qemu/cpu-exec.c
pbrook 56b194039e Rename MIPS_HFLAG(S)_TMASK (Thiemo Seufer).
git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@1775 c046a42c-6fe2-441c-8c8c-71466251a162
2006-03-11 16:23:39 +00:00

1419 lines
44 KiB
C

/*
* i386 emulator main execution loop
*
* Copyright (c) 2003-2005 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "config.h"
#include "exec.h"
#include "disas.h"
#if !defined(CONFIG_SOFTMMU)
#undef EAX
#undef ECX
#undef EDX
#undef EBX
#undef ESP
#undef EBP
#undef ESI
#undef EDI
#undef EIP
#include <signal.h>
#include <sys/ucontext.h>
#endif
int tb_invalidated_flag;
//#define DEBUG_EXEC
//#define DEBUG_SIGNAL
#if defined(TARGET_ARM) || defined(TARGET_SPARC)
/* XXX: unify with i386 target */
void cpu_loop_exit(void)
{
longjmp(env->jmp_env, 1);
}
#endif
#ifndef TARGET_SPARC
#define reg_T2
#endif
/* exit the current TB from a signal handler. The host registers are
restored in a state compatible with the CPU emulator
*/
void cpu_resume_from_signal(CPUState *env1, void *puc)
{
#if !defined(CONFIG_SOFTMMU)
struct ucontext *uc = puc;
#endif
env = env1;
/* XXX: restore cpu registers saved in host registers */
#if !defined(CONFIG_SOFTMMU)
if (puc) {
/* XXX: use siglongjmp ? */
sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
}
#endif
longjmp(env->jmp_env, 1);
}
static TranslationBlock *tb_find_slow(target_ulong pc,
target_ulong cs_base,
unsigned int flags)
{
TranslationBlock *tb, **ptb1;
int code_gen_size;
unsigned int h;
target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
uint8_t *tc_ptr;
spin_lock(&tb_lock);
tb_invalidated_flag = 0;
regs_to_env(); /* XXX: do it just before cpu_gen_code() */
/* find translated block using physical mappings */
phys_pc = get_phys_addr_code(env, pc);
phys_page1 = phys_pc & TARGET_PAGE_MASK;
phys_page2 = -1;
h = tb_phys_hash_func(phys_pc);
ptb1 = &tb_phys_hash[h];
for(;;) {
tb = *ptb1;
if (!tb)
goto not_found;
if (tb->pc == pc &&
tb->page_addr[0] == phys_page1 &&
tb->cs_base == cs_base &&
tb->flags == flags) {
/* check next page if needed */
if (tb->page_addr[1] != -1) {
virt_page2 = (pc & TARGET_PAGE_MASK) +
TARGET_PAGE_SIZE;
phys_page2 = get_phys_addr_code(env, virt_page2);
if (tb->page_addr[1] == phys_page2)
goto found;
} else {
goto found;
}
}
ptb1 = &tb->phys_hash_next;
}
not_found:
/* if no translated code available, then translate it now */
tb = tb_alloc(pc);
if (!tb) {
/* flush must be done */
tb_flush(env);
/* cannot fail at this point */
tb = tb_alloc(pc);
/* don't forget to invalidate previous TB info */
tb_invalidated_flag = 1;
}
tc_ptr = code_gen_ptr;
tb->tc_ptr = tc_ptr;
tb->cs_base = cs_base;
tb->flags = flags;
cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
/* check next page if needed */
virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
phys_page2 = -1;
if ((pc & TARGET_PAGE_MASK) != virt_page2) {
phys_page2 = get_phys_addr_code(env, virt_page2);
}
tb_link_phys(tb, phys_pc, phys_page2);
found:
/* we add the TB in the virtual pc hash table */
env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
spin_unlock(&tb_lock);
return tb;
}
static inline TranslationBlock *tb_find_fast(void)
{
TranslationBlock *tb;
target_ulong cs_base, pc;
unsigned int flags;
/* we record a subset of the CPU state. It will
always be the same before a given translated block
is executed. */
#if defined(TARGET_I386)
flags = env->hflags;
flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
cs_base = env->segs[R_CS].base;
pc = cs_base + env->eip;
#elif defined(TARGET_ARM)
flags = env->thumb | (env->vfp.vec_len << 1)
| (env->vfp.vec_stride << 4);
if ((env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR)
flags |= (1 << 6);
if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30))
flags |= (1 << 7);
cs_base = 0;
pc = env->regs[15];
#elif defined(TARGET_SPARC)
#ifdef TARGET_SPARC64
flags = (env->pstate << 2) | ((env->lsu & (DMMU_E | IMMU_E)) >> 2);
#else
flags = env->psrs | ((env->mmuregs[0] & (MMU_E | MMU_NF)) << 1);
