qemu/target/avr/cpu.h
Philippe Mathieu-Daudé 9348028e7e target: Move ArchCPUClass definition to 'cpu.h'
The OBJECT_DECLARE_CPU_TYPE() macro forward-declares each
ArchCPUClass type. These forward declarations are sufficient
for code in hw/ to use the QOM definitions. No need to expose
these structure definitions. Keep each local to their target/
by moving them to the corresponding "cpu.h" header.

Suggested-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20231013140116.255-13-philmd@linaro.org>
2023-11-07 13:08:48 +01:00

256 lines
6.5 KiB
C

/*
* QEMU AVR CPU
*
* Copyright (c) 2016-2020 Michael Rolnik
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see
* <http://www.gnu.org/licenses/lgpl-2.1.html>
*/
#ifndef QEMU_AVR_CPU_H
#define QEMU_AVR_CPU_H
#include "cpu-qom.h"
#include "exec/cpu-defs.h"
#ifdef CONFIG_USER_ONLY
#error "AVR 8-bit does not support user mode"
#endif
#define CPU_RESOLVING_TYPE TYPE_AVR_CPU
#define TCG_GUEST_DEFAULT_MO 0
/*
* AVR has two memory spaces, data & code.
* e.g. both have 0 address
* ST/LD instructions access data space
* LPM/SPM and instruction fetching access code memory space
*/
#define MMU_CODE_IDX 0
#define MMU_DATA_IDX 1
#define EXCP_RESET 1
#define EXCP_INT(n) (EXCP_RESET + (n) + 1)
/* Number of CPU registers */
#define NUMBER_OF_CPU_REGISTERS 32
/* Number of IO registers accessible by ld/st/in/out */
#define NUMBER_OF_IO_REGISTERS 64
/*
* Offsets of AVR memory regions in host memory space.
*
* This is needed because the AVR has separate code and data address
* spaces that both have start from zero but have to go somewhere in
* host memory.
*
* It's also useful to know where some things are, like the IO registers.
*/
/* Flash program memory */
#define OFFSET_CODE 0x00000000
/* CPU registers, IO registers, and SRAM */
#define OFFSET_DATA 0x00800000
/* CPU registers specifically, these are mapped at the start of data */
#define OFFSET_CPU_REGISTERS OFFSET_DATA
/*
* IO registers, including status register, stack pointer, and memory
* mapped peripherals, mapped just after CPU registers
*/
#define OFFSET_IO_REGISTERS (OFFSET_DATA + NUMBER_OF_CPU_REGISTERS)
typedef enum AVRFeature {
AVR_FEATURE_SRAM,
AVR_FEATURE_1_BYTE_PC,
AVR_FEATURE_2_BYTE_PC,
AVR_FEATURE_3_BYTE_PC,
AVR_FEATURE_1_BYTE_SP,
AVR_FEATURE_2_BYTE_SP,
AVR_FEATURE_BREAK,
AVR_FEATURE_DES,
AVR_FEATURE_RMW, /* Read Modify Write - XCH LAC LAS LAT */
AVR_FEATURE_EIJMP_EICALL,
AVR_FEATURE_IJMP_ICALL,
AVR_FEATURE_JMP_CALL,
AVR_FEATURE_ADIW_SBIW,
AVR_FEATURE_SPM,
AVR_FEATURE_SPMX,
AVR_FEATURE_ELPMX,
AVR_FEATURE_ELPM,
AVR_FEATURE_LPMX,
AVR_FEATURE_LPM,
AVR_FEATURE_MOVW,
AVR_FEATURE_MUL,
AVR_FEATURE_RAMPD,
AVR_FEATURE_RAMPX,
AVR_FEATURE_RAMPY,
AVR_FEATURE_RAMPZ,
} AVRFeature;
typedef struct CPUArchState {
uint32_t pc_w; /* 0x003fffff up to 22 bits */
uint32_t sregC; /* 0x00000001 1 bit */
uint32_t sregZ; /* 0x00000001 1 bit */
uint32_t sregN; /* 0x00000001 1 bit */
uint32_t sregV; /* 0x00000001 1 bit */
uint32_t sregS; /* 0x00000001 1 bit */
uint32_t sregH; /* 0x00000001 1 bit */
