e44203db9d
Some of those could have been squashed earlier, but it is easier to do it all here. Signed-off-by: Marc-André Lureau <marcandre.lureau@redhat.com> Signed-off-by: samuel Thibault <samuel.thibault@ens-lyon.org>
1157 lines
34 KiB
C
1157 lines
34 KiB
C
/*
|
|
* libslirp glue
|
|
*
|
|
* Copyright (c) 2004-2008 Fabrice Bellard
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
#include "qemu/osdep.h"
|
|
#include "qemu-common.h"
|
|
#include "slirp.h"
|
|
|
|
#ifdef WITH_QEMU
|
|
#include "state.h"
|
|
#endif
|
|
|
|
#ifndef _WIN32
|
|
#include <net/if.h>
|
|
#endif
|
|
|
|
int slirp_debug;
|
|
|
|
/* Define to 1 if you want KEEPALIVE timers */
|
|
bool slirp_do_keepalive;
|
|
|
|
/* host loopback address */
|
|
struct in_addr loopback_addr;
|
|
/* host loopback network mask */
|
|
unsigned long loopback_mask;
|
|
|
|
/* emulated hosts use the MAC addr 52:55:IP:IP:IP:IP */
|
|
static const uint8_t special_ethaddr[ETH_ALEN] = {
|
|
0x52, 0x55, 0x00, 0x00, 0x00, 0x00
|
|
};
|
|
|
|
u_int curtime;
|
|
|
|
static QTAILQ_HEAD(, Slirp) slirp_instances =
|
|
QTAILQ_HEAD_INITIALIZER(slirp_instances);
|
|
|
|
static struct in_addr dns_addr;
|
|
#ifndef _WIN32
|
|
static struct in6_addr dns6_addr;
|
|
#endif
|
|
static u_int dns_addr_time;
|
|
#ifndef _WIN32
|
|
static u_int dns6_addr_time;
|
|
#endif
|
|
|
|
#define TIMEOUT_FAST 2 /* milliseconds */
|
|
#define TIMEOUT_SLOW 499 /* milliseconds */
|
|
/* for the aging of certain requests like DNS */
|
|
#define TIMEOUT_DEFAULT 1000 /* milliseconds */
|
|
|
|
#ifdef _WIN32
|
|
|
|
int get_dns_addr(struct in_addr *pdns_addr)
|
|
{
|
|
FIXED_INFO *FixedInfo=NULL;
|
|
ULONG BufLen;
|
|
DWORD ret;
|
|
IP_ADDR_STRING *pIPAddr;
|
|
struct in_addr tmp_addr;
|
|
|
|
if (dns_addr.s_addr != 0 && (curtime - dns_addr_time) < TIMEOUT_DEFAULT) {
|
|
*pdns_addr = dns_addr;
|
|
return 0;
|
|
}
|
|
|
|
FixedInfo = (FIXED_INFO *)GlobalAlloc(GPTR, sizeof(FIXED_INFO));
|
|
BufLen = sizeof(FIXED_INFO);
|
|
|
|
if (ERROR_BUFFER_OVERFLOW == GetNetworkParams(FixedInfo, &BufLen)) {
|
|
if (FixedInfo) {
|
|
GlobalFree(FixedInfo);
|
|
FixedInfo = NULL;
|
|
}
|
|
FixedInfo = GlobalAlloc(GPTR, BufLen);
|
|
}
|
|
|
|
if ((ret = GetNetworkParams(FixedInfo, &BufLen)) != ERROR_SUCCESS) {
|
|
printf("GetNetworkParams failed. ret = %08x\n", (u_int)ret );
|
|
if (FixedInfo) {
|
|
GlobalFree(FixedInfo);
|
|
FixedInfo = NULL;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
pIPAddr = &(FixedInfo->DnsServerList);
|
|
inet_aton(pIPAddr->IpAddress.String, &tmp_addr);
|
|
*pdns_addr = tmp_addr;
|
|
dns_addr = tmp_addr;
|
|
dns_addr_time = curtime;
|
|
if (FixedInfo) {
|
|
GlobalFree(FixedInfo);
|
|
FixedInfo = NULL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int get_dns6_addr(struct in6_addr *pdns6_addr, uint32_t *scope_id)
|
|
{
|
|
return -1;
|
|
}
|
|
|
|
static void winsock_cleanup(void)
|
|
{
|
|
WSACleanup();
|
|
}
|
|
|
|
#else
|
|
|
|
static int get_dns_addr_cached(void *pdns_addr, void *cached_addr,
|
|
socklen_t addrlen,
|
|
struct stat *cached_stat, u_int *cached_time)
|
|
{
|
|
struct stat old_stat;
|
|
if (curtime - *cached_time < TIMEOUT_DEFAULT) {
|
|
memcpy(pdns_addr, cached_addr, addrlen);
|
|
return 0;
|
|
}
|
|
old_stat = *cached_stat;
|
|
if (stat("/etc/resolv.conf", cached_stat) != 0) {
|
|
return -1;
|
|
}
|
|
if (cached_stat->st_dev == old_stat.st_dev
|
|
&& cached_stat->st_ino == old_stat.st_ino
|
|
&& cached_stat->st_size == old_stat.st_size
|
|
&& cached_stat->st_mtime == old_stat.st_mtime) {
|
|
memcpy(pdns_addr, cached_addr, addrlen);
