;
env->cc_n = (int16_t)quot;
env->cc_v = 0;
}
void HELPER(divsw)(CPUM68KState *env, int destr, int32_t den)
{
int32_t num = env->dregs[destr];
uint32_t quot, rem;
if (den == 0) {
raise_exception_ra(env, EXCP_DIV0, GETPC());
}
quot = num / den;
rem = num % den;
env->cc_c = 0; /* always cleared, even if overflow */
if (quot != (int16_t)quot) {
env->cc_v = -1;
/* nothing else is modified */
/* real 68040 keeps N and unset Z on overflow,
* whereas documentation says "undefined"
*/
env->cc_z = 1;
return;
}
env->dregs[destr] = deposit32(quot, 16, 16, rem);
env->cc_z = (int16_t)quot;
env->cc_n = (int16_t)quot;
env->cc_v = 0;
}
void HELPER(divul)(CPUM68KState *env, int numr, int regr, uint32_t den)
{
uint32_t num = env->dregs[numr];
uint32_t quot, rem;
if (den == 0) {
raise_exception_ra(env, EXCP_DIV0, GETPC());
}
quot = num / den;
rem = num % den;
env->cc_c = 0;
env->cc_z = quot;
env->cc_n = quot;
env->cc_v = 0;
if (m68k_feature(env, M68K_FEATURE_CF_ISA_A)) {
if (numr == regr) {
env->dregs[numr] = quot;
} else {
env->dregs[regr] = rem;
}
} else {
env->dregs[regr] = rem;
env->dregs[numr] = quot;
}
}
void HELPER(divsl)(CPUM68KState *env, int numr, int regr, int32_t den)
{
int32_t num = env->dregs[numr];
int32_t quot, rem;
if (den == 0) {
raise_exception_ra(env, EXCP_DIV0, GETPC());
}
quot = num / den;
rem = num % den;
env->cc_c = 0;
env->cc_z = quot;
env->cc_n = quot;
env->cc_v = 0;
if (m68k_feature(env, M68K_FEATURE_CF_ISA_A)) {
if (numr == regr) {
env->dregs[numr] = quot;
} else {
env->dregs[regr] = rem;
}
} else {
env->dregs[regr] = rem;
env->dregs[numr] = quot;
}
}
void HELPER(divull)(CPUM68KState *env, int numr, int regr, uint32_t den)
{
uint64_t num = deposit64(env->dregs[numr], 32, 32, env->dregs[regr]);
uint64_t quot;
uint32_t rem;
if (den == 0) {
raise_exception_ra(env, EXCP_DIV0, GETPC());
}
quot = num / den;
rem = num % den;
env->cc_c = 0; /* always cleared, even if overflow */
if (quot > 0xffffffffULL) {
env->cc_v = -1;
/* real 68040 keeps N and unset Z on overflow,
* whereas documentation says "undefined"
*/
env->cc_z = 1;
return;
}
env->cc_z = quot;
env->cc_n = quot;
env->cc_v = 0;
/*
* If Dq and Dr are the same, the quotient is returned.
* therefore we set Dq last.
*/
env->dregs[regr] = rem;
env->dregs[numr] = quot;
}
void HELPER(divsll)(CPUM68KState *env, int numr, int regr, int32_t den)
{
int64_t num = deposit64(env->dregs[numr], 32, 32, env->dregs[regr]);
int64_t quot;
int32_t rem;
if (den == 0) {
raise_exception_ra(env, EXCP_DIV0, GETPC());
}
quot = num / den;
rem = num % den;
env->cc_c = 0; /* always cleared, even if overflow */
if (quot != (int32_t)quot) {
env->cc_v = -1;
/* real 68040 keeps N and unset Z on overflow,
* whereas documentation says "undefined"
*/
env->cc_z = 1;
return;
}
env->cc_z = quot;
env->cc_n = quot;
env->cc_v = 0;
/*
* If Dq and Dr are the same, the quotient is returned.
* therefore we set Dq last.
