qemu/include/exec/cpu_ldst.h
Stefan Hajnoczi d73415a315 qemu/atomic.h: rename atomic_ to qatomic_
clang's C11 atomic_fetch_*() functions only take a C11 atomic type
pointer argument. QEMU uses direct types (int, etc) and this causes a
compiler error when a QEMU code calls these functions in a source file
that also included <stdatomic.h> via a system header file:

  $ CC=clang CXX=clang++ ./configure ... && make
  ../util/async.c:79:17: error: address argument to atomic operation must be a pointer to _Atomic type ('unsigned int *' invalid)

Avoid using atomic_*() names in QEMU's atomic.h since that namespace is
used by <stdatomic.h>. Prefix QEMU's APIs with 'q' so that atomic.h
and <stdatomic.h> can co-exist. I checked /usr/include on my machine and
searched GitHub for existing "qatomic_" users but there seem to be none.

This patch was generated using:

  $ git grep -h -o '\<atomic\(64\)\?_[a-z0-9_]\+' include/qemu/atomic.h | \
    sort -u >/tmp/changed_identifiers
  $ for identifier in $(</tmp/changed_identifiers); do
        sed -i "s%\<$identifier\>%q$identifier%g" \
            $(git grep -I -l "\<$identifier\>")
    done

I manually fixed line-wrap issues and misaligned rST tables.

Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20200923105646.47864-1-stefanha@redhat.com>
2020-09-23 16:07:44 +01:00

450 lines
16 KiB
C

/*
* Software MMU support
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*
*/
/*
* Generate inline load/store functions for all MMU modes (typically
* at least _user and _kernel) as well as _data versions, for all data
* sizes.
*
* Used by target op helpers.
*
* The syntax for the accessors is:
*
* load: cpu_ld{sign}{size}{end}_{mmusuffix}(env, ptr)
* cpu_ld{sign}{size}{end}_{mmusuffix}_ra(env, ptr, retaddr)
* cpu_ld{sign}{size}{end}_mmuidx_ra(env, ptr, mmu_idx, retaddr)
*
* store: cpu_st{size}{end}_{mmusuffix}(env, ptr, val)
* cpu_st{size}{end}_{mmusuffix}_ra(env, ptr, val, retaddr)
* cpu_st{size}{end}_mmuidx_ra(env, ptr, val, mmu_idx, retaddr)
*
* sign is:
* (empty): for 32 and 64 bit sizes
* u : unsigned
* s : signed
*
* size is:
* b: 8 bits
* w: 16 bits
* l: 32 bits
* q: 64 bits
*
* end is:
* (empty): for target native endian, or for 8 bit access
* _be: for forced big endian
* _le: for forced little endian
*
* mmusuffix is one of the generic suffixes "data" or "code", or "mmuidx".
* The "mmuidx" suffix carries an extra mmu_idx argument that specifies
* the index to use; the "data" and "code" suffixes take the index from
* cpu_mmu_index().