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static int get_dns_addr_resolv_conf(int af, void *pdns_addr, void *cached_addr,
|
|
socklen_t addrlen, uint32_t *scope_id,
|
|
u_int *cached_time)
|
|
{
|
|
char buff[512];
|
|
char buff2[257];
|
|
FILE *f;
|
|
int found = 0;
|
|
void *tmp_addr = alloca(addrlen);
|
|
unsigned if_index;
|
|
|
|
f = fopen("/etc/resolv.conf", "r");
|
|
if (!f)
|
|
return -1;
|
|
|
|
DEBUG_MISC("IP address of your DNS(s):");
|
|
while (fgets(buff, 512, f) != NULL) {
|
|
if (sscanf(buff, "nameserver%*[ \t]%256s", buff2) == 1) {
|
|
char *c = strchr(buff2, '%');
|
|
if (c) {
|
|
if_index = if_nametoindex(c + 1);
|
|
*c = '\0';
|
|
} else {
|
|
if_index = 0;
|
|
}
|
|
|
|
if (!inet_pton(af, buff2, tmp_addr)) {
|
|
continue;
|
|
}
|
|
/* If it's the first one, set it to dns_addr */
|
|
if (!found) {
|
|
memcpy(pdns_addr, tmp_addr, addrlen);
|
|
memcpy(cached_addr, tmp_addr, addrlen);
|
|
if (scope_id) {
|
|
*scope_id = if_index;
|
|
}
|
|
*cached_time = curtime;
|
|
}
|
|
|
|
if (++found > 3) {
|
|
DEBUG_MISC(" (more)");
|
|
break;
|
|
} else if (slirp_debug & DBG_MISC) {
|
|
char s[INET6_ADDRSTRLEN];
|
|
const char *res = inet_ntop(af, tmp_addr, s, sizeof(s));
|
|
if (!res) {
|
|
res = " (string conversion error)";
|
|
}
|
|
DEBUG_MISC(" %s", res);
|
|
}
|
|
}
|
|
}
|
|
fclose(f);
|
|
if (!found)
|
|
return -1;
|
|
return 0;
|
|
}
|
|
|
|
int get_dns_addr(struct in_addr *pdns_addr)
|
|
{
|
|
static struct stat dns_addr_stat;
|
|
|
|
if (dns_addr.s_addr != 0) {
|
|
int ret;
|
|
ret = get_dns_addr_cached(pdns_addr, &dns_addr, sizeof(dns_addr),
|
|
&dns_addr_stat, &dns_addr_time);
|
|
if (ret <= 0) {
|
|
return ret;
|
|
}
|
|
}
|
|
return get_dns_addr_resolv_conf(AF_INET, pdns_addr, &dns_addr,
|
|
sizeof(dns_addr), NULL, &dns_addr_time);
|
|
}
|
|
|
|
int get_dns6_addr(struct in6_addr *pdns6_addr, uint32_t *scope_id)
|
|
{
|
|
static struct stat dns6_addr_stat;
|
|
|
|
if (!in6_zero(&dns6_addr)) {
|
|
int ret;
|
|
ret = get_dns_addr_cached(pdns6_addr, &dns6_addr, sizeof(dns6_addr),
|
|
&dns6_addr_stat, &dns6_addr_time);
|
|
if (ret <= 0) {
|
|
return ret;
|
|
}
|
|
}
|
|
return get_dns_addr_resolv_conf(AF_INET6, pdns6_addr, &dns6_addr,
|
|
sizeof(dns6_addr),
|
|
scope_id, &dns6_addr_time);
|
|
}
|
|
|
|
#endif
|
|
|
|
static void slirp_init_once(void)
|
|
{
|
|
static int initialized;
|
|
const char *debug;
|
|
#ifdef _WIN32
|
|
WSADATA Data;
|
|
#endif
|
|
|
|
if (initialized) {
|
|
return;
|
|
}
|
|
initialized = 1;
|
|
|
|
#ifdef _WIN32
|
|
WSAStartup(MAKEWORD(2,0), &Data);
|
|
atexit(winsock_cleanup);
|
|
#endif
|
|
|
|
loopback_addr.s_addr = htonl(INADDR_LOOPBACK);
|
|
loopback_mask = htonl(IN_CLASSA_NET);
|
|
|
|
debug = g_getenv("SLIRP_DEBUG");
|
|
if (debug) {
|
|
const GDebugKey keys[] = {
|
|
{ "call", DBG_CALL },
|
|
{ "misc", DBG_MISC },
|
|
{ "error", DBG_ERROR },
|
|
{ "tftp", DBG_TFTP },
|
|
};
|
|
slirp_debug = g_parse_debug_string(debug, keys, G_N_ELEMENTS(keys));
|
|
}
|
|
|
|
|
|
}
|
|
|
|
Slirp *slirp_init(int restricted, bool in_enabled, struct in_addr vnetwork,
|
|
struct in_addr vnetmask, struct in_addr vhost,
|
|
bool in6_enabled,
|
|
struct in6_addr vprefix_addr6, uint8_t vprefix_len,
|
|
struct in6_addr vhost6, const char *vhostname,
|
|
const char *tftp_server_name,
|
|
const char *tftp_path, const char *bootfile,
|
|
struct in_addr vdhcp_start, struct in_addr vnameserver,
|
|
struct in6_addr vnameserver6, const char **vdnssearch,
|
|
const char *vdomainname,
|
|
const SlirpCb *callbacks,
|
|
void *opaque)
|
|
{
|
|
Slirp *slirp = g_malloc0(sizeof(Slirp));
|
|
|
|
slirp_init_once();
|
|
|
|
slirp->cb = callbacks;
|
|
