qemu/tests/avocado/acpi-bits/bits-tests/testacpi.py2
Ani Sinha 87853babb3 acpi/tests/avocado/bits: initial commit of test scripts that are run by biosbits
This is initial commit of cpuid, acpi and smbios python test scripts for
biosbits to execute. No change has been made to them from the original code
written by the biosbits author Josh Triplett. They are required to be installed
into the bits iso file and then run from within the virtual machine booted off
with biosbits iso.

The test scripts have a ".py2" extension in order to prevent avocado from
loading them. They are written in python 2.7 and are run from within bios bits.
There is no need for avocado to try to load them and call out errors on python3
specific syntaxes.

The original location of these tests are here:
https://github.com/biosbits/bits/blob/master/python/testacpi.py
https://github.com/biosbits/bits/blob/master/python/smbios.py
https://github.com/biosbits/bits/blob/master/python/testcpuid.py

For QEMU, we maintain a fork of the above repo here with numerious fixes:
https://gitlab.com/qemu-project/biosbits-bits

The acpi test for example is maintained here in the fork:
https://gitlab.com/qemu-project/biosbits-bits/-/raw/master/python/testacpi.py

Cc: Daniel P. Berrangé <berrange@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Maydell Peter <peter.maydell@linaro.org>
Cc: John Snow <jsnow@redhat.com>
Cc: Thomas Huth <thuth@redhat.com>
Cc: Alex Bennée <alex.bennee@linaro.org>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Michael Tsirkin <mst@redhat.com>
Signed-off-by: Ani Sinha <ani@anisinha.ca>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Message-Id: <20221021095108.104843-2-ani@anisinha.ca>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2022-11-02 06:56:32 -04:00