#endif
cs_base = env->npc;
pc = env->pc;
#elif defined(TARGET_PPC)
flags = (msr_pr << MSR_PR) | (msr_fp << MSR_FP) |
(msr_se << MSR_SE) | (msr_le << MSR_LE);
cs_base = 0;
pc = env->nip;
#elif defined(TARGET_MIPS)
flags = env->hflags & (MIPS_HFLAG_TMASK | MIPS_HFLAG_BMASK);
cs_base = 0;
pc = env->PC;
#else
#error unsupported CPU
#endif
tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
if (__builtin_expect(!tb || tb->pc != pc || tb->cs_base != cs_base ||
tb->flags != flags, 0)) {
tb = tb_find_slow(pc, cs_base, flags);
/* Note: we do it here to avoid a gcc bug on Mac OS X when
doing it in tb_find_slow */
if (tb_invalidated_flag) {
/* as some TB could have been invalidated because
of memory exceptions while generating the code, we
must recompute the hash index here */
T0 = 0;
}
}
return tb;
}
/* main execution loop */
int cpu_exec(CPUState *env1)
{
int saved_T0, saved_T1;
#if defined(reg_T2)
int saved_T2;
#endif
CPUState *saved_env;
#if defined(TARGET_I386)
#ifdef reg_EAX
int saved_EAX;
#endif
#ifdef reg_ECX
int saved_ECX;
#endif
#ifdef reg_EDX
int saved_EDX;
#endif
#ifdef reg_EBX
int saved_EBX;
#endif
#ifdef reg_ESP
int saved_ESP;
#endif
#ifdef reg_EBP
int saved_EBP;
#endif
#ifdef reg_ESI
int saved_ESI;
#endif
#ifdef reg_EDI
int saved_EDI;
#endif
#elif defined(TARGET_SPARC)
#if defined(reg_REGWPTR)
uint32_t *saved_regwptr;
#endif
#endif
#ifdef __sparc__
int saved_i7, tmp_T0;
#endif
int ret, interrupt_request;
void (*gen_func)(void);
TranslationBlock *tb;
uint8_t *tc_ptr;
#if defined(TARGET_I386)
/* handle exit of HALTED state */
if (env1->hflags & HF_HALTED_MASK) {
/* disable halt condition */
if ((env1->interrupt_request & CPU_INTERRUPT_HARD) &&
(env1->eflags & IF_MASK)) {
env1->hflags &= ~HF_HALTED_MASK;
} else {
return EXCP_HALTED;
}
}
#elif defined(TARGET_PPC)
if (env1->halted) {
if (env1->msr[MSR_EE] &&
(env1->interrupt_request &
(CPU_INTERRUPT_HARD | CPU_INTERRUPT_TIMER))) {
env1->halted = 0;
} else {
return EXCP_HALTED;
}
}
#elif defined(TARGET_SPARC)
if (env1->halted) {
if ((env1->interrupt_request & CPU_INTERRUPT_HARD) &&
(env1->psret != 0)) {
env1->halted = 0;
} else {
return EXCP_HALTED;
}
}
#elif defined(TARGET_ARM)
if (env1->halted) {
/* An interrupt wakes the CPU even if the I and F CPSR bits are
set. */
if (env1->interrupt_request
& (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD)) {
env1->halted = 0;
} else {
return EXCP_HALTED;
}
}
#elif defined(TARGET_MIPS)
if (env1->halted) {
if (env1->interrupt_request &
(CPU_INTERRUPT_HARD | CPU_INTERRUPT_TIMER)) {
env1->halted = 0;
} else {
return EXCP_HALTED;
}
}
#endif
cpu_single_env = env1;
/* first we save global registers */
saved_env = env;
env = env1;
saved_T0 = T0;
saved_T1 = T1;
#if defined(reg_T2)
saved_T2 = T2;
#endif
#ifdef __sparc__
/* we also save i7 because longjmp may not restore it */
asm volatile ("mov %%i7, %0" : "=r" (saved_i7));
#endif
#if defined(TARGET_I386)
#ifdef reg_EAX
saved_EAX = EAX;
#endif
#ifdef reg_ECX
saved_ECX = ECX;
#endif
#ifdef reg_EDX
saved_EDX = EDX;
#endif
#ifdef reg_EBX
saved_EBX = EBX;
#endif
#ifdef reg_ESP
saved_ESP = ESP;
#endif
#ifdef reg_EBP
saved_EBP = EBP;
#endif
#ifdef reg_ESI
saved_ESI = ESI;
#endif
#ifdef reg_EDI
saved_EDI = EDI;
#endif
env_to_regs();
/* put eflags in CPU temporary format */
CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
DF = 1 - (2 * ((env->eflags >> 10) & 1));
CC_OP = CC_OP_EFLAGS;
env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
#elif defined(TARGET_ARM)
#elif defined(TARGET_SPARC)
#if defined(reg_REGWPTR)
saved_regwptr = REGWPTR;
#endif
#elif defined(TARGET_PPC)
#elif defined(TARGET_MIPS)
#else
#error unsupported target CPU
#endif
env->exception_index = -1;
/* prepare setjmp context for exception handling */
for(;;) {
if (setjmp(env->jmp_env) == 0) {
env->current_tb = NULL;
/* if an exception is pending, we execute it here */
if (env->exception_index >= 0) {
if (env->exception_index >= EXCP_INTERRUPT) {