slirp->grand = g_rand_new();
|
|
slirp->restricted = restricted;
|
|
|
|
slirp->in_enabled = in_enabled;
|
|
slirp->in6_enabled = in6_enabled;
|
|
|
|
if_init(slirp);
|
|
ip_init(slirp);
|
|
ip6_init(slirp);
|
|
|
|
/* Initialise mbufs *after* setting the MTU */
|
|
m_init(slirp);
|
|
|
|
slirp->vnetwork_addr = vnetwork;
|
|
slirp->vnetwork_mask = vnetmask;
|
|
slirp->vhost_addr = vhost;
|
|
slirp->vprefix_addr6 = vprefix_addr6;
|
|
slirp->vprefix_len = vprefix_len;
|
|
slirp->vhost_addr6 = vhost6;
|
|
if (vhostname) {
|
|
slirp_pstrcpy(slirp->client_hostname, sizeof(slirp->client_hostname),
|
|
vhostname);
|
|
}
|
|
slirp->tftp_prefix = g_strdup(tftp_path);
|
|
slirp->bootp_filename = g_strdup(bootfile);
|
|
slirp->vdomainname = g_strdup(vdomainname);
|
|
slirp->vdhcp_startaddr = vdhcp_start;
|
|
slirp->vnameserver_addr = vnameserver;
|
|
slirp->vnameserver_addr6 = vnameserver6;
|
|
slirp->tftp_server_name = g_strdup(tftp_server_name);
|
|
|
|
if (vdnssearch) {
|
|
translate_dnssearch(slirp, vdnssearch);
|
|
}
|
|
|
|
slirp->opaque = opaque;
|
|
|
|
#ifdef WITH_QEMU
|
|
slirp_state_register(slirp);
|
|
#endif
|
|
QTAILQ_INSERT_TAIL(&slirp_instances, slirp, entry);
|
|
|
|
return slirp;
|
|
}
|
|
|
|
void slirp_cleanup(Slirp *slirp)
|
|
{
|
|
struct gfwd_list *e, *next;
|
|
|
|
for (e = slirp->guestfwd_list; e; e = next) {
|
|
next = e->ex_next;
|
|
g_free(e->ex_exec);
|
|
g_free(e);
|
|
}
|
|
|
|
QTAILQ_REMOVE(&slirp_instances, slirp, entry);
|
|
#ifdef WITH_QEMU
|
|
slirp_state_unregister(slirp);
|
|
#endif
|
|
ip_cleanup(slirp);
|
|
ip6_cleanup(slirp);
|
|
m_cleanup(slirp);
|
|
|
|
g_rand_free(slirp->grand);
|
|
|
|
g_free(slirp->vdnssearch);
|
|
g_free(slirp->tftp_prefix);
|
|
g_free(slirp->bootp_filename);
|
|
g_free(slirp->vdomainname);
|
|
g_free(slirp);
|
|
}
|
|
|
|
#define CONN_CANFSEND(so) (((so)->so_state & (SS_FCANTSENDMORE|SS_ISFCONNECTED)) == SS_ISFCONNECTED)
|
|
#define CONN_CANFRCV(so) (((so)->so_state & (SS_FCANTRCVMORE|SS_ISFCONNECTED)) == SS_ISFCONNECTED)
|
|
|
|
static void slirp_update_timeout(uint32_t *timeout)
|
|
{
|
|
Slirp *slirp;
|
|
uint32_t t;
|
|
|
|
if (*timeout <= TIMEOUT_FAST) {
|
|
return;
|
|
}
|
|
|
|
t = MIN(1000, *timeout);
|
|
|
|
/* If we have tcp timeout with slirp, then we will fill @timeout with
|
|
* more precise value.
|
|
*/
|
|
QTAILQ_FOREACH(slirp, &slirp_instances, entry) {
|
|
if (slirp->time_fasttimo) {
|
|
*timeout = TIMEOUT_FAST;
|
|
return;
|
|
}
|
|
if (slirp->do_slowtimo) {
|
|
t = MIN(TIMEOUT_SLOW, t);
|
|
}
|
|
}
|
|
*timeout = t;
|
|
}
|
|
|
|
void slirp_pollfds_fill(GArray *pollfds, uint32_t *timeout)
|
|
{
|
|
Slirp *slirp;
|
|
struct socket *so, *so_next;
|
|
|
|
if (QTAILQ_EMPTY(&slirp_instances)) {
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* First, TCP sockets
|
|
*/
|
|
|
|
QTAILQ_FOREACH(slirp, &slirp_instances, entry) {
|
|
/*
|
|
* *_slowtimo needs calling if there are IP fragments
|
|
* in the fragment queue, or there are TCP connections active
|
|
*/
|
|
slirp->do_slowtimo = ((slirp->tcb.so_next != &slirp->tcb) ||
|
|
(&slirp->ipq.ip_link != slirp->ipq.ip_link.next));
|
|
|
|
for (so = slirp->tcb.so_next; so != &slirp->tcb;
|
|
so = so_next) {
|
|
int events = 0;
|
|
|
|
so_next = so->so_next;
|
|
|
|
so->pollfds_idx = -1;
|
|
|
|
/*
|
|
* See if we need a tcp_fasttimo
|
|
*/
|
|
if (slirp->time_fasttimo == 0 &&
|
|
so->so_tcpcb->t_flags & TF_DELACK) {
|
|
slirp->time_fasttimo = curtime; /* Flag when want a fasttimo */
|
|
}
|
|
|
|
/*
|
|
* NOFDREF can include still connecting to local-host,
|
|
* newly socreated() sockets etc. Don't want to select these.
