qemu/include/qapi/visitor.h
Markus Armbruster 1f5842487a qapi: Only input visitors can actually fail
The previous few commits have made this more obvious, and removed the
one exception.  Time to clarify the documentation, and drop dead error
checking.

Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Message-Id: <20200424084338.26803-13-armbru@redhat.com>
2020-04-30 07:26:40 +02:00

656 lines
22 KiB
C

/*
* Core Definitions for QAPI Visitor Classes
*
* Copyright (C) 2012-2016 Red Hat, Inc.
* Copyright IBM, Corp. 2011
*
* Authors:
* Anthony Liguori <aliguori@us.ibm.com>
*
* This work is licensed under the terms of the GNU LGPL, version 2.1 or later.
* See the COPYING.LIB file in the top-level directory.
*
*/
#ifndef QAPI_VISITOR_H
#define QAPI_VISITOR_H
#include "qapi/qapi-builtin-types.h"
/*
* The QAPI schema defines both a set of C data types, and a QMP wire
* format. QAPI objects can contain references to other QAPI objects,
* resulting in a directed acyclic graph. QAPI also generates visitor
* functions to walk these graphs. This file represents the interface
* for doing work at each node of a QAPI graph; it can also be used
* for a virtual walk, where there is no actual QAPI C struct.
*
* There are four kinds of visitors: input visitors (QObject, string,
* and QemuOpts) parse an external representation and build the
* corresponding QAPI object, output visitors (QObject and string)
* take a QAPI object and generate an external representation, the
* dealloc visitor takes a QAPI object (possibly partially
* constructed) and recursively frees it, and the clone visitor
* performs a deep clone of a QAPI object.
*
* While the dealloc and QObject input/output visitors are general,
* the string, QemuOpts, and clone visitors have some implementation
* limitations; see the documentation for each visitor for more
* details on what it supports. Also, see visitor-impl.h for the
* callback contracts implemented by each visitor, and
* docs/devel/qapi-code-gen.txt for more about the QAPI code
* generator.
*
* All of the visitors are created via:
*
* Visitor *subtype_visitor_new(parameters...);
*
* A visitor should be used for exactly one top-level visit_type_FOO()
* or virtual walk; if that is successful, the caller can optionally
* call visit_complete() (useful only for output visits, but safe to
* call on all visits). Then, regardless of success or failure, the
* user should call visit_free() to clean up resources. It is okay to
* free the visitor without completing the visit, if some other error
* is detected in the meantime.
*
* The clone and dealloc visitor should not be used directly outside
* of QAPI code. Use the qapi_free_FOO() and QAPI_CLONE() instead,
* described below.
*
* All QAPI types have a corresponding function with a signature
* roughly compatible with this:
*
* void visit_type_FOO(Visitor *v, const char *name, T obj, Error **errp);
*
* where T is FOO for scalar types, and FOO * otherwise. The scalar
* visitors are declared here; the remaining visitors are generated in
* qapi-visit-MODULE.h.
*
* The @name parameter of visit_type_FOO() describes the relation
* between this QAPI value and its parent container. When visiting
* the root of a tree, @name is ignored; when visiting a member of an
* object, @name is the key associated with the value; when visiting a
* member of a list, @name is NULL; and when visiting the member of an
* alternate, @name should equal the name used for visiting the
* alternate.
*
* The visit_type_FOO() functions take a non-null @obj argument; they
* allocate *@obj during input visits, leave it unchanged during
* output and clone visits, and free it (recursively) during a dealloc
* visit.
*
* Each function also takes the customary @errp argument (see
* qapi/error.h for details), for reporting any errors (such as if a
* member @name is not present, or is present but not the specified
* type). Only input visitors can fail.
*
* If an error is detected during visit_type_FOO() with an input
* visitor, then *@obj will be set to NULL for pointer types, and left
* unchanged for scalar types.