/* exit request from the cpu execution loop */
ret = env->exception_index;
break;
} else if (env->user_mode_only) {
/* if user mode only, we simulate a fake exception
which will be hanlded outside the cpu execution
loop */
#if defined(TARGET_I386)
do_interrupt_user(env->exception_index,
env->exception_is_int,
env->error_code,
env->exception_next_eip);
#endif
ret = env->exception_index;
break;
} else {
#if defined(TARGET_I386)
/* simulate a real cpu exception. On i386, it can
trigger new exceptions, but we do not handle
double or triple faults yet. */
do_interrupt(env->exception_index,
env->exception_is_int,
env->error_code,
env->exception_next_eip, 0);
#elif defined(TARGET_PPC)
do_interrupt(env);
#elif defined(TARGET_MIPS)
do_interrupt(env);
#elif defined(TARGET_SPARC)
do_interrupt(env->exception_index);
#elif defined(TARGET_ARM)
do_interrupt(env);
#endif
}
env->exception_index = -1;
}
#ifdef USE_KQEMU
if (kqemu_is_ok(env) && env->interrupt_request == 0) {
int ret;
env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
ret = kqemu_cpu_exec(env);
/* put eflags in CPU temporary format */
CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
DF = 1 - (2 * ((env->eflags >> 10) & 1));
CC_OP = CC_OP_EFLAGS;
env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
if (ret == 1) {
/* exception */
longjmp(env->jmp_env, 1);
} else if (ret == 2) {
/* softmmu execution needed */
} else {
if (env->interrupt_request != 0) {
/* hardware interrupt will be executed just after */
} else {
/* otherwise, we restart */
longjmp(env->jmp_env, 1);
}
}
}
#endif
T0 = 0; /* force lookup of first TB */
for(;;) {
#ifdef __sparc__
/* g1 can be modified by some libc? functions */
tmp_T0 = T0;
#endif
interrupt_request = env->interrupt_request;
if (__builtin_expect(interrupt_request, 0)) {
#if defined(TARGET_I386)
/* if hardware interrupt pending, we execute it */
if ((interrupt_request & CPU_INTERRUPT_HARD) &&
(env->eflags & IF_MASK) &&
!(env->hflags & HF_INHIBIT_IRQ_MASK)) {
int intno;
env->interrupt_request &= ~CPU_INTERRUPT_HARD;
intno = cpu_get_pic_interrupt(env);
if (loglevel & CPU_LOG_TB_IN_ASM) {
fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno);
}
do_interrupt(intno, 0, 0, 0, 1);
/* ensure that no TB jump will be modified as
the program flow was changed */
#ifdef __sparc__
tmp_T0 = 0;
#else
T0 = 0;
#endif
}
#elif defined(TARGET_PPC)
#if 0
if ((interrupt_request & CPU_INTERRUPT_RESET)) {
cpu_ppc_reset(env);
}
#endif
if (msr_ee != 0) {
if ((interrupt_request & CPU_INTERRUPT_HARD)) {
/* Raise it */
env->exception_index = EXCP_EXTERNAL;
env->error_code = 0;
do_interrupt(env);
env->interrupt_request &= ~CPU_INTERRUPT_HARD;
#ifdef __sparc__
tmp_T0 = 0;
#else
T0 = 0;
#endif
} else if ((interrupt_request & CPU_INTERRUPT_TIMER)) {
/* Raise it */
env->exception_index = EXCP_DECR;
env->error_code = 0;
do_interrupt(env);
env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
#ifdef __sparc__
tmp_T0 = 0;
#else
T0 = 0;
#endif
}
}
#elif defined(TARGET_MIPS)
if ((interrupt_request & CPU_INTERRUPT_HARD) &&
(env->CP0_Status & (1 << CP0St_IE)) &&
(env->CP0_Status & env->CP0_Cause & 0x0000FF00) &&
!(env->hflags & MIPS_HFLAG_EXL) &&
!(env->hflags & MIPS_HFLAG_ERL) &&
!(env->hflags & MIPS_HFLAG_DM)) {
/* Raise it */
env->exception_index = EXCP_EXT_INTERRUPT;
env->error_code = 0;
do_interrupt(env);
env->interrupt_request &= ~CPU_INTERRUPT_HARD;
#ifdef __sparc__
tmp_T0 = 0;
#else
T0 = 0;
#endif
}
#elif defined(TARGET_SPARC)
if ((interrupt_request & CPU_INTERRUPT_HARD) &&
(env->psret != 0)) {
int pil = env->interrupt_index & 15;
int type = env->interrupt_index & 0xf0;
if (((type == TT_EXTINT) &&
(pil == 15 || pil > env->psrpil)) ||
type != TT_EXTINT) {
env->interrupt_request &= ~CPU_INTERRUPT_HARD;
do_interrupt(env->interrupt_index);
env->interrupt_index = 0;
#ifdef __sparc__
tmp_T0 = 0;
#else
T0 = 0;
#endif
}
} else if (interrupt_request & CPU_INTERRUPT_TIMER) {
//do_interrupt(0, 0, 0, 0, 0);
env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