|
|
*/
|
|
if (so->so_state & SS_NOFDREF || so->s == -1) {
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Set for reading sockets which are accepting
|
|
*/
|
|
if (so->so_state & SS_FACCEPTCONN) {
|
|
GPollFD pfd = {
|
|
.fd = so->s,
|
|
.events = G_IO_IN | G_IO_HUP | G_IO_ERR,
|
|
};
|
|
so->pollfds_idx = pollfds->len;
|
|
g_array_append_val(pollfds, pfd);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Set for writing sockets which are connecting
|
|
*/
|
|
if (so->so_state & SS_ISFCONNECTING) {
|
|
GPollFD pfd = {
|
|
.fd = so->s,
|
|
.events = G_IO_OUT | G_IO_ERR,
|
|
};
|
|
so->pollfds_idx = pollfds->len;
|
|
g_array_append_val(pollfds, pfd);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Set for writing if we are connected, can send more, and
|
|
* we have something to send
|
|
*/
|
|
if (CONN_CANFSEND(so) && so->so_rcv.sb_cc) {
|
|
events |= G_IO_OUT | G_IO_ERR;
|
|
}
|
|
|
|
/*
|
|
* Set for reading (and urgent data) if we are connected, can
|
|
* receive more, and we have room for it XXX /2 ?
|
|
*/
|
|
if (CONN_CANFRCV(so) &&
|
|
(so->so_snd.sb_cc < (so->so_snd.sb_datalen/2))) {
|
|
events |= G_IO_IN | G_IO_HUP | G_IO_ERR | G_IO_PRI;
|
|
}
|
|
|
|
if (events) {
|
|
GPollFD pfd = {
|
|
.fd = so->s,
|
|
.events = events,
|
|
};
|
|
so->pollfds_idx = pollfds->len;
|
|
g_array_append_val(pollfds, pfd);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* UDP sockets
|
|
*/
|
|
for (so = slirp->udb.so_next; so != &slirp->udb;
|
|
so = so_next) {
|
|
so_next = so->so_next;
|
|
|
|
so->pollfds_idx = -1;
|
|
|
|
/*
|
|
* See if it's timed out
|
|
*/
|
|
if (so->so_expire) {
|
|
if (so->so_expire <= curtime) {
|
|
udp_detach(so);
|
|
continue;
|
|
} else {
|
|
slirp->do_slowtimo = true; /* Let socket expire */
|
|
}
|
|
}
|
|
|
|
/*
|
|
* When UDP packets are received from over the
|
|
* link, they're sendto()'d straight away, so
|
|
* no need for setting for writing
|
|
* Limit the number of packets queued by this session
|
|
* to 4. Note that even though we try and limit this
|
|
* to 4 packets, the session could have more queued
|
|
* if the packets needed to be fragmented
|
|
* (XXX <= 4 ?)
|
|
*/
|
|
if ((so->so_state & SS_ISFCONNECTED) && so->so_queued <= 4) {
|
|
GPollFD pfd = {
|
|
.fd = so->s,
|
|
.events = G_IO_IN | G_IO_HUP | G_IO_ERR,
|
|
};
|
|
so->pollfds_idx = pollfds->len;
|
|
g_array_append_val(pollfds, pfd);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* ICMP sockets
|
|
*/
|
|
for (so = slirp->icmp.so_next; so != &slirp->icmp;
|
|
so = so_next) {
|
|
so_next = so->so_next;
|
|
|
|
so->pollfds_idx = -1;
|
|
|
|
/*
|
|
* See if it's timed out
|
|
*/
|
|
if (so->so_expire) {
|
|
if (so->so_expire <= curtime) {
|
|
icmp_detach(so);
|
|
continue;
|
|
} else {
|
|
slirp->do_slowtimo = true; /* Let socket expire */
|
|
}
|
|
}
|
|
|
|
if (so->so_state & SS_ISFCONNECTED) {
|
|
GPollFD pfd = {
|
|
.fd = so->s,
|
|
.events = G_IO_IN | G_IO_HUP | G_IO_ERR,
|
|
};
|
|
so->pollfds_idx = pollfds->len;
|
|
g_array_append_val(pollfds, pfd);
|
|
}
|
|
}
|
|
}
|
|
slirp_update_timeout(timeout);
|
|
}
|
|
|
|
void slirp_pollfds_poll(GArray *pollfds, int select_error)
|
|
{
|
|
Slirp *slirp = QTAILQ_FIRST(&slirp_instances);
|
|
struct socket *so, *so_next;
|
|
int ret;
|
|
|
|
if (!slirp) {
|
|
return;
|
|
}
|
|
|
|
curtime = slirp->cb->clock_get_ns() / SCALE_MS;
|
|
|
|
QTAILQ_FOREACH(slirp, &slirp_instances, entry) {
|
|
/*
|
|
* See if anything has timed out
|
|
*/
|
|