uint32_t sregT; /* 0x00000001 1 bit */
uint32_t sregI; /* 0x00000001 1 bit */
uint32_t rampD; /* 0x00ff0000 8 bits */
uint32_t rampX; /* 0x00ff0000 8 bits */
uint32_t rampY; /* 0x00ff0000 8 bits */
uint32_t rampZ; /* 0x00ff0000 8 bits */
uint32_t eind; /* 0x00ff0000 8 bits */
uint32_t r[NUMBER_OF_CPU_REGISTERS]; /* 8 bits each */
uint32_t sp; /* 16 bits */
uint32_t skip; /* if set skip instruction */
uint64_t intsrc; /* interrupt sources */
bool fullacc; /* CPU/MEM if true MEM only otherwise */
uint64_t features;
} CPUAVRState;
/**
* AVRCPU:
* @env: #CPUAVRState
*
* A AVR CPU.
*/
struct ArchCPU {
CPUState parent_obj;
CPUAVRState env;
};
/**
* AVRCPUClass:
* @parent_realize: The parent class' realize handler.
* @parent_phases: The parent class' reset phase handlers.
*
* A AVR CPU model.
*/
struct AVRCPUClass {
CPUClass parent_class;
DeviceRealize parent_realize;
ResettablePhases parent_phases;
};
extern const struct VMStateDescription vms_avr_cpu;
void avr_cpu_do_interrupt(CPUState *cpu);
bool avr_cpu_exec_interrupt(CPUState *cpu, int int_req);
hwaddr avr_cpu_get_phys_page_debug(CPUState *cpu, vaddr addr);
int avr_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
int avr_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
int avr_print_insn(bfd_vma addr, disassemble_info *info);
vaddr avr_cpu_gdb_adjust_breakpoint(CPUState *cpu, vaddr addr);
static inline int avr_feature(CPUAVRState *env, AVRFeature feature)
{
return (env->features & (1U << feature)) != 0;
}
static inline void set_avr_feature(CPUAVRState *env, int feature)
{
env->features |= (1U << feature);
}
#define cpu_list avr_cpu_list
#define cpu_mmu_index avr_cpu_mmu_index
static inline int avr_cpu_mmu_index(CPUAVRState *env, bool ifetch)
{
return ifetch ? MMU_CODE_IDX : MMU_DATA_IDX;
}
void avr_cpu_tcg_init(void);
void avr_cpu_list(void);
int cpu_avr_exec(CPUState *cpu);
enum {
TB_FLAGS_FULL_ACCESS = 1,
TB_FLAGS_SKIP = 2,
};
static inline void cpu_get_tb_cpu_state(CPUAVRState *env, vaddr *pc,
uint64_t *cs_base, uint32_t *pflags)
{
uint32_t flags = 0;
*pc = env->pc_w * 2;
*cs_base = 0;
if (env->fullacc) {
flags |= TB_FLAGS_FULL_ACCESS;
}
if (env->skip) {
flags |= TB_FLAGS_SKIP;
}
*pflags = flags;
}
static inline int cpu_interrupts_enabled(CPUAVRState *env)
{
return env->sregI != 0;
}
static inline uint8_t cpu_get_sreg(CPUAVRState *env)
{
return (env->sregC) << 0
| (env->sregZ) << 1
| (env->sregN) << 2
| (env->sregV) << 3
| (env->sregS) << 4
| (env->sregH) << 5
| (env->sregT) << 6
| (env->sregI) << 7;
}
static inline void cpu_set_sreg(CPUAVRState *env, uint8_t sreg)
{
env->sregC = (sreg >> 0) & 0x01;
env->sregZ = (sreg >> 1) & 0x01;
env->sregN = (sreg >> 2) & 0x01;
env->sregV = (sreg >> 3) & 0x01;
env->sregS = (sreg >> 4) & 0x01;
env->sregH = (sreg >> 5) & 0x01;
env->sregT = (sreg >> 6) & 0x01;
env->sregI = (sreg >> 7) & 0x01;
}
bool avr_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
MMUAccessType access_type, int mmu_idx,
bool probe, uintptr_t retaddr);
#include "exec/cpu-all.h"
#endif /* QEMU_AVR_CPU_H */