} else if (interrupt_request & CPU_INTERRUPT_HALT) {
env1->halted = 1;
return EXCP_HALTED;
}
#elif defined(TARGET_ARM)
if (interrupt_request & CPU_INTERRUPT_FIQ
&& !(env->uncached_cpsr & CPSR_F)) {
env->exception_index = EXCP_FIQ;
do_interrupt(env);
}
if (interrupt_request & CPU_INTERRUPT_HARD
&& !(env->uncached_cpsr & CPSR_I)) {
env->exception_index = EXCP_IRQ;
do_interrupt(env);
}
#endif
if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
/* ensure that no TB jump will be modified as
the program flow was changed */
#ifdef __sparc__
tmp_T0 = 0;
#else
T0 = 0;
#endif
}
if (interrupt_request & CPU_INTERRUPT_EXIT) {
env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
env->exception_index = EXCP_INTERRUPT;
cpu_loop_exit();
}
}
#ifdef DEBUG_EXEC
if ((loglevel & CPU_LOG_TB_CPU)) {
#if defined(TARGET_I386)
/* restore flags in standard format */
#ifdef reg_EAX
env->regs[R_EAX] = EAX;
#endif
#ifdef reg_EBX
env->regs[R_EBX] = EBX;
#endif
#ifdef reg_ECX
env->regs[R_ECX] = ECX;
#endif
#ifdef reg_EDX
env->regs[R_EDX] = EDX;
#endif
#ifdef reg_ESI
env->regs[R_ESI] = ESI;
#endif
#ifdef reg_EDI
env->regs[R_EDI] = EDI;
#endif
#ifdef reg_EBP
env->regs[R_EBP] = EBP;
#endif
#ifdef reg_ESP
env->regs[R_ESP] = ESP;
#endif
env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
cpu_dump_state(env, logfile, fprintf, X86_DUMP_CCOP);
env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
#elif defined(TARGET_ARM)
cpu_dump_state(env, logfile, fprintf, 0);
#elif defined(TARGET_SPARC)
REGWPTR = env->regbase + (env->cwp * 16);
env->regwptr = REGWPTR;
cpu_dump_state(env, logfile, fprintf, 0);
#elif defined(TARGET_PPC)
cpu_dump_state(env, logfile, fprintf, 0);
#elif defined(TARGET_MIPS)
cpu_dump_state(env, logfile, fprintf, 0);
#else
#error unsupported target CPU
#endif
}
#endif
tb = tb_find_fast();
#ifdef DEBUG_EXEC
if ((loglevel & CPU_LOG_EXEC)) {
fprintf(logfile, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
(long)tb->tc_ptr, tb->pc,
lookup_symbol(tb->pc));
}
#endif
#ifdef __sparc__
T0 = tmp_T0;
#endif
/* see if we can patch the calling TB. When the TB
spans two pages, we cannot safely do a direct
jump. */
{
if (T0 != 0 &&
#if USE_KQEMU
(env->kqemu_enabled != 2) &&
#endif
tb->page_addr[1] == -1
#if defined(TARGET_I386) && defined(USE_CODE_COPY)
&& (tb->cflags & CF_CODE_COPY) ==
(((TranslationBlock *)(T0 & ~3))->cflags & CF_CODE_COPY)
#endif
) {
spin_lock(&tb_lock);
tb_add_jump((TranslationBlock *)(long)(T0 & ~3), T0 & 3, tb);
#if defined(USE_CODE_COPY)
/* propagates the FP use info */
((TranslationBlock *)(T0 & ~3))->cflags |=
(tb->cflags & CF_FP_USED);
#endif
spin_unlock(&tb_lock);
}
}
tc_ptr = tb->tc_ptr;
env->current_tb = tb;
/* execute the generated code */
gen_func = (void *)tc_ptr;
#if defined(__sparc__)
__asm__ __volatile__("call %0\n\t"
"mov %%o7,%%i0"
: /* no outputs */
: "r" (gen_func)
: "i0", "i1", "i2", "i3", "i4", "i5");
#elif defined(__arm__)
asm volatile ("mov pc, %0\n\t"
".global exec_loop\n\t"
"exec_loop:\n\t"
: /* no outputs */
: "r" (gen_func)
: "r1", "r2", "r3", "r8", "r9", "r10", "r12", "r14");
#elif defined(TARGET_I386) && defined(USE_CODE_COPY)
{
if (!(tb->cflags & CF_CODE_COPY)) {
if ((tb->cflags & CF_FP_USED) && env->native_fp_regs) {
save_native_fp_state(env);
}
gen_func();
} else {
if ((tb->cflags & CF_FP_USED) && !env->native_fp_regs) {
restore_native_fp_state(env);
}
/* we work with native eflags */
CC_SRC = cc_table[CC_OP].compute_all();
CC_OP = CC_OP_EFLAGS;
asm(".globl exec_loop\n"
"\n"
"debug1:\n"
" pushl %%ebp\n"
" fs movl %10, %9\n"
" fs movl %11, %%eax\n"
" andl $0x400, %%eax\n"
" fs orl %8, %%eax\n"
" pushl %%eax\n"
" popf\n"
" fs movl %%esp, %12\n"
" fs movl %0, %%eax\n"
" fs movl %1, %%ecx\n"
" fs movl %2, %%edx\n"
" fs movl %3, %%ebx\n"
" fs movl %4, %%esp\n"
" fs movl %5, %%ebp\n"
" fs movl %6, %%esi\n"
" fs movl %7, %%edi\n"
" fs jmp *%9\n"
"exec_loop:\n"
" fs movl %%esp, %4\n"
" fs movl %12, %%esp\n"
" fs movl %%eax, %0\n"