if (slirp->time_fasttimo &&
|
|
((curtime - slirp->time_fasttimo) >= TIMEOUT_FAST)) {
|
|
tcp_fasttimo(slirp);
|
|
slirp->time_fasttimo = 0;
|
|
}
|
|
if (slirp->do_slowtimo &&
|
|
((curtime - slirp->last_slowtimo) >= TIMEOUT_SLOW)) {
|
|
ip_slowtimo(slirp);
|
|
tcp_slowtimo(slirp);
|
|
slirp->last_slowtimo = curtime;
|
|
}
|
|
|
|
/*
|
|
* Check sockets
|
|
*/
|
|
if (!select_error) {
|
|
/*
|
|
* Check TCP sockets
|
|
*/
|
|
for (so = slirp->tcb.so_next; so != &slirp->tcb;
|
|
so = so_next) {
|
|
int revents;
|
|
|
|
so_next = so->so_next;
|
|
|
|
revents = 0;
|
|
if (so->pollfds_idx != -1) {
|
|
revents = g_array_index(pollfds, GPollFD,
|
|
so->pollfds_idx).revents;
|
|
}
|
|
|
|
if (so->so_state & SS_NOFDREF || so->s == -1) {
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Check for URG data
|
|
* This will soread as well, so no need to
|
|
* test for G_IO_IN below if this succeeds
|
|
*/
|
|
if (revents & G_IO_PRI) {
|
|
ret = sorecvoob(so);
|
|
if (ret < 0) {
|
|
/* Socket error might have resulted in the socket being
|
|
* removed, do not try to do anything more with it. */
|
|
continue;
|
|
}
|
|
}
|
|
/*
|
|
* Check sockets for reading
|
|
*/
|
|
else if (revents & (G_IO_IN | G_IO_HUP | G_IO_ERR)) {
|
|
/*
|
|
* Check for incoming connections
|
|
*/
|
|
if (so->so_state & SS_FACCEPTCONN) {
|
|
tcp_connect(so);
|
|
continue;
|
|
} /* else */
|
|
ret = soread(so);
|
|
|
|
/* Output it if we read something */
|
|
if (ret > 0) {
|
|
tcp_output(sototcpcb(so));
|
|
}
|
|
if (ret < 0) {
|
|
/* Socket error might have resulted in the socket being
|
|
* removed, do not try to do anything more with it. */
|
|
continue;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check sockets for writing
|
|
*/
|
|
if (!(so->so_state & SS_NOFDREF) &&
|
|
(revents & (G_IO_OUT | G_IO_ERR))) {
|
|
/*
|
|
* Check for non-blocking, still-connecting sockets
|
|
*/
|
|
if (so->so_state & SS_ISFCONNECTING) {
|
|
/* Connected */
|
|
so->so_state &= ~SS_ISFCONNECTING;
|
|
|
|
ret = send(so->s, (const void *) &ret, 0, 0);
|
|
if (ret < 0) {
|
|
/* XXXXX Must fix, zero bytes is a NOP */
|
|
if (errno == EAGAIN || errno == EWOULDBLOCK ||
|
|
errno == EINPROGRESS || errno == ENOTCONN) {
|
|
continue;
|
|
}
|
|
|
|
/* else failed */
|
|
so->so_state &= SS_PERSISTENT_MASK;
|
|
so->so_state |= SS_NOFDREF;
|
|
}
|
|
/* else so->so_state &= ~SS_ISFCONNECTING; */
|
|
|
|
/*
|
|
* Continue tcp_input
|
|
*/
|
|
tcp_input((struct mbuf *)NULL, sizeof(struct ip), so,
|
|
so->so_ffamily);
|
|
/* continue; */
|
|
} else {
|
|
ret = sowrite(so);
|
|
if (ret > 0) {
|
|
/* Call tcp_output in case we need to send a window
|
|
* update to the guest, otherwise it will be stuck
|
|
* until it sends a window probe. */
|
|
tcp_output(sototcpcb(so));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Now UDP sockets.
|
|
* Incoming packets are sent straight away, they're not buffered.
|
|
* Incoming UDP data isn't buffered either.
|
|
*/
|
|
for (so = slirp->udb.so_next; so != &slirp->udb;
|
|
so = so_next) {
|
|
int revents;
|
|
|
|
so_next = so->so_next;
|
|
|
|
revents = 0;
|
|
if (so->pollfds_idx != -1) {
|
|
revents = g_array_index(pollfds, GPollFD,
|
|
so->pollfds_idx).revents;
|
|
}
|
|
|
|
if (so->s != -1 &&
|
|
(revents & (G_IO_IN | G_IO_HUP | G_IO_ERR))) {
|
|
sorecvfrom(so);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check incoming ICMP relies.
|
|
*/
|
|
for (so = slirp->icmp.so_next; so != &slirp->icmp;
|
|
so = so_next) {