*
* Using an output or clone visitor with an incomplete object has
* undefined behavior (other than a special case for visit_type_str()
* treating NULL like ""), while the dealloc visitor safely handles
* incomplete objects. Since input visitors never produce an
* incomplete object, such an object is possible only by manual
* construction.
*
* For the QAPI object types (structs, unions, and alternates), there
* is an additional generated function in qapi-visit-MODULE.h
* compatible with:
*
* void visit_type_FOO_members(Visitor *v, FOO *obj, Error **errp);
*
* for visiting the members of a type without also allocating the QAPI
* struct.
*
* Additionally, QAPI pointer types (structs, unions, alternates, and
* lists) have a generated function in qapi-types-MODULE.h compatible
* with:
*
* void qapi_free_FOO(FOO *obj);
*
* Does nothing when @obj is NULL.
*
* Such objects may also be used with macro
*
* Type *QAPI_CLONE(Type, src);
*
* in order to perform a deep clone of @src.
*
* For QAPI types can that inherit from a base type, a function is
* generated for going from the derived type to the base type:
*
* BASE *qapi_CHILD_base(CHILD *obj);
*
* Typical input visitor usage involves:
*
* <example>
* Foo *f;
* Error *err = NULL;
* Visitor *v;
*
* v = FOO_visitor_new(...);
* visit_type_Foo(v, NULL, &f, &err);
* if (err) {
* ...handle error...
* } else {
* ...use f...
* }
* visit_free(v);
* qapi_free_Foo(f);
* </example>
*
* For a list, it is:
* <example>
* FooList *l;
* Error *err = NULL;
* Visitor *v;
*
* v = FOO_visitor_new(...);
* visit_type_FooList(v, NULL, &l, &err);
* if (err) {
* ...handle error...
* } else {
* for ( ; l; l = l->next) {
* ...use l->value...
* }
* }
* visit_free(v);
* qapi_free_FooList(l);
* </example>
*
* Typical output visitor usage:
*
* <example>
* Foo *f = ...obtain populated object...
* Visitor *v;
* Type *result;
*
* v = FOO_visitor_new(..., &result);
* visit_type_Foo(v, NULL, &f, &error_abort);
* visit_complete(v, &result);
* visit_free(v);
* ...use result...
* </example>
*
* It is also possible to use the visitors to do a virtual walk, where
* no actual QAPI object is present. In this situation, decisions
* about what needs to be walked are made by the calling code, and
* structured visits are split between pairs of start and end methods
* (where the end method must be called if the start function
* succeeded, even if an intermediate visit encounters an error).
* Thus, a virtual walk corresponding to '{ "list": [1, 2] }' looks
* like:
*
* <example>
* Visitor *v;
* Error *err = NULL;
* int value;
*
* v = FOO_visitor_new(...);
* visit_start_struct(v, NULL, NULL, 0, &err);
* if (err) {
* goto out;
* }
* visit_start_list(v, "list", NULL, 0, &err);
* if (err) {
* goto outobj;
* }
* value = 1;
* visit_type_int(v, NULL, &value, &err);
* if (err) {
* goto outlist;
* }
* value = 2;
* visit_type_int(v, NULL, &value, &err);
* if (err) {
* goto outlist;
* }
* outlist:
* if (!err) {
* visit_check_list(v, &err);
* }
* visit_end_list(v, NULL);
* if (!err) {
* visit_check_struct(v, &err);
* }
* outobj:
* visit_end_struct(v, NULL);
* out:
* visit_free(v);
* </example>
*
* This file provides helpers for use by the generated
* visit_type_FOO(): visit_optional() for the 'has_member' field
* associated with optional 'member' in the C struct,
* visit_next_list() for advancing through a FooList linked list, and
* visit_is_input() for cleaning up on failure.
*/
/*** Useful types ***/
/* This struct is layout-compatible with all other *List structs
* created by the QAPI generator. It is used as a typical
* singly-linked list. */
typedef struct GenericList {
struct GenericList *next;
char padding[];
} GenericList;
/* This struct is layout-compatible with all Alternate types
* created by the QAPI generator. */
typedef struct GenericAlternate {
QType type;
char padding[];
} GenericAlternate;
/*** Visitor cleanup ***/
/*
* Complete the visit, collecting any output.