*/
#ifndef CPU_LDST_H
#define CPU_LDST_H
#if defined(CONFIG_USER_ONLY)
/* sparc32plus has 64bit long but 32bit space address
* this can make bad result with g2h() and h2g()
*/
#if TARGET_VIRT_ADDR_SPACE_BITS <= 32
typedef uint32_t abi_ptr;
#define TARGET_ABI_FMT_ptr "%x"
#else
typedef uint64_t abi_ptr;
#define TARGET_ABI_FMT_ptr "%"PRIx64
#endif
/* All direct uses of g2h and h2g need to go away for usermode softmmu. */
#define g2h(x) ((void *)((unsigned long)(abi_ptr)(x) + guest_base))
#if HOST_LONG_BITS <= TARGET_VIRT_ADDR_SPACE_BITS
#define guest_addr_valid(x) (1)
#else
#define guest_addr_valid(x) ((x) <= GUEST_ADDR_MAX)
#endif
#define h2g_valid(x) guest_addr_valid((unsigned long)(x) - guest_base)
static inline int guest_range_valid(unsigned long start, unsigned long len)
{
return len - 1 <= GUEST_ADDR_MAX && start <= GUEST_ADDR_MAX - len + 1;
}
#define h2g_nocheck(x) ({ \
unsigned long __ret = (unsigned long)(x) - guest_base; \
(abi_ptr)__ret; \
})
#define h2g(x) ({ \
/* Check if given address fits target address space */ \
assert(h2g_valid(x)); \
h2g_nocheck(x); \
})
#else
typedef target_ulong abi_ptr;
#define TARGET_ABI_FMT_ptr TARGET_ABI_FMT_lx
#endif
uint32_t cpu_ldub_data(CPUArchState *env, abi_ptr ptr);
int cpu_ldsb_data(CPUArchState *env, abi_ptr ptr);
uint32_t cpu_lduw_be_data(CPUArchState *env, abi_ptr ptr);
int cpu_ldsw_be_data(CPUArchState *env, abi_ptr ptr);
uint32_t cpu_ldl_be_data(CPUArchState *env, abi_ptr ptr);
uint64_t cpu_ldq_be_data(CPUArchState *env, abi_ptr ptr);
uint32_t cpu_lduw_le_data(CPUArchState *env, abi_ptr ptr);
int cpu_ldsw_le_data(CPUArchState *env, abi_ptr ptr);
uint32_t cpu_ldl_le_data(CPUArchState *env, abi_ptr ptr);
uint64_t cpu_ldq_le_data(CPUArchState *env, abi_ptr ptr);
uint32_t cpu_ldub_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t ra);
int cpu_ldsb_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t ra);
uint32_t cpu_lduw_be_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t ra);
int cpu_ldsw_be_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t ra);
uint32_t cpu_ldl_be_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t ra);
uint64_t cpu_ldq_be_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t ra);
uint32_t cpu_lduw_le_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t ra);
int cpu_ldsw_le_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t ra);
uint32_t cpu_ldl_le_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t ra);
uint64_t cpu_ldq_le_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t ra);
void cpu_stb_data(CPUArchState *env, abi_ptr ptr, uint32_t val);
void cpu_stw_be_data(CPUArchState *env, abi_ptr ptr, uint32_t val);
void cpu_stl_be_data(CPUArchState *env, abi_ptr ptr, uint32_t val);
void cpu_stq_be_data(CPUArchState *env, abi_ptr ptr, uint64_t val);
void cpu_stw_le_data(CPUArchState *env, abi_ptr ptr, uint32_t val);
void cpu_stl_le_data(CPUArchState *env, abi_ptr ptr, uint32_t val);
void cpu_stq_le_data(CPUArchState *env, abi_ptr ptr, uint64_t val);
void cpu_stb_data_ra(CPUArchState *env, abi_ptr ptr,
uint32_t val, uintptr_t ra);
void cpu_stw_be_data_ra(CPUArchState *env, abi_ptr ptr,
uint32_t val, uintptr_t ra);
void cpu_stl_be_data_ra(CPUArchState *env, abi_ptr ptr,
uint32_t val, uintptr_t ra);
void cpu_stq_be_data_ra(CPUArchState *env, abi_ptr ptr,
uint64_t val, uintptr_t ra);
void cpu_stw_le_data_ra(CPUArchState *env, abi_ptr ptr,
uint32_t val, uintptr_t ra);
void cpu_stl_le_data_ra(CPUArchState *env, abi_ptr ptr,
uint32_t val, uintptr_t ra);
void cpu_stq_le_data_ra(CPUArchState *env, abi_ptr ptr,
uint64_t val, uintptr_t ra);
#if defined(CONFIG_USER_ONLY)
extern __thread uintptr_t helper_retaddr;
static inline void set_helper_retaddr(uintptr_t ra)
{
helper_retaddr = ra;
/*
* Ensure that this write is visible to the SIGSEGV handler that
* may be invoked due to a subsequent invalid memory operation.
*/
signal_barrier();
}
static inline void clear_helper_retaddr(void)
{
/*
* Ensure that previous memory operations have succeeded before
* removing the data visible to the signal handler.
*/
signal_barrier();
helper_retaddr = 0;
}
/*
* Provide the same *_mmuidx_ra interface as for softmmu.