|
|
int revents;
|
|
|
|
so_next = so->so_next;
|
|
|
|
revents = 0;
|
|
if (so->pollfds_idx != -1) {
|
|
revents = g_array_index(pollfds, GPollFD,
|
|
so->pollfds_idx).revents;
|
|
}
|
|
|
|
if (so->s != -1 &&
|
|
(revents & (G_IO_IN | G_IO_HUP | G_IO_ERR))) {
|
|
icmp_receive(so);
|
|
}
|
|
}
|
|
}
|
|
|
|
if_start(slirp);
|
|
}
|
|
}
|
|
|
|
static void arp_input(Slirp *slirp, const uint8_t *pkt, int pkt_len)
|
|
{
|
|
struct slirp_arphdr *ah = (struct slirp_arphdr *)(pkt + ETH_HLEN);
|
|
uint8_t arp_reply[MAX(ETH_HLEN + sizeof(struct slirp_arphdr), 64)];
|
|
struct ethhdr *reh = (struct ethhdr *)arp_reply;
|
|
struct slirp_arphdr *rah = (struct slirp_arphdr *)(arp_reply + ETH_HLEN);
|
|
int ar_op;
|
|
struct gfwd_list *ex_ptr;
|
|
|
|
if (!slirp->in_enabled) {
|
|
return;
|
|
}
|
|
|
|
ar_op = ntohs(ah->ar_op);
|
|
switch(ar_op) {
|
|
case ARPOP_REQUEST:
|
|
if (ah->ar_tip == ah->ar_sip) {
|
|
/* Gratuitous ARP */
|
|
arp_table_add(slirp, ah->ar_sip, ah->ar_sha);
|
|
return;
|
|
}
|
|
|
|
if ((ah->ar_tip & slirp->vnetwork_mask.s_addr) ==
|
|
slirp->vnetwork_addr.s_addr) {
|
|
if (ah->ar_tip == slirp->vnameserver_addr.s_addr ||
|
|
ah->ar_tip == slirp->vhost_addr.s_addr)
|
|
goto arp_ok;
|
|
for (ex_ptr = slirp->guestfwd_list; ex_ptr; ex_ptr = ex_ptr->ex_next) {
|
|
if (ex_ptr->ex_addr.s_addr == ah->ar_tip)
|
|
goto arp_ok;
|
|
}
|
|
return;
|
|
arp_ok:
|
|
memset(arp_reply, 0, sizeof(arp_reply));
|
|
|
|
arp_table_add(slirp, ah->ar_sip, ah->ar_sha);
|
|
|
|
/* ARP request for alias/dns mac address */
|
|
memcpy(reh->h_dest, pkt + ETH_ALEN, ETH_ALEN);
|
|
memcpy(reh->h_source, special_ethaddr, ETH_ALEN - 4);
|
|
memcpy(&reh->h_source[2], &ah->ar_tip, 4);
|
|
reh->h_proto = htons(ETH_P_ARP);
|
|
|
|
rah->ar_hrd = htons(1);
|
|
rah->ar_pro = htons(ETH_P_IP);
|
|
rah->ar_hln = ETH_ALEN;
|
|
rah->ar_pln = 4;
|
|
rah->ar_op = htons(ARPOP_REPLY);
|
|
memcpy(rah->ar_sha, reh->h_source, ETH_ALEN);
|
|
rah->ar_sip = ah->ar_tip;
|
|
memcpy(rah->ar_tha, ah->ar_sha, ETH_ALEN);
|
|
rah->ar_tip = ah->ar_sip;
|
|
slirp->cb->output(slirp->opaque, arp_reply, sizeof(arp_reply));
|
|
}
|
|
break;
|
|
case ARPOP_REPLY:
|
|
arp_table_add(slirp, ah->ar_sip, ah->ar_sha);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
void slirp_input(Slirp *slirp, const uint8_t *pkt, int pkt_len)
|
|
{
|
|
struct mbuf *m;
|
|
int proto;
|
|
|
|
if (pkt_len < ETH_HLEN)
|
|
return;
|
|
|
|
proto = (((uint16_t) pkt[12]) << 8) + pkt[13];
|
|
switch(proto) {
|
|
case ETH_P_ARP:
|
|
arp_input(slirp, pkt, pkt_len);
|
|
break;
|
|
case ETH_P_IP:
|
|
case ETH_P_IPV6:
|
|
m = m_get(slirp);
|
|
if (!m)
|
|
return;
|
|
/* Note: we add 2 to align the IP header on 4 bytes,
|
|
* and add the margin for the tcpiphdr overhead */
|
|
if (M_FREEROOM(m) < pkt_len + TCPIPHDR_DELTA + 2) {
|
|
m_inc(m, pkt_len + TCPIPHDR_DELTA + 2);
|
|
}
|
|
m->m_len = pkt_len + TCPIPHDR_DELTA + 2;
|
|
memcpy(m->m_data + TCPIPHDR_DELTA + 2, pkt, pkt_len);
|
|
|
|
m->m_data += TCPIPHDR_DELTA + 2 + ETH_HLEN;
|
|
m->m_len -= TCPIPHDR_DELTA + 2 + ETH_HLEN;
|
|
|
|
if (proto == ETH_P_IP) {
|
|
ip_input(m);
|
|
} else if (proto == ETH_P_IPV6) {
|
|
ip6_input(m);
|
|
}
|
|
break;
|
|
|
|
case ETH_P_NCSI:
|
|
ncsi_input(slirp, pkt, pkt_len);
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Prepare the IPv4 packet to be sent to the ethernet device. Returns 1 if no
|
|
* packet should be sent, 0 if the packet must be re-queued, 2 if the packet
|
|
* is ready to go.