" fs movl %%ecx, %1\n"
" fs movl %%edx, %2\n"
" fs movl %%ebx, %3\n"
" fs movl %%ebp, %5\n"
" fs movl %%esi, %6\n"
" fs movl %%edi, %7\n"
" pushf\n"
" popl %%eax\n"
" movl %%eax, %%ecx\n"
" andl $0x400, %%ecx\n"
" shrl $9, %%ecx\n"
" andl $0x8d5, %%eax\n"
" fs movl %%eax, %8\n"
" movl $1, %%eax\n"
" subl %%ecx, %%eax\n"
" fs movl %%eax, %11\n"
" fs movl %9, %%ebx\n" /* get T0 value */
" popl %%ebp\n"
:
: "m" (*(uint8_t *)offsetof(CPUState, regs[0])),
"m" (*(uint8_t *)offsetof(CPUState, regs[1])),
"m" (*(uint8_t *)offsetof(CPUState, regs[2])),
"m" (*(uint8_t *)offsetof(CPUState, regs[3])),
"m" (*(uint8_t *)offsetof(CPUState, regs[4])),
"m" (*(uint8_t *)offsetof(CPUState, regs[5])),
"m" (*(uint8_t *)offsetof(CPUState, regs[6])),
"m" (*(uint8_t *)offsetof(CPUState, regs[7])),
"m" (*(uint8_t *)offsetof(CPUState, cc_src)),
"m" (*(uint8_t *)offsetof(CPUState, tmp0)),
"a" (gen_func),
"m" (*(uint8_t *)offsetof(CPUState, df)),
"m" (*(uint8_t *)offsetof(CPUState, saved_esp))
: "%ecx", "%edx"
);
}
}
#elif defined(__ia64)
struct fptr {
void *ip;
void *gp;
} fp;
fp.ip = tc_ptr;
fp.gp = code_gen_buffer + 2 * (1 << 20);
(*(void (*)(void)) &fp)();
#else
gen_func();
#endif
env->current_tb = NULL;
/* reset soft MMU for next block (it can currently
only be set by a memory fault) */
#if defined(TARGET_I386) && !defined(CONFIG_SOFTMMU)
if (env->hflags & HF_SOFTMMU_MASK) {
env->hflags &= ~HF_SOFTMMU_MASK;
/* do not allow linking to another block */
T0 = 0;
}
#endif
#if defined(USE_KQEMU)
#define MIN_CYCLE_BEFORE_SWITCH (100 * 1000)
if (kqemu_is_ok(env) &&
(cpu_get_time_fast() - env->last_io_time) >= MIN_CYCLE_BEFORE_SWITCH) {
cpu_loop_exit();
}
#endif
}
} else {
env_to_regs();
}
} /* for(;;) */
#if defined(TARGET_I386)
#if defined(USE_CODE_COPY)
if (env->native_fp_regs) {
save_native_fp_state(env);
}
#endif
/* restore flags in standard format */
env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
/* restore global registers */
#ifdef reg_EAX
EAX = saved_EAX;
#endif
#ifdef reg_ECX
ECX = saved_ECX;
#endif
#ifdef reg_EDX
EDX = saved_EDX;
#endif
#ifdef reg_EBX
EBX = saved_EBX;
#endif
#ifdef reg_ESP
ESP = saved_ESP;
#endif
#ifdef reg_EBP
EBP = saved_EBP;
#endif
#ifdef reg_ESI
ESI = saved_ESI;
#endif
#ifdef reg_EDI
EDI = saved_EDI;
#endif
#elif defined(TARGET_ARM)
/* XXX: Save/restore host fpu exception state?. */
#elif defined(TARGET_SPARC)
#if defined(reg_REGWPTR)
REGWPTR = saved_regwptr;
#endif
#elif defined(TARGET_PPC)
#elif defined(TARGET_MIPS)
#else
#error unsupported target CPU
#endif
#ifdef __sparc__
asm volatile ("mov %0, %%i7" : : "r" (saved_i7));
#endif
T0 = saved_T0;
T1 = saved_T1;
#if defined(reg_T2)
T2 = saved_T2;
#endif
env = saved_env;
/* fail safe : never use cpu_single_env outside cpu_exec() */
cpu_single_env = NULL;
return ret;
}
/* must only be called from the generated code as an exception can be
generated */
void tb_invalidate_page_range(target_ulong start, target_ulong end)
{
/* XXX: cannot enable it yet because it yields to MMU exception
where NIP != read address on PowerPC */
#if 0
target_ulong phys_addr;
phys_addr = get_phys_addr_code(env, start);
tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
#endif
}
#if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
{
CPUX86State *saved_env;
saved_env = env;
env = s;
if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
selector &= 0xffff;
cpu_x86_load_seg_cache(env, seg_reg, selector,
(selector << 4), 0xffff, 0);
} else {
load_seg(seg_reg, selector);
}
env = saved_env;
}
void cpu_x86_fsave(CPUX86State *s, uint8_t *ptr, int data32)
{
CPUX86State *saved_env;
saved_env = env;
env = s;
helper_fsave((target_ulong)ptr, data32);
env = saved_env;
}
void cpu_x86_frstor(CPUX86State *s, uint8_t *ptr, int data32)
{
CPUX86State *saved_env;
saved_env = env;
env = s;
helper_frstor((target_ulong)ptr, data32);
env = saved_env;
}
#endif /* TARGET_I386 */
#if !defined(CONFIG_SOFTMMU)
#if defined(TARGET_I386)
/* 'pc' is the host PC at which the exception was raised. 'address' is