* The mmu_idx argument is ignored.
*/
static inline uint32_t cpu_ldub_mmuidx_ra(CPUArchState *env, abi_ptr addr,
int mmu_idx, uintptr_t ra)
{
return cpu_ldub_data_ra(env, addr, ra);
}
static inline int cpu_ldsb_mmuidx_ra(CPUArchState *env, abi_ptr addr,
int mmu_idx, uintptr_t ra)
{
return cpu_ldsb_data_ra(env, addr, ra);
}
static inline uint32_t cpu_lduw_be_mmuidx_ra(CPUArchState *env, abi_ptr addr,
int mmu_idx, uintptr_t ra)
{
return cpu_lduw_be_data_ra(env, addr, ra);
}
static inline int cpu_ldsw_be_mmuidx_ra(CPUArchState *env, abi_ptr addr,
int mmu_idx, uintptr_t ra)
{
return cpu_ldsw_be_data_ra(env, addr, ra);
}
static inline uint32_t cpu_ldl_be_mmuidx_ra(CPUArchState *env, abi_ptr addr,
int mmu_idx, uintptr_t ra)
{
return cpu_ldl_be_data_ra(env, addr, ra);
}
static inline uint64_t cpu_ldq_be_mmuidx_ra(CPUArchState *env, abi_ptr addr,
int mmu_idx, uintptr_t ra)
{
return cpu_ldq_be_data_ra(env, addr, ra);
}
static inline uint32_t cpu_lduw_le_mmuidx_ra(CPUArchState *env, abi_ptr addr,
int mmu_idx, uintptr_t ra)
{
return cpu_lduw_le_data_ra(env, addr, ra);
}
static inline int cpu_ldsw_le_mmuidx_ra(CPUArchState *env, abi_ptr addr,
int mmu_idx, uintptr_t ra)
{
return cpu_ldsw_le_data_ra(env, addr, ra);
}
static inline uint32_t cpu_ldl_le_mmuidx_ra(CPUArchState *env, abi_ptr addr,
int mmu_idx, uintptr_t ra)
{
return cpu_ldl_le_data_ra(env, addr, ra);
}
static inline uint64_t cpu_ldq_le_mmuidx_ra(CPUArchState *env, abi_ptr addr,
int mmu_idx, uintptr_t ra)
{
return cpu_ldq_le_data_ra(env, addr, ra);
}
static inline void cpu_stb_mmuidx_ra(CPUArchState *env, abi_ptr addr,
uint32_t val, int mmu_idx, uintptr_t ra)
{
cpu_stb_data_ra(env, addr, val, ra);
}
static inline void cpu_stw_be_mmuidx_ra(CPUArchState *env, abi_ptr addr,
uint32_t val, int mmu_idx,
uintptr_t ra)
{
cpu_stw_be_data_ra(env, addr, val, ra);
}
static inline void cpu_stl_be_mmuidx_ra(CPUArchState *env, abi_ptr addr,
uint32_t val, int mmu_idx,
uintptr_t ra)
{
cpu_stl_be_data_ra(env, addr, val, ra);
}
static inline void cpu_stq_be_mmuidx_ra(CPUArchState *env, abi_ptr addr,
uint64_t val, int mmu_idx,
uintptr_t ra)
{
cpu_stq_be_data_ra(env, addr, val, ra);
}
static inline void cpu_stw_le_mmuidx_ra(CPUArchState *env, abi_ptr addr,
uint32_t val, int mmu_idx,
uintptr_t ra)
{
cpu_stw_le_data_ra(env, addr, val, ra);
}
static inline void cpu_stl_le_mmuidx_ra(CPUArchState *env, abi_ptr addr,
uint32_t val, int mmu_idx,
uintptr_t ra)
{
cpu_stl_le_data_ra(env, addr, val, ra);
}
static inline void cpu_stq_le_mmuidx_ra(CPUArchState *env, abi_ptr addr,
uint64_t val, int mmu_idx,
uintptr_t ra)
{
cpu_stq_le_data_ra(env, addr, val, ra);
}
#else
/* Needed for TCG_OVERSIZED_GUEST */
#include "tcg/tcg.h"
static inline target_ulong tlb_addr_write(const CPUTLBEntry *entry)
{
#if TCG_OVERSIZED_GUEST
return entry->addr_write;
#else
return qatomic_read(&entry->addr_write);
#endif
}
/* Find the TLB index corresponding to the mmu_idx + address pair. */
static inline uintptr_t tlb_index(CPUArchState *env, uintptr_t mmu_idx,
target_ulong addr)
{
uintptr_t size_mask = env_tlb(env)->f[mmu_idx].mask >> CPU_TLB_ENTRY_BITS;
return (addr >> TARGET_PAGE_BITS) & size_mask;
}
/* Find the TLB entry corresponding to the mmu_idx + address pair. */
static inline CPUTLBEntry *tlb_entry(CPUArchState *env, uintptr_t mmu_idx,
target_ulong addr)
{
return &env_tlb(env)->f[mmu_idx].table[tlb_index(env, mmu_idx, addr)];
}
uint32_t cpu_ldub_mmuidx_ra(CPUArchState *env, abi_ptr addr,
int mmu_idx, uintptr_t ra);
int cpu_ldsb_mmuidx_ra(CPUArchState *env, abi_ptr addr,
int mmu_idx, uintptr_t ra);
uint32_t cpu_lduw_be_mmuidx_ra(CPUArchState *env, abi_ptr addr,
int mmu_idx, uintptr_t ra);
int cpu_ldsw_be_mmuidx_ra(CPUArchState *env, abi_ptr addr,
int mmu_idx, uintptr_t ra);
uint32_t cpu_ldl_be_mmuidx_ra(CPUArchState *env, abi_ptr addr,
int mmu_idx, uintptr_t ra);
uint64_t cpu_ldq_be_mmuidx_ra(CPUArchState *env, abi_ptr addr,
int mmu_idx, uintptr_t ra);
uint32_t cpu_lduw_le_mmuidx_ra(CPUArchState *env, abi_ptr addr,
int mmu_idx, uintptr_t ra);
int cpu_ldsw_le_mmuidx_ra(CPUArchState *env, abi_ptr addr,
int mmu_idx, uintptr_t ra);
uint32_t cpu_ldl_le_mmuidx_ra(CPUArchState *env, abi_ptr addr,
int mmu_idx, uintptr_t ra);
uint64_t cpu_ldq_le_mmuidx_ra(CPUArchState *env, abi_ptr addr,
int mmu_idx, uintptr_t ra);
void cpu_stb_mmuidx_ra(CPUArchState *env, abi_ptr addr, uint32_t val,
int mmu_idx, uintptr_t retaddr);
void cpu_stw_be_mmuidx_ra(CPUArchState *env, abi_ptr addr, uint32_t val,
int mmu_idx, uintptr_t retaddr);
void cpu_stl_be_mmuidx_ra(CPUArchState *env, abi_ptr addr, uint32_t val,
int mmu_idx, uintptr_t retaddr);
void cpu_stq_be_mmuidx_ra(CPUArchState *env, abi_ptr addr, uint64_t val,
int mmu_idx, uintptr_t retaddr);
void cpu_stw_le_mmuidx_ra(CPUArchState *env, abi_ptr addr, uint32_t val,
int mmu_idx, uintptr_t retaddr);
void cpu_stl_le_mmuidx_ra(CPUArchState *env, abi_ptr addr, uint32_t val,
int mmu_idx, uintptr_t retaddr);
void cpu_stq_le_mmuidx_ra(CPUArchState *env, abi_ptr addr, uint64_t val,
int mmu_idx, uintptr_t retaddr);
#endif /* defined(CONFIG_USER_ONLY) */
#ifdef TARGET_WORDS_BIGENDIAN