*/
env->dregs[regr] = rem;
env->dregs[numr] = quot;
}
/* We're executing in a serial context -- no need to be atomic. */
void HELPER(cas2w)(CPUM68KState *env, uint32_t regs, uint32_t a1, uint32_t a2)
{
uint32_t Dc1 = extract32(regs, 9, 3);
uint32_t Dc2 = extract32(regs, 6, 3);
uint32_t Du1 = extract32(regs, 3, 3);
uint32_t Du2 = extract32(regs, 0, 3);
int16_t c1 = env->dregs[Dc1];
int16_t c2 = env->dregs[Dc2];
int16_t u1 = env->dregs[Du1];
int16_t u2 = env->dregs[Du2];
int16_t l1, l2;
uintptr_t ra = GETPC();
l1 = cpu_lduw_data_ra(env, a1, ra);
l2 = cpu_lduw_data_ra(env, a2, ra);
if (l1 == c1 && l2 == c2) {
cpu_stw_data_ra(env, a1, u1, ra);
cpu_stw_data_ra(env, a2, u2, ra);
}
if (c1 != l1) {
env->cc_n = l1;
env->cc_v = c1;
} else {
env->cc_n = l2;
env->cc_v = c2;
}
env->cc_op = CC_OP_CMPW;
env->dregs[Dc1] = deposit32(env->dregs[Dc1], 0, 16, l1);
env->dregs[Dc2] = deposit32(env->dregs[Dc2], 0, 16, l2);
}
static void do_cas2l(CPUM68KState *env, uint32_t regs, uint32_t a1, uint32_t a2,
bool parallel)
{
uint32_t Dc1 = extract32(regs, 9, 3);
uint32_t Dc2 = extract32(regs, 6, 3);
uint32_t Du1 = extract32(regs, 3, 3);
uint32_t Du2 = extract32(regs, 0, 3);
uint32_t c1 = env->dregs[Dc1];
uint32_t c2 = env->dregs[Dc2];
uint32_t u1 = env->dregs[Du1];
uint32_t u2 = env->dregs[Du2];
uint32_t l1, l2;
uintptr_t ra = GETPC();
#if defined(CONFIG_ATOMIC64) && !defined(CONFIG_USER_ONLY)
int mmu_idx = cpu_mmu_index(env, 0);
TCGMemOpIdx oi;
#endif
if (parallel) {
/* We're executing in a parallel context -- must be atomic. */
#ifdef CONFIG_ATOMIC64
uint64_t c, u, l;
if ((a1 & 7) == 0 && a2 == a1 + 4) {
c = deposit64(c2, 32, 32, c1);
u = deposit64(u2, 32, 32, u1);
#ifdef CONFIG_USER_ONLY
l = helper_atomic_cmpxchgq_be(env, a1, c, u);
#else
oi = make_memop_idx(MO_BEQ, mmu_idx);
l = helper_atomic_cmpxchgq_be_mmu(env, a1, c, u, oi, ra);
#endif
l1 = l >> 32;
l2 = l;
} else if ((a2 & 7) == 0 && a1 == a2 + 4) {
c = deposit64(c1, 32, 32, c2);
u = deposit64(u1, 32, 32, u2);
#ifdef CONFIG_USER_ONLY
l = helper_atomic_cmpxchgq_be(env, a2, c, u);
#else
oi = make_memop_idx(MO_BEQ, mmu_idx);
l = helper_atomic_cmpxchgq_be_mmu(env, a2, c, u, oi, ra);
#endif
l2 = l >> 32;
l1 = l;
} else
#endif
{
/* Tell the main loop we need to serialize this insn. */
cpu_loop_exit_atomic(ENV_GET_CPU(env), ra);
}
} else {
/* We're executing in a serial context -- no need to be atomic. */
l1 = cpu_ldl_data_ra(env, a1, ra);
l2 = cpu_ldl_data_ra(env, a2, ra);
if (l1 == c1 && l2 == c2) {
cpu_stl_data_ra(env, a1, u1, ra);
cpu_stl_data_ra(env, a2, u2, ra);
}
}
if (c1 != l1) {
env->cc_n = l1;
env->cc_v = c1;
} else {
env->cc_n = l2;
env->cc_v = c2;
}
env->cc_op = CC_OP_CMPL;
env->dregs[Dc1] = l1;
env->dregs[Dc2] = l2;
}
void HELPER(cas2l)(CPUM68KState *env, uint32_t regs, uint32_t a1, uint32_t a2)
{
do_cas2l(env, regs, a1, a2, false);
}
void HELPER(cas2l_parallel)(CPUM68KState *env, uint32_t regs, uint32_t a1,
uint32_t a2)
{
do_cas2l(env, regs, a1, a2, true);
}
struct bf_data {
uint32_t addr;
uint32_t bofs;
uint32_t blen;
uint32_t len;
};
static struct bf_data bf_prep(uint32_t addr, int32_t ofs, uint32_t len)
{
int bofs, blen;
/* Bound length; map 0 to 32. */
len = ((len - 1) & 31) + 1;
/* Note that ofs is signed. */
addr += ofs / 8;
bofs = ofs % 8;
if (bofs < 0) {
bofs += 8;
addr -= 1;
}
/* Compute the number of bytes required (minus one) to
satisfy the bitfield. */
blen = (bofs + len - 1) / 8;
/* Canonicalize the bit offset for data loaded into a 64-bit big-endian
word. For the cases where BLEN is not a power of 2, adjust ADDR so
that we can use the next power of two sized load without crossing a
page boundary, unless the field itself crosses the boundary. */
switch (blen) {
case 0:
bofs += 56;
break;
case 1:
bofs += 48;
break;
case 2:
if (addr & 1) {
bofs += 8;
addr -= 1;
}
/* fallthru */
case 3:
bofs += 32;
break;
case 4:
if (addr & 3) {
bofs += 8 * (addr & 3);
addr &= -4;
}
break;
default:
g_assert_not_reached();
}
return (struct bf_data){
.addr = addr,
.bofs = bofs,
.blen = blen,
.len = len,
};
}
static uint64_t bf_load(CPUM68KState *env, uint32_t addr, int blen,
uintptr_t ra)
{
switch (blen) {
case 0:
return cpu_ldub_data_ra(env, addr, ra);
case 1:
return cpu_lduw_data_ra(env, addr, ra);
case 2:
case 3:
return cpu_ldl_data_ra(env, addr, ra);
case 4:
return cpu_ldq_data_ra(env, addr, ra);
default:
g_assert_not_reached();
}
}
static void bf_store(CPUM68KState *env, uint32_t addr, int blen,
uint64_t data, uintptr_t ra)
{
switch (blen) {
case 0:
cpu_stb_data_ra(env, addr, data, ra);
break;
case 1:
cpu_stw_data_ra(env, addr, data, ra);
break;
case 2:
case 3:
cpu_stl_data_ra(env, addr, data, ra);
break;
case 4:
cpu_stq_data_ra(env, addr, data, ra);
break;
default:
g_assert_not_reached();
}
}
uint32_t HELPER(bfexts_mem)(CPUM68KState *env, uint32_t addr,
int32_t ofs, uint32_t len)
{
uintptr_t ra = GETPC();
struct bf_data d = bf_prep(addr, ofs, len);
uint64_t data = bf_load(env, d.addr, d.blen, ra);
return (int64_t)(data << d.bofs) >> (64 - d.len);
}
uint64_t HELPER(bfextu_mem)(CPUM68KState *env, uint32_t addr,
int32_t ofs, uint32_t len)
{
uintptr_t ra = GETPC();
struct bf_data d = bf_prep(addr, ofs, len);
uint64_t data = bf_load(env, d.addr, d.blen, ra);
/* Put CC_N at the top of the high word; put the zero-extended value
at the bottom of the low word. */
data <<= d.bofs;
data >>= 64 - d.len;
data |= data << (64 - d.len);
return data;
}
uint32_t HELPER(bfins_mem)(CPUM68KState *env, uint32_t addr, uint32_t val,
int32_t ofs, uint32_t len)
{
uintptr_t ra = GETPC();
struct bf_data d = bf_prep(addr, ofs, len);
uint64_t data = bf_load(env, d.addr, d.blen, ra);
uint64_t mask = -1ull << (64 - d.len) >> d.bofs;
data = (data & ~mask) | (((uint64_t)val << (64 - d.len)) >> d.bofs);
bf_store(env, d.addr, d.blen, data, ra);
/* The field at the top of the word is also CC_N for CC_OP_LOGIC. */
return val << (32 - d.len);
}
uint32_t HELPER(bfchg_mem)(CPUM68KState *env, uint32_t addr,
int32_t ofs, uint32_t len)
{
uintptr_t ra = GETPC();
struct bf_data d = bf_prep(addr, ofs, len);
uint64_t data = bf_load(env, d.addr, d.blen, ra);
uint64_t mask = -1ull << (64 - d.len) >> d.bofs;
bf_store(env, d.addr, d.blen, data ^ mask, ra);
return ((data & mask) << d.bofs) >> 32;
}
uint32_t HELPER(bfclr_mem)(CPUM68KState *env, uint32_t addr,
int32_t ofs, uint32_t len)
{
uintptr_t ra = GETPC();
struct bf_data d = bf_prep(addr, ofs, len);
uint64_t data = bf_load(env, d.addr, d.blen, ra);
uint64_t mask = -1ull << (64 - d.len) >> d.bofs;
bf_store(env, d.addr, d.blen, data & ~mask, ra);
return ((data & mask) << d.bofs) >> 32;
}
uint32_t HELPER(bfset_mem)(CPUM68KState *env, uint32_t addr,
int32_t ofs, uint32_t len)
{
uintptr_t ra = GETPC();
struct bf_data d = bf_prep(addr, ofs, len);
uint64_t data = bf_load(env, d.addr, d.blen, ra);
uint64_t mask = -1ull << (64 - d.len) >> d.bofs;
bf_store(env, d.addr, d.blen, data | mask, ra);
return ((data & mask) << d.bofs) >> 32;
}
uint32_t HELPER(bfffo_reg)(uint32_t n, uint32_t ofs, uint32_t len)
{
return (n ? clz32(n) : len) + ofs;
}
uint64_t HELPER(bfffo_mem)(CPUM68KState *env, uint32_t addr,
int32_t ofs, uint32_t len)
{
uintptr_t ra = GETPC();
struct bf_data d = bf_prep(addr, ofs, len);
uint64_t data = bf_load(env, d.addr, d.blen, ra);
uint64_t mask = -1ull << (64 - d.len) >> d.bofs;
uint64_t n = (data & mask) << d.bofs;
uint32_t ffo = helper_bfffo_reg(n >> 32, ofs, d.len);
/* Return FFO in the low word and N in the high word.
Note that because of MASK and the shift, the low word
is already zero. */
return n | ffo;
}