284 lines
14 KiB
Plaintext

# Copyright (c) 2015, Intel Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# * Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
# * Neither the name of Intel Corporation nor the names of its contributors
# may be used to endorse or promote products derived from this software
# without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
# ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
# ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
"""Tests for ACPI"""
import acpi
import bits
import bits.mwait
import struct
import testutil
import testsuite
import time
def register_tests():
testsuite.add_test("ACPI _MAT (Multiple APIC Table Entry) under Processor objects", test_mat, submenu="ACPI Tests")
testsuite.add_test("ACPI _PSS (Pstate) table conformance tests", test_pss, submenu="ACPI Tests")
testsuite.add_test("ACPI _PSS (Pstate) runtime tests", test_pstates, submenu="ACPI Tests")
testsuite.add_test("ACPI DSDT (Differentiated System Description Table)", test_dsdt, submenu="ACPI Tests")
testsuite.add_test("ACPI FACP (Fixed ACPI Description Table)", test_facp, submenu="ACPI Tests")
testsuite.add_test("ACPI HPET (High Precision Event Timer Table)", test_hpet, submenu="ACPI Tests")
testsuite.add_test("ACPI MADT (Multiple APIC Description Table)", test_apic, submenu="ACPI Tests")
testsuite.add_test("ACPI MPST (Memory Power State Table)", test_mpst, submenu="ACPI Tests")
testsuite.add_test("ACPI RSDP (Root System Description Pointer Structure)", test_rsdp, submenu="ACPI Tests")
testsuite.add_test("ACPI XSDT (Extended System Description Table)", test_xsdt, submenu="ACPI Tests")
def test_mat():
cpupaths = acpi.get_cpupaths()
apic = acpi.parse_apic()
procid_apicid = apic.procid_apicid
uid_x2apicid = apic.uid_x2apicid
for cpupath in cpupaths:
# Find the ProcId defined by the processor object
processor = acpi.evaluate(cpupath)
# Find the UID defined by the processor object's _UID method
uid = acpi.evaluate(cpupath + "._UID")
mat_buffer = acpi.evaluate(cpupath + "._MAT")
if mat_buffer is None:
continue
# Process each _MAT subtable
mat = acpi._MAT(mat_buffer)
for index, subtable in enumerate(mat):
if subtable.subtype == acpi.MADT_TYPE_LOCAL_APIC:
if subtable.flags.bits.enabled:
testsuite.test("{} Processor declaration ProcId = _MAT ProcId".format(cpupath), processor.ProcId == subtable.proc_id)
testsuite.print_detail("{} ProcId ({:#02x}) != _MAT ProcId ({:#02x})".format(cpupath, processor.ProcId, subtable.proc_id))
testsuite.print_detail("Processor Declaration: {}".format(processor))
testsuite.print_detail("_MAT entry[{}]: {}".format(index, subtable))
if testsuite.test("{} with local APIC in _MAT has local APIC in MADT".format(cpupath), processor.ProcId in procid_apicid):
testsuite.test("{} ApicId derived using Processor declaration ProcId = _MAT ApicId".format(cpupath), procid_apicid[processor.ProcId] == subtable.apic_id)
testsuite.print_detail("{} ApicId derived from MADT ({:#02x}) != _MAT ApicId ({:#02x})".format(cpupath, procid_apicid[processor.ProcId], subtable.apic_id))
testsuite.print_detail("Processor Declaration: {}".format(processor))
testsuite.print_detail("_MAT entry[{}]: {}".format(index, subtable))
if subtable.subtype == acpi.MADT_TYPE_LOCAL_X2APIC:
if subtable.flags.bits.enabled:
if testsuite.test("{} with x2Apic in _MAT has _UID".format(cpupath), uid is not None):
testsuite.test("{}._UID = _MAT UID".format(cpupath), uid == subtable.uid)
testsuite.print_detail("{}._UID ({:#x}) != _MAT UID ({:#x})".format(cpupath, uid, subtable.uid))
testsuite.print_detail("_MAT entry[{}]: {}".format(index, subtable))
if testsuite.test("{} with _MAT x2Apic has x2Apic in MADT".format(cpupath), subtable.uid in uid_x2apicid):
testsuite.test("{} x2ApicId derived from MADT using UID = _MAT x2ApicId".format(cpupath), uid_x2apicid[subtable.uid] == subtable.x2apicid)
testsuite.print_detail("{} x2ApicId derived from MADT ({:#02x}) != _MAT x2ApicId ({:#02x})".format(cpupath, uid_x2apicid[subtable.uid], subtable.x2apicid))
testsuite.print_detail("_MAT entry[{}]: {}".format(index, subtable))
def test_pss():
uniques = acpi.parse_cpu_method("_PSS")
# We special-case None here to avoid a double-failure for CPUs without a _PSS
testsuite.test("_PSS must be identical for all CPUs", len(uniques) <= 1 or (len(uniques) == 2 and None in uniques))
for pss, cpupaths in uniques.iteritems():
if not testsuite.test("_PSS must exist", pss is not None):
testsuite.print_detail(acpi.factor_commonprefix(cpupaths))
testsuite.print_detail('No _PSS exists')
continue
if not testsuite.test("_PSS must not be empty", pss.pstates):
testsuite.print_detail(acpi.factor_commonprefix(cpupaths))
testsuite.print_detail('_PSS is empty')
continue
testsuite.print_detail(acpi.factor_commonprefix(cpupaths))
for index, pstate in enumerate(pss.pstates):
testsuite.print_detail("P[{}]: {}".format(index, pstate))
testsuite.test("_PSS must contain at most 16 Pstates", len(pss.pstates) <= 16)
testsuite.test("_PSS must have no duplicate Pstates", len(pss.pstates) == len(set(pss.pstates)))
frequencies = [p.core_frequency for p in pss.pstates]
testsuite.test("_PSS must list Pstates in descending order of frequency", frequencies == sorted(frequencies, reverse=True))
testsuite.test("_PSS must have Pstates with no duplicate frequencies", len(frequencies) == len(set(frequencies)))
dissipations = [p.power for p in pss.pstates]
testsuite.test("_PSS must list Pstates in descending order of power dissipation", dissipations == sorted(dissipations, reverse=True))
def test_pstates():
"""Execute and verify frequency for each Pstate in the _PSS"""
IA32_PERF_CTL = 0x199