# define cpu_lduw_data cpu_lduw_be_data
# define cpu_ldsw_data cpu_ldsw_be_data
# define cpu_ldl_data cpu_ldl_be_data
# define cpu_ldq_data cpu_ldq_be_data
# define cpu_lduw_data_ra cpu_lduw_be_data_ra
# define cpu_ldsw_data_ra cpu_ldsw_be_data_ra
# define cpu_ldl_data_ra cpu_ldl_be_data_ra
# define cpu_ldq_data_ra cpu_ldq_be_data_ra
# define cpu_lduw_mmuidx_ra cpu_lduw_be_mmuidx_ra
# define cpu_ldsw_mmuidx_ra cpu_ldsw_be_mmuidx_ra
# define cpu_ldl_mmuidx_ra cpu_ldl_be_mmuidx_ra
# define cpu_ldq_mmuidx_ra cpu_ldq_be_mmuidx_ra
# define cpu_stw_data cpu_stw_be_data
# define cpu_stl_data cpu_stl_be_data
# define cpu_stq_data cpu_stq_be_data
# define cpu_stw_data_ra cpu_stw_be_data_ra
# define cpu_stl_data_ra cpu_stl_be_data_ra
# define cpu_stq_data_ra cpu_stq_be_data_ra
# define cpu_stw_mmuidx_ra cpu_stw_be_mmuidx_ra
# define cpu_stl_mmuidx_ra cpu_stl_be_mmuidx_ra
# define cpu_stq_mmuidx_ra cpu_stq_be_mmuidx_ra
#else
# define cpu_lduw_data cpu_lduw_le_data
# define cpu_ldsw_data cpu_ldsw_le_data
# define cpu_ldl_data cpu_ldl_le_data
# define cpu_ldq_data cpu_ldq_le_data
# define cpu_lduw_data_ra cpu_lduw_le_data_ra
# define cpu_ldsw_data_ra cpu_ldsw_le_data_ra
# define cpu_ldl_data_ra cpu_ldl_le_data_ra
# define cpu_ldq_data_ra cpu_ldq_le_data_ra
# define cpu_lduw_mmuidx_ra cpu_lduw_le_mmuidx_ra
# define cpu_ldsw_mmuidx_ra cpu_ldsw_le_mmuidx_ra
# define cpu_ldl_mmuidx_ra cpu_ldl_le_mmuidx_ra
# define cpu_ldq_mmuidx_ra cpu_ldq_le_mmuidx_ra
# define cpu_stw_data cpu_stw_le_data
# define cpu_stl_data cpu_stl_le_data
# define cpu_stq_data cpu_stq_le_data
# define cpu_stw_data_ra cpu_stw_le_data_ra
# define cpu_stl_data_ra cpu_stl_le_data_ra
# define cpu_stq_data_ra cpu_stq_le_data_ra
# define cpu_stw_mmuidx_ra cpu_stw_le_mmuidx_ra
# define cpu_stl_mmuidx_ra cpu_stl_le_mmuidx_ra
# define cpu_stq_mmuidx_ra cpu_stq_le_mmuidx_ra
#endif
uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr addr);
uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr addr);
uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr addr);
uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr addr);
static inline int cpu_ldsb_code(CPUArchState *env, abi_ptr addr)
{
return (int8_t)cpu_ldub_code(env, addr);
}
static inline int cpu_ldsw_code(CPUArchState *env, abi_ptr addr)
{
return (int16_t)cpu_lduw_code(env, addr);
}
/**
* tlb_vaddr_to_host:
* @env: CPUArchState
* @addr: guest virtual address to look up
* @access_type: 0 for read, 1 for write, 2 for execute
* @mmu_idx: MMU index to use for lookup
*
* Look up the specified guest virtual index in the TCG softmmu TLB.
* If we can translate a host virtual address suitable for direct RAM
* access, without causing a guest exception, then return it.
* Otherwise (TLB entry is for an I/O access, guest software
* TLB fill required, etc) return NULL.
*/
#ifdef CONFIG_USER_ONLY
static inline void *tlb_vaddr_to_host(CPUArchState *env, abi_ptr addr,
MMUAccessType access_type, int mmu_idx)
{
return g2h(addr);
}
#else
void *tlb_vaddr_to_host(CPUArchState *env, abi_ptr addr,
MMUAccessType access_type, int mmu_idx);
#endif
#endif /* CPU_LDST_H */