the effective address of the memory exception. 'is_write' is 1 if a
write caused the exception and otherwise 0'. 'old_set' is the
signal set which should be restored */
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
int is_write, sigset_t *old_set,
void *puc)
{
TranslationBlock *tb;
int ret;
if (cpu_single_env)
env = cpu_single_env; /* XXX: find a correct solution for multithread */
#if defined(DEBUG_SIGNAL)
qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
pc, address, is_write, *(unsigned long *)old_set);
#endif
/* XXX: locking issue */
if (is_write && page_unprotect(address, pc, puc)) {
return 1;
}
/* see if it is an MMU fault */
ret = cpu_x86_handle_mmu_fault(env, address, is_write,
((env->hflags & HF_CPL_MASK) == 3), 0);
if (ret < 0)
return 0; /* not an MMU fault */
if (ret == 0)
return 1; /* the MMU fault was handled without causing real CPU fault */
/* now we have a real cpu fault */
tb = tb_find_pc(pc);
if (tb) {
/* the PC is inside the translated code. It means that we have
a virtual CPU fault */
cpu_restore_state(tb, env, pc, puc);
}
if (ret == 1) {
#if 0
printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n",
env->eip, env->cr[2], env->error_code);
#endif
/* we restore the process signal mask as the sigreturn should
do it (XXX: use sigsetjmp) */
sigprocmask(SIG_SETMASK, old_set, NULL);
raise_exception_err(env->exception_index, env->error_code);
} else {
/* activate soft MMU for this block */
env->hflags |= HF_SOFTMMU_MASK;
cpu_resume_from_signal(env, puc);
}
/* never comes here */
return 1;
}
#elif defined(TARGET_ARM)
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
int is_write, sigset_t *old_set,
void *puc)
{
TranslationBlock *tb;
int ret;
if (cpu_single_env)
env = cpu_single_env; /* XXX: find a correct solution for multithread */
#if defined(DEBUG_SIGNAL)
printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
pc, address, is_write, *(unsigned long *)old_set);
#endif
/* XXX: locking issue */
if (is_write && page_unprotect(address, pc, puc)) {
return 1;
}
/* see if it is an MMU fault */
ret = cpu_arm_handle_mmu_fault(env, address, is_write, 1, 0);
if (ret < 0)
return 0; /* not an MMU fault */
if (ret == 0)
return 1; /* the MMU fault was handled without causing real CPU fault */
/* now we have a real cpu fault */
tb = tb_find_pc(pc);
if (tb) {
/* the PC is inside the translated code. It means that we have
a virtual CPU fault */
cpu_restore_state(tb, env, pc, puc);
}
/* we restore the process signal mask as the sigreturn should
do it (XXX: use sigsetjmp) */
sigprocmask(SIG_SETMASK, old_set, NULL);
cpu_loop_exit();
}
#elif defined(TARGET_SPARC)
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
int is_write, sigset_t *old_set,
void *puc)
{
TranslationBlock *tb;
int ret;
if (cpu_single_env)
env = cpu_single_env; /* XXX: find a correct solution for multithread */
#if defined(DEBUG_SIGNAL)
printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
pc, address, is_write, *(unsigned long *)old_set);
#endif
/* XXX: locking issue */
if (is_write && page_unprotect(address, pc, puc)) {
return 1;
}
/* see if it is an MMU fault */
ret = cpu_sparc_handle_mmu_fault(env, address, is_write, 1, 0);
if (ret < 0)
return 0; /* not an MMU fault */
if (ret == 0)
return 1; /* the MMU fault was handled without causing real CPU fault */
/* now we have a real cpu fault */
tb = tb_find_pc(pc);
if (tb) {
/* the PC is inside the translated code. It means that we have
a virtual CPU fault */
cpu_restore_state(tb, env, pc, puc);
}
/* we restore the process signal mask as the sigreturn should
do it (XXX: use sigsetjmp) */
sigprocmask(SIG_SETMASK, old_set, NULL);
cpu_loop_exit();
}
#elif defined (TARGET_PPC)
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
int is_write, sigset_t *old_set,
void *puc)
{
TranslationBlock *tb;
int ret;
if (cpu_single_env)
env = cpu_single_env; /* XXX: find a correct solution for multithread */