*
* May only be called only once after a successful top-level
* visit_type_FOO() or visit_end_ITEM(), and marks the end of the
* visit. The @opaque pointer should match the output parameter
* passed to the subtype_visitor_new() used to create an output
* visitor, or NULL for any other visitor. Needed for output
* visitors, but may also be called with other visitors.
*/
void visit_complete(Visitor *v, void *opaque);
/*
* Free @v and any resources it has tied up.
*
* May be called whether or not the visit has been successfully
* completed, but should not be called until a top-level
* visit_type_FOO() or visit_start_ITEM() has been performed on the
* visitor. Safe if @v is NULL.
*/
void visit_free(Visitor *v);
/*** Visiting structures ***/
/*
* Start visiting an object @obj (struct or union).
*
* @name expresses the relationship of this object to its parent
* container; see the general description of @name above.
*
* @obj must be non-NULL for a real walk, in which case @size
* determines how much memory an input or clone visitor will allocate
* into *@obj. @obj may also be NULL for a virtual walk, in which
* case @size is ignored.
*
* On failure, set *@obj to NULL and store an error through @errp.
* Can happen only when @v is an input visitor.
*
* After visit_start_struct() succeeds, the caller may visit its
* members one after the other, passing the member's name and address
* within the struct. Finally, visit_end_struct() needs to be called
* with the same @obj to clean up, even if intermediate visits fail.
* See the examples above.
*
* FIXME Should this be named visit_start_object, since it is also
* used for QAPI unions, and maps to JSON objects?
*/
void visit_start_struct(Visitor *v, const char *name, void **obj,
size_t size, Error **errp);
/*
* Prepare for completing an object visit.
*
* On failure, store an error through @errp. Can happen only when @v
* is an input visitor.
*
* Should be called prior to visit_end_struct() if all other
* intermediate visit steps were successful, to allow the visitor one
* last chance to report errors. May be skipped on a cleanup path,
* where there is no need to check for further errors.
*/
void visit_check_struct(Visitor *v, Error **errp);
/*
* Complete an object visit started earlier.
*
* @obj must match what was passed to the paired visit_start_struct().
*
* Must be called after any successful use of visit_start_struct(),
* even if intermediate processing was skipped due to errors, to allow
* the backend to release any resources. Destroying the visitor early
* with visit_free() behaves as if this was implicitly called.
*/
void visit_end_struct(Visitor *v, void **obj);
/*** Visiting lists ***/
/*
* Start visiting a list.
*
* @name expresses the relationship of this list to its parent
* container; see the general description of @name above.
*
* @list must be non-NULL for a real walk, in which case @size
* determines how much memory an input or clone visitor will allocate
* into *@list (at least sizeof(GenericList)). Some visitors also
* allow @list to be NULL for a virtual walk, in which case @size is
* ignored.
*
* On failure, set *@list to NULL and store an error through @errp.
* Can happen only when @v is an input visitor.
*
* After visit_start_list() succeeds, the caller may visit its members
* one after the other. A real visit (where @list is non-NULL) uses
* visit_next_list() for traversing the linked list, while a virtual
* visit (where @list is NULL) uses other means. For each list
* element, call the appropriate visit_type_FOO() with name set to
* NULL and obj set to the address of the value member of the list
* element. Finally, visit_end_list() needs to be called with the
* same @list to clean up, even if intermediate visits fail. See the
* examples above.
*/
void visit_start_list(Visitor *v, const char *name, GenericList **list,
size_t size, Error **errp);
/*
* Iterate over a GenericList during a non-virtual list visit.
*
* @size represents the size of a linked list node (at least
* sizeof(GenericList)).
*
* @tail must not be NULL; on the first call, @tail is the value of
* *list after visit_start_list(), and on subsequent calls @tail must
* be the previously returned value. Should be called in a loop until
* a NULL return; for each non-NULL return, the caller then calls the
* appropriate visit_type_*() for the element type of the list, with
* that function's name parameter set to NULL and obj set to the
* address of @tail->value.