|
|
*/
|
|
static int if_encap4(Slirp *slirp, struct mbuf *ifm, struct ethhdr *eh,
|
|
uint8_t ethaddr[ETH_ALEN])
|
|
{
|
|
const struct ip *iph = (const struct ip *)ifm->m_data;
|
|
|
|
if (iph->ip_dst.s_addr == 0) {
|
|
/* 0.0.0.0 can not be a destination address, something went wrong,
|
|
* avoid making it worse */
|
|
return 1;
|
|
}
|
|
if (!arp_table_search(slirp, iph->ip_dst.s_addr, ethaddr)) {
|
|
uint8_t arp_req[ETH_HLEN + sizeof(struct slirp_arphdr)];
|
|
struct ethhdr *reh = (struct ethhdr *)arp_req;
|
|
struct slirp_arphdr *rah = (struct slirp_arphdr *)(arp_req + ETH_HLEN);
|
|
|
|
if (!ifm->resolution_requested) {
|
|
/* If the client addr is not known, send an ARP request */
|
|
memset(reh->h_dest, 0xff, ETH_ALEN);
|
|
memcpy(reh->h_source, special_ethaddr, ETH_ALEN - 4);
|
|
memcpy(&reh->h_source[2], &slirp->vhost_addr, 4);
|
|
reh->h_proto = htons(ETH_P_ARP);
|
|
rah->ar_hrd = htons(1);
|
|
rah->ar_pro = htons(ETH_P_IP);
|
|
rah->ar_hln = ETH_ALEN;
|
|
rah->ar_pln = 4;
|
|
rah->ar_op = htons(ARPOP_REQUEST);
|
|
|
|
/* source hw addr */
|
|
memcpy(rah->ar_sha, special_ethaddr, ETH_ALEN - 4);
|
|
memcpy(&rah->ar_sha[2], &slirp->vhost_addr, 4);
|
|
|
|
/* source IP */
|
|
rah->ar_sip = slirp->vhost_addr.s_addr;
|
|
|
|
/* target hw addr (none) */
|
|
memset(rah->ar_tha, 0, ETH_ALEN);
|
|
|
|
/* target IP */
|
|
rah->ar_tip = iph->ip_dst.s_addr;
|
|
slirp->client_ipaddr = iph->ip_dst;
|
|
slirp->cb->output(slirp->opaque, arp_req, sizeof(arp_req));
|
|
ifm->resolution_requested = true;
|
|
|
|
/* Expire request and drop outgoing packet after 1 second */
|
|
ifm->expiration_date = slirp->cb->clock_get_ns() + 1000000000ULL;
|
|
}
|
|
return 0;
|
|
} else {
|
|
memcpy(eh->h_source, special_ethaddr, ETH_ALEN - 4);
|
|
/* XXX: not correct */
|
|
memcpy(&eh->h_source[2], &slirp->vhost_addr, 4);
|
|
eh->h_proto = htons(ETH_P_IP);
|
|
|
|
/* Send this */
|
|
return 2;
|
|
}
|
|
}
|
|
|
|
/* Prepare the IPv6 packet to be sent to the ethernet device. Returns 1 if no
|
|
* packet should be sent, 0 if the packet must be re-queued, 2 if the packet
|
|
* is ready to go.
|
|
*/
|
|
static int if_encap6(Slirp *slirp, struct mbuf *ifm, struct ethhdr *eh,
|
|
uint8_t ethaddr[ETH_ALEN])
|
|
{
|
|
const struct ip6 *ip6h = mtod(ifm, const struct ip6 *);
|
|
if (!ndp_table_search(slirp, ip6h->ip_dst, ethaddr)) {
|
|
if (!ifm->resolution_requested) {
|
|
ndp_send_ns(slirp, ip6h->ip_dst);
|
|
ifm->resolution_requested = true;
|
|
ifm->expiration_date = slirp->cb->clock_get_ns() + 1000000000ULL;
|
|
}
|
|
return 0;
|
|
} else {
|
|
eh->h_proto = htons(ETH_P_IPV6);
|
|
in6_compute_ethaddr(ip6h->ip_src, eh->h_source);
|
|
|
|
/* Send this */
|
|
return 2;
|
|
}
|
|
}
|
|
|
|
/* Output the IP packet to the ethernet device. Returns 0 if the packet must be
|
|
* re-queued.
|
|
*/
|
|
int if_encap(Slirp *slirp, struct mbuf *ifm)
|
|
{
|
|
uint8_t buf[1600];
|
|
struct ethhdr *eh = (struct ethhdr *)buf;
|
|
uint8_t ethaddr[ETH_ALEN];
|
|
const struct ip *iph = (const struct ip *)ifm->m_data;
|
|
int ret;
|
|
|
|
if (ifm->m_len + ETH_HLEN > sizeof(buf)) {
|
|
return 1;
|
|
}
|
|
|
|
switch (iph->ip_v) {
|
|
case IPVERSION:
|
|
ret = if_encap4(slirp, ifm, eh, ethaddr);
|
|
if (ret < 2) {
|
|
return ret;
|
|
}
|
|
break;
|
|
|
|
case IP6VERSION:
|
|
ret = if_encap6(slirp, ifm, eh, ethaddr);
|
|
if (ret < 2) {
|
|
return ret;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
g_assert_not_reached();
|
|
break;
|
|
}
|
|
|
|
memcpy(eh->h_dest, ethaddr, ETH_ALEN);
|
|
DEBUG_ARG("src = %02x:%02x:%02x:%02x:%02x:%02x",
|
|
eh->h_source[0], eh->h_source[1], eh->h_source[2],
|
|
eh->h_source[3], eh->h_source[4], eh->h_source[5]);
|
|
DEBUG_ARG("dst = %02x:%02x:%02x:%02x:%02x:%02x",
|
|
eh->h_dest[0], eh->h_dest[1], eh->h_dest[2],
|
|
eh->h_dest[3], eh->h_dest[4], eh->h_dest[5]);
|
|
memcpy(buf + sizeof(struct ethhdr), ifm->m_data, ifm->m_len);
|
|
slirp->cb->output(slirp->opaque, buf, ifm->m_len + ETH_HLEN);
|
|
return 1;
|
|
}
|
|
|
|
/* Drop host forwarding rule, return 0 if found. */
|
|
int slirp_remove_hostfwd(Slirp *slirp, int is_udp, struct in_addr host_addr,
|
|
int host_port)
|
|
{
|
|
struct socket *so;
|
|
struct socket *head = (is_udp ? &slirp->udb : &slirp->tcb);
|
|
struct sockaddr_in addr;
|
|
int port = htons(host_port);