#if defined(DEBUG_SIGNAL)
printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
pc, address, is_write, *(unsigned long *)old_set);
#endif
/* XXX: locking issue */
if (is_write && page_unprotect(address, pc, puc)) {
return 1;
}
/* see if it is an MMU fault */
ret = cpu_ppc_handle_mmu_fault(env, address, is_write, msr_pr, 0);
if (ret < 0)
return 0; /* not an MMU fault */
if (ret == 0)
return 1; /* the MMU fault was handled without causing real CPU fault */
/* now we have a real cpu fault */
tb = tb_find_pc(pc);
if (tb) {
/* the PC is inside the translated code. It means that we have
a virtual CPU fault */
cpu_restore_state(tb, env, pc, puc);
}
if (ret == 1) {
#if 0
printf("PF exception: NIP=0x%08x error=0x%x %p\n",
env->nip, env->error_code, tb);
#endif
/* we restore the process signal mask as the sigreturn should
do it (XXX: use sigsetjmp) */
sigprocmask(SIG_SETMASK, old_set, NULL);
do_raise_exception_err(env->exception_index, env->error_code);
} else {
/* activate soft MMU for this block */
cpu_resume_from_signal(env, puc);
}
/* never comes here */
return 1;
}
#elif defined (TARGET_MIPS)
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
int is_write, sigset_t *old_set,
void *puc)
{
TranslationBlock *tb;
int ret;
if (cpu_single_env)
env = cpu_single_env; /* XXX: find a correct solution for multithread */
#if defined(DEBUG_SIGNAL)
printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
pc, address, is_write, *(unsigned long *)old_set);
#endif
/* XXX: locking issue */
if (is_write && page_unprotect(address, pc, puc)) {
return 1;
}
/* see if it is an MMU fault */
ret = cpu_mips_handle_mmu_fault(env, address, is_write, 1, 0);
if (ret < 0)
return 0; /* not an MMU fault */
if (ret == 0)
return 1; /* the MMU fault was handled without causing real CPU fault */
/* now we have a real cpu fault */
tb = tb_find_pc(pc);
if (tb) {
/* the PC is inside the translated code. It means that we have
a virtual CPU fault */
cpu_restore_state(tb, env, pc, puc);
}
if (ret == 1) {
#if 0
printf("PF exception: NIP=0x%08x error=0x%x %p\n",
env->nip, env->error_code, tb);
#endif
/* we restore the process signal mask as the sigreturn should
do it (XXX: use sigsetjmp) */
sigprocmask(SIG_SETMASK, old_set, NULL);
do_raise_exception_err(env->exception_index, env->error_code);
} else {
/* activate soft MMU for this block */
cpu_resume_from_signal(env, puc);
}
/* never comes here */
return 1;
}
#else
#error unsupported target CPU
#endif
#if defined(__i386__)
#if defined(USE_CODE_COPY)
static void cpu_send_trap(unsigned long pc, int trap,
struct ucontext *uc)
{
TranslationBlock *tb;
if (cpu_single_env)
env = cpu_single_env; /* XXX: find a correct solution for multithread */
/* now we have a real cpu fault */
tb = tb_find_pc(pc);
if (tb) {
/* the PC is inside the translated code. It means that we have
a virtual CPU fault */
cpu_restore_state(tb, env, pc, uc);
}
sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
raise_exception_err(trap, env->error_code);
}
#endif
int cpu_signal_handler(int host_signum, struct siginfo *info,
void *puc)
{
struct ucontext *uc = puc;
unsigned long pc;
int trapno;
#ifndef REG_EIP
/* for glibc 2.1 */
#define REG_EIP EIP
#define REG_ERR ERR
#define REG_TRAPNO TRAPNO
#endif
pc = uc->uc_mcontext.gregs[REG_EIP];
trapno = uc->uc_mcontext.gregs[REG_TRAPNO];
#if defined(TARGET_I386) && defined(USE_CODE_COPY)
if (trapno == 0x00 || trapno == 0x05) {
/* send division by zero or bound exception */
cpu_send_trap(pc, trapno, uc);
return 1;
} else
#endif
return handle_cpu_signal(pc, (unsigned long)info->si_addr,
trapno == 0xe ?
(uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
&uc->uc_sigmask, puc);
}
#elif defined(__x86_64__)
int cpu_signal_handler(int host_signum, struct siginfo *info,
void *puc)
{
struct ucontext *uc = puc;
unsigned long pc;
pc = uc->uc_mcontext.gregs[REG_RIP];
return handle_cpu_signal(pc, (unsigned long)info->si_addr,
uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ?
(uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
&uc->uc_sigmask, puc);
}
#elif defined(__powerpc__)
/***********************************************************************
* signal context platform-specific definitions
* From Wine
*/
#ifdef linux
/* All Registers access - only for local access */
# define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name)
/* Gpr Registers access */
# define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
# define IAR_sig(context) REG_sig(nip, context) /* Program counter */
# define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */
# define CTR_sig(context) REG_sig(ctr, context) /* Count register */
# define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */
# define LR_sig(context) REG_sig(link, context) /* Link register */
# define CR_sig(context) REG_sig(ccr, context) /* Condition register */
/* Float Registers access */
# define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
# define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
/* Exception Registers access */
# define DAR_sig(context) REG_sig(dar, context)
# define DSISR_sig(context) REG_sig(dsisr, context)
# define TRAP_sig(context) REG_sig(trap, context)
#endif /* linux */
#ifdef __APPLE__
# include <sys/ucontext.h>
typedef struct ucontext SIGCONTEXT;
/* All Registers access - only for local access */
# define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name)
# define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name)
# define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name)
# define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name)
/* Gpr Registers access */
# define GPR_sig(reg_num, context) REG_sig(r##reg_num, context)
# define IAR_sig(context) REG_sig(srr0, context) /* Program counter */
# define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */
# define CTR_sig(context) REG_sig(ctr, context)
# define XER_sig(context) REG_sig(xer, context) /* Link register */
# define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */
# define CR_sig(context) REG_sig(cr, context) /* Condition register */
/* Float Registers access */
# define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context)
# define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context))
/* Exception Registers access */
# define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */
# define DSISR_sig(context) EXCEPREG_sig(dsisr, context)
# define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
#endif /* __APPLE__ */
int cpu_signal_handler(int host_signum, struct siginfo *info,
void *puc)
{
struct ucontext *uc = puc;
unsigned long pc;
int is_write;
pc = IAR_sig(uc);
is_write = 0;
#if 0
/* ppc 4xx case */
if (DSISR_sig(uc) & 0x00800000)
is_write = 1;
#else
if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
is_write = 1;
#endif
return handle_cpu_signal(pc, (unsigned long)info->si_addr,
is_write, &uc->uc_sigmask, puc);
}
#elif defined(__alpha__)
int cpu_signal_handler(int host_signum, struct siginfo *info,
void *puc)
{
struct ucontext *uc = puc;
uint32_t *pc = uc->uc_mcontext.sc_pc;
uint32_t insn = *pc;
int is_write = 0;
/* XXX: need kernel patch to get write flag faster */
switch (insn >> 26) {
case 0x0d: // stw
case 0x0e: // stb
case 0x0f: // stq_u
case 0x24: // stf
case 0x25: // stg
case 0x26: // sts
case 0x27: // stt
case 0x2c: // stl
case 0x2d: // stq
case 0x2e: // stl_c
case 0x2f: // stq_c
is_write = 1;
}
return handle_cpu_signal(pc, (unsigned long)info->si_addr,
is_write, &uc->uc_sigmask, puc);
}
#elif defined(__sparc__)
int cpu_signal_handler(int host_signum, struct siginfo *info,
void *puc)
{
uint32_t *regs = (uint32_t *)(info + 1);
void *sigmask = (regs + 20);
unsigned long pc;
int is_write;
uint32_t insn;
/* XXX: is there a standard glibc define ? */
pc = regs[1];
/* XXX: need kernel patch to get write flag faster */
is_write = 0;
insn = *(uint32_t *)pc;
if ((insn >> 30) == 3) {
switch((insn >> 19) & 0x3f) {
case 0x05: // stb
case 0x06: // sth
case 0x04: // st
case 0x07: // std
case 0x24: // stf
case 0x27: // stdf
case 0x25: // stfsr
is_write = 1;
break;
}
}
return handle_cpu_signal(pc, (unsigned long)info->si_addr,
is_write, sigmask, NULL);
}
#elif defined(__arm__)
int cpu_signal_handler(int host_signum, struct siginfo *info,
void *puc)
{
struct ucontext *uc = puc;
unsigned long pc;
int is_write;
pc = uc->uc_mcontext.gregs[R15];
/* XXX: compute is_write */
is_write = 0;
return handle_cpu_signal(pc, (unsigned long)info->si_addr,
is_write,
&uc->uc_sigmask);
}
#elif defined(__mc68000)
int cpu_signal_handler(int host_signum, struct siginfo *info,
void *puc)
{
struct ucontext *uc = puc;
unsigned long pc;
int is_write;
pc = uc->uc_mcontext.gregs[16];
/* XXX: compute is_write */
is_write = 0;
return handle_cpu_signal(pc, (unsigned long)info->si_addr,
is_write,
&uc->uc_sigmask, puc);
}
#elif defined(__ia64)
#ifndef __ISR_VALID
/* This ought to be in <bits/siginfo.h>... */
# define __ISR_VALID 1
# define si_flags _sifields._sigfault._si_pad0
#endif
int cpu_signal_handler(int host_signum, struct siginfo *info, void *puc)
{
struct ucontext *uc = puc;
unsigned long ip;
int is_write = 0;
ip = uc->uc_mcontext.sc_ip;
switch (host_signum) {
case SIGILL:
case SIGFPE:
case SIGSEGV:
case SIGBUS:
case SIGTRAP:
if (info->si_code && (info->si_flags & __ISR_VALID))
/* ISR.W (write-access) is bit 33: */
is_write = (info->si_isr >> 33) & 1;
break;
default:
break;
}
return handle_cpu_signal(ip, (unsigned long)info->si_addr,
is_write,
&uc->uc_sigmask, puc);
}
#elif defined(__s390__)
int cpu_signal_handler(int host_signum, struct siginfo *info,
void *puc)
{
struct ucontext *uc = puc;
unsigned long pc;
int is_write;
pc = uc->uc_mcontext.psw.addr;
/* XXX: compute is_write */
is_write = 0;
return handle_cpu_signal(pc, (unsigned long)info->si_addr,
is_write,
&uc->uc_sigmask, puc);
}
#else
#error host CPU specific signal handler needed
#endif
#endif /* !defined(CONFIG_SOFTMMU) */