*/
GenericList *visit_next_list(Visitor *v, GenericList *tail, size_t size);
/*
* Prepare for completing a list visit.
*
* On failure, store an error through @errp. Can happen only when @v
* is an input visitor.
*
* Should be called prior to visit_end_list() if all other
* intermediate visit steps were successful, to allow the visitor one
* last chance to report errors. May be skipped on a cleanup path,
* where there is no need to check for further errors.
*/
void visit_check_list(Visitor *v, Error **errp);
/*
* Complete a list visit started earlier.
*
* @list must match what was passed to the paired visit_start_list().
*
* Must be called after any successful use of visit_start_list(), even
* if intermediate processing was skipped due to errors, to allow the
* backend to release any resources. Destroying the visitor early
* with visit_free() behaves as if this was implicitly called.
*/
void visit_end_list(Visitor *v, void **list);
/*** Visiting alternates ***/
/*
* Start the visit of an alternate @obj.
*
* @name expresses the relationship of this alternate to its parent
* container; see the general description of @name above.
*
* @obj must not be NULL. Input and clone visitors use @size to
* determine how much memory to allocate into *@obj, then determine
* the qtype of the next thing to be visited, and store it in
* (*@obj)->type. Other visitors leave @obj unchanged.
*
* On failure, set *@obj to NULL and store an error through @errp.
* Can happen only when @v is an input visitor.
*
* If successful, this must be paired with visit_end_alternate() with
* the same @obj to clean up, even if visiting the contents of the
* alternate fails.
*/
void visit_start_alternate(Visitor *v, const char *name,
GenericAlternate **obj, size_t size,
Error **errp);
/*
* Finish visiting an alternate type.
*
* @obj must match what was passed to the paired visit_start_alternate().
*
* Must be called after any successful use of visit_start_alternate(),
* even if intermediate processing was skipped due to errors, to allow
* the backend to release any resources. Destroying the visitor early
* with visit_free() behaves as if this was implicitly called.
*
*/
void visit_end_alternate(Visitor *v, void **obj);
/*** Other helpers ***/
/*
* Does optional struct member @name need visiting?
*
* @name must not be NULL. This function is only useful between
* visit_start_struct() and visit_end_struct(), since only objects
* have optional keys.
*
* @present points to the address of the optional member's has_ flag.
*
* Input visitors set *@present according to input; other visitors
* leave it unchanged. In either case, return *@present for
* convenience.
*/
bool visit_optional(Visitor *v, const char *name, bool *present);
/*
* Visit an enum value.
*
* @name expresses the relationship of this enum to its parent
* container; see the general description of @name above.
*
* @obj must be non-NULL. Input visitors parse input and set *@obj to
* the enumeration value, leaving @obj unchanged on error; other
* visitors use *@obj but leave it unchanged.
*
* Currently, all input visitors parse text input, and all output
* visitors produce text output. The mapping between enumeration
* values and strings is done by the visitor core, using @lookup.
*
* On failure, store an error through @errp. Can happen only when @v
* is an input visitor.
*
* May call visit_type_str() under the hood, and the enum visit may
* fail even if the corresponding string visit succeeded; this implies
* that an input visitor's visit_type_str() must have no unwelcome
* side effects.
*/
void visit_type_enum(Visitor *v, const char *name, int *obj,
const QEnumLookup *lookup, Error **errp);
/*
* Check if visitor is an input visitor.
*/
bool visit_is_input(Visitor *v);
/*
* Check if visitor is a dealloc visitor.
*/
bool visit_is_dealloc(Visitor *v);
/*** Visiting built-in types ***/
/*
* Visit an integer value.
*
* @name expresses the relationship of this integer to its parent
* container; see the general description of @name above.
*
* @obj must be non-NULL. Input visitors set *@obj to the value;
* other visitors will leave *@obj unchanged.