|
|
socklen_t addr_len;
|
|
|
|
for (so = head->so_next; so != head; so = so->so_next) {
|
|
addr_len = sizeof(addr);
|
|
if ((so->so_state & SS_HOSTFWD) &&
|
|
getsockname(so->s, (struct sockaddr *)&addr, &addr_len) == 0 &&
|
|
addr.sin_addr.s_addr == host_addr.s_addr &&
|
|
addr.sin_port == port) {
|
|
so->slirp->cb->unregister_poll_fd(so->s);
|
|
slirp_closesocket(so->s);
|
|
sofree(so);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
int slirp_add_hostfwd(Slirp *slirp, int is_udp, struct in_addr host_addr,
|
|
int host_port, struct in_addr guest_addr, int guest_port)
|
|
{
|
|
if (!guest_addr.s_addr) {
|
|
guest_addr = slirp->vdhcp_startaddr;
|
|
}
|
|
if (is_udp) {
|
|
if (!udp_listen(slirp, host_addr.s_addr, htons(host_port),
|
|
guest_addr.s_addr, htons(guest_port), SS_HOSTFWD))
|
|
return -1;
|
|
} else {
|
|
if (!tcp_listen(slirp, host_addr.s_addr, htons(host_port),
|
|
guest_addr.s_addr, htons(guest_port), SS_HOSTFWD))
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static bool
|
|
check_guestfwd(Slirp *slirp, struct in_addr *guest_addr, int guest_port)
|
|
{
|
|
struct gfwd_list *tmp_ptr;
|
|
|
|
if (!guest_addr->s_addr) {
|
|
guest_addr->s_addr = slirp->vnetwork_addr.s_addr |
|
|
(htonl(0x0204) & ~slirp->vnetwork_mask.s_addr);
|
|
}
|
|
if ((guest_addr->s_addr & slirp->vnetwork_mask.s_addr) !=
|
|
slirp->vnetwork_addr.s_addr ||
|
|
guest_addr->s_addr == slirp->vhost_addr.s_addr ||
|
|
guest_addr->s_addr == slirp->vnameserver_addr.s_addr) {
|
|
return false;
|
|
}
|
|
|
|
/* check if the port is "bound" */
|
|
for (tmp_ptr = slirp->guestfwd_list; tmp_ptr; tmp_ptr = tmp_ptr->ex_next) {
|
|
if (guest_port == tmp_ptr->ex_fport &&
|
|
guest_addr->s_addr == tmp_ptr->ex_addr.s_addr)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
int slirp_add_exec(Slirp *slirp, const char *cmdline,
|
|
struct in_addr *guest_addr, int guest_port)
|
|
{
|
|
if (!check_guestfwd(slirp, guest_addr, guest_port)) {
|
|
return -1;
|
|
}
|
|
|
|
add_exec(&slirp->guestfwd_list, cmdline, *guest_addr, htons(guest_port));
|
|
return 0;
|
|
}
|
|
|
|
int slirp_add_guestfwd(Slirp *slirp, SlirpWriteCb write_cb, void *opaque,
|
|
struct in_addr *guest_addr, int guest_port)
|
|
{
|
|
if (!check_guestfwd(slirp, guest_addr, guest_port)) {
|
|
return -1;
|
|
}
|
|
|
|
add_guestfwd(&slirp->guestfwd_list, write_cb, opaque,
|
|
*guest_addr, htons(guest_port));
|
|
return 0;
|
|
}
|
|
|
|
ssize_t slirp_send(struct socket *so, const void *buf, size_t len, int flags)
|
|
{
|
|
if (so->s == -1 && so->guestfwd) {
|
|
/* XXX this blocks entire thread. Rewrite to use
|
|
* qemu_chr_fe_write and background I/O callbacks */
|
|
so->guestfwd->write_cb(buf, len, so->guestfwd->opaque);
|
|
return len;
|
|
}
|
|
|
|
if (so->s == -1) {
|
|
/*
|
|
* This should in theory not happen but it is hard to be
|
|
* sure because some code paths will end up with so->s == -1
|
|
* on a failure but don't dispose of the struct socket.
|
|
* Check specifically, so we don't pass -1 to send().
|
|
*/
|
|
errno = EBADF;
|
|
return -1;
|
|
}
|
|
|
|
return send(so->s, buf, len, flags);
|
|
}
|
|
|
|
struct socket *
|
|
slirp_find_ctl_socket(Slirp *slirp, struct in_addr guest_addr, int guest_port)
|
|
{
|
|
struct socket *so;
|
|
|
|
for (so = slirp->tcb.so_next; so != &slirp->tcb; so = so->so_next) {
|
|
if (so->so_faddr.s_addr == guest_addr.s_addr &&
|
|
htons(so->so_fport) == guest_port) {
|
|
return so;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
size_t slirp_socket_can_recv(Slirp *slirp, struct in_addr guest_addr,
|
|
int guest_port)
|
|
{
|
|
struct iovec iov[2];
|
|
struct socket *so;
|
|
|
|
so = slirp_find_ctl_socket(slirp, guest_addr, guest_port);
|
|
|
|
if (!so || so->so_state & SS_NOFDREF) {
|
|
return 0;
|
|
}
|
|
|
|
if (!CONN_CANFRCV(so) || so->so_snd.sb_cc >= (so->so_snd.sb_datalen/2)) {
|
|
return 0;
|
|
}
|
|
|
|
return sopreprbuf(so, iov, NULL);
|
|
}
|
|
|
|
void slirp_socket_recv(Slirp *slirp, struct in_addr guest_addr, int guest_port,
|
|
const uint8_t *buf, int size)
|
|
{
|
|
int ret;
|
|
struct socket *so = slirp_find_ctl_socket(slirp, guest_addr, guest_port);
|
|
|
|
if (!so)
|
|
return;
|
|
|
|
ret = soreadbuf(so, (const char *)buf, size);
|
|
|
|
if (ret > 0)
|
|
tcp_output(sototcpcb(so));
|
|
}
|