with bits.mwait.use_hint(), bits.preserve_msr(IA32_PERF_CTL):
cpupath_procid = acpi.find_procid()
cpupath_uid = acpi.find_uid()
apic = acpi.parse_apic()
procid_apicid = apic.procid_apicid
uid_x2apicid = apic.uid_x2apicid
def cpupath_apicid(cpupath):
if procid_apicid is not None:
procid = cpupath_procid.get(cpupath, None)
if procid is not None:
apicid = procid_apicid.get(procid, None)
if apicid is not None:
return apicid
if uid_x2apicid is not None:
uid = cpupath_uid.get(cpupath, None)
if uid is not None:
apicid = uid_x2apicid.get(uid, None)
if apicid is not None:
return apicid
return bits.cpus()[0]
bclk = testutil.adjust_to_nearest(bits.bclk(), 100.0/12) * 1000000
uniques = acpi.parse_cpu_method("_PSS")
for pss, cpupaths in uniques.iteritems():
if not testsuite.test("_PSS must exist", pss is not None):
testsuite.print_detail(acpi.factor_commonprefix(cpupaths))
testsuite.print_detail('No _PSS exists')
continue
for n, pstate in enumerate(pss.pstates):
for cpupath in cpupaths:
apicid = cpupath_apicid(cpupath)
if apicid is None:
print 'Failed to find apicid for cpupath {}'.format(cpupath)
continue
bits.wrmsr(apicid, IA32_PERF_CTL, pstate.control)
# Detecting Turbo frequency requires at least 2 pstates
# since turbo frequency = max non-turbo frequency + 1
turbo = False
if len(pss.pstates) >= 2:
turbo = (n == 0 and pstate.core_frequency == (pss.pstates[1].core_frequency + 1))
if turbo:
# Needs to busywait, not sleep
start = time.time()
while (time.time() - start < 2):
pass
for duration in (0.1, 1.0):
frequency_data = bits.cpu_frequency(duration)
# Abort the test if no cpu frequency is not available
if frequency_data is None:
continue
aperf = frequency_data[1]
aperf = testutil.adjust_to_nearest(aperf, bclk/2)
aperf = int(aperf / 1000000)
if turbo:
if aperf >= pstate.core_frequency:
break
else:
if aperf == pstate.core_frequency:
break
if turbo:
testsuite.test("P{}: Turbo measured frequency {} >= expected {} MHz".format(n, aperf, pstate.core_frequency), aperf >= pstate.core_frequency)
else:
testsuite.test("P{}: measured frequency {} MHz == expected {} MHz".format(n, aperf, pstate.core_frequency), aperf == pstate.core_frequency)
def test_psd_thread_scope():
uniques = acpi.parse_cpu_method("_PSD")
if not testsuite.test("_PSD (P-State Dependency) must exist for each processor", None not in uniques):
testsuite.print_detail(acpi.factor_commonprefix(uniques[None]))
testsuite.print_detail('No _PSD exists')
return
unique_num_dependencies = {}
unique_num_entries = {}
unique_revision = {}
unique_domain = {}
unique_coordination_type = {}
unique_num_processors = {}
for value, cpupaths in uniques.iteritems():
unique_num_dependencies.setdefault(len(value.dependencies), []).extend(cpupaths)
unique_num_entries.setdefault(value.dependencies[0].num_entries, []).extend(cpupaths)
unique_revision.setdefault(value.dependencies[0].revision, []).extend(cpupaths)
unique_domain.setdefault(value.dependencies[0].domain, []).extend(cpupaths)
unique_coordination_type.setdefault(value.dependencies[0].coordination_type, []).extend(cpupaths)
unique_num_processors.setdefault(value.dependencies[0].num_processors, []).extend(cpupaths)
def detail(d, fmt):
for value, cpupaths in sorted(d.iteritems(), key=(lambda (k,v): v)):
testsuite.print_detail(acpi.factor_commonprefix(cpupaths))
testsuite.print_detail(fmt.format(value))
testsuite.test('Dependency count for each processor must be 1', unique_num_dependencies.keys() == [1])
detail(unique_num_dependencies, 'Dependency count for each processor = {} (Expected 1)')
testsuite.test('_PSD.num_entries must be 5', unique_num_entries.keys() == [5])
detail(unique_num_entries, 'num_entries = {} (Expected 5)')
testsuite.test('_PSD.revision must be 0', unique_revision.keys() == [0])
detail(unique_revision, 'revision = {}')
testsuite.test('_PSD.coordination_type must be 0xFE (HW_ALL)', unique_coordination_type.keys() == [0xfe])
detail(unique_coordination_type, 'coordination_type = {:#x} (Expected 0xFE HW_ALL)')
testsuite.test('_PSD.domain must be unique (thread-scoped) for each processor', len(unique_domain) == len(acpi.get_cpupaths()))
detail(unique_domain, 'domain = {:#x} (Expected a unique value for each processor)')
testsuite.test('_PSD.num_processors must be 1', unique_num_processors.keys() == [1])
detail(unique_num_processors, 'num_processors = {} (Expected 1)')
def test_table_checksum(data):
csum = sum(ord(c) for c in data) % 0x100
testsuite.test('ACPI table cumulative checksum must equal 0', csum == 0)
testsuite.print_detail("Cumulative checksum = {} (Expected 0)".format(csum))
def test_apic():
data = acpi.get_table("APIC")
if data is None:
return
test_table_checksum(data)
apic = acpi.parse_apic()
def test_dsdt():
data = acpi.get_table("DSDT")
if data is None:
return
test_table_checksum(data)
def test_facp():
data = acpi.get_table("FACP")
if data is None:
return
test_table_checksum(data)
facp = acpi.parse_facp()
def test_hpet():
data = acpi.get_table("HPET")
if data is None:
return
test_table_checksum(data)
hpet = acpi.parse_hpet()
def test_mpst():
data = acpi.get_table("MPST")
if data is None:
return
test_table_checksum(data)
mpst = acpi.MPST(data)
def test_rsdp():
data = acpi.get_table("RSD PTR ")
if data is None:
return
# Checksum the first 20 bytes per ACPI 1.0
csum = sum(ord(c) for c in data[:20]) % 0x100
testsuite.test('ACPI 1.0 table first 20 bytes cummulative checksum must equal 0', csum == 0)
testsuite.print_detail("Cummulative checksum = {} (Expected 0)".format(csum))
test_table_checksum(data)
rsdp = acpi.parse_rsdp()
def test_xsdt():
data = acpi.get_table("XSDT")
if data is None:
return
test_table_checksum(data)
xsdt = acpi.parse_xsdt()