*
* On failure, store an error through @errp. Can happen only when @v
* is an input visitor.
*/
void visit_type_int(Visitor *v, const char *name, int64_t *obj, Error **errp);
/*
* Visit a uint8_t value.
* Like visit_type_int(), except clamps the value to uint8_t range.
*/
void visit_type_uint8(Visitor *v, const char *name, uint8_t *obj,
Error **errp);
/*
* Visit a uint16_t value.
* Like visit_type_int(), except clamps the value to uint16_t range.
*/
void visit_type_uint16(Visitor *v, const char *name, uint16_t *obj,
Error **errp);
/*
* Visit a uint32_t value.
* Like visit_type_int(), except clamps the value to uint32_t range.
*/
void visit_type_uint32(Visitor *v, const char *name, uint32_t *obj,
Error **errp);
/*
* Visit a uint64_t value.
* Like visit_type_int(), except clamps the value to uint64_t range,
* that is, ensures it is unsigned.
*/
void visit_type_uint64(Visitor *v, const char *name, uint64_t *obj,
Error **errp);
/*
* Visit an int8_t value.
* Like visit_type_int(), except clamps the value to int8_t range.
*/
void visit_type_int8(Visitor *v, const char *name, int8_t *obj, Error **errp);
/*
* Visit an int16_t value.
* Like visit_type_int(), except clamps the value to int16_t range.
*/
void visit_type_int16(Visitor *v, const char *name, int16_t *obj,
Error **errp);
/*
* Visit an int32_t value.
* Like visit_type_int(), except clamps the value to int32_t range.
*/
void visit_type_int32(Visitor *v, const char *name, int32_t *obj,
Error **errp);
/*
* Visit an int64_t value.
* Identical to visit_type_int().
*/
void visit_type_int64(Visitor *v, const char *name, int64_t *obj,
Error **errp);
/*
* Visit a uint64_t value.
* Like visit_type_uint64(), except that some visitors may choose to
* recognize additional syntax, such as suffixes for easily scaling
* values.
*/
void visit_type_size(Visitor *v, const char *name, uint64_t *obj,
Error **errp);
/*
* Visit a boolean value.
*
* @name expresses the relationship of this boolean to its parent
* container; see the general description of @name above.
*
* @obj must be non-NULL. Input visitors set *@obj to the value;
* other visitors will leave *@obj unchanged.
*
* On failure, store an error through @errp. Can happen only when @v
* is an input visitor.
*/
void visit_type_bool(Visitor *v, const char *name, bool *obj, Error **errp);
/*
* Visit a string value.
*
* @name expresses the relationship of this string to its parent
* container; see the general description of @name above.
*
* @obj must be non-NULL. Input and clone visitors set *@obj to the
* value (always using "" rather than NULL for an empty string).
* Other visitors leave *@obj unchanged, and commonly treat NULL like
* "".
*
* It is safe to cast away const when preparing a (const char *) value
* into @obj for use by an output visitor.
*
* On failure, set *@obj to NULL and store an error through @errp.
* Can happen only when @v is an input visitor.
*
* FIXME: Callers that try to output NULL *obj should not be allowed.
*/
void visit_type_str(Visitor *v, const char *name, char **obj, Error **errp);
/*
* Visit a number (i.e. double) value.
*
* @name expresses the relationship of this number to its parent
* container; see the general description of @name above.
*
* @obj must be non-NULL. Input visitors set *@obj to the value;
* other visitors will leave *@obj unchanged. Visitors should
* document if infinity or NaN are not permitted.
*
* On failure, store an error through @errp. Can happen only when @v
* is an input visitor.
*/
void visit_type_number(Visitor *v, const char *name, double *obj,
Error **errp);
/*
* Visit an arbitrary value.
*
* @name expresses the relationship of this value to its parent
* container; see the general description of @name above.
*
* @obj must be non-NULL. Input visitors set *@obj to the value;
* other visitors will leave *@obj unchanged. *@obj must be non-NULL
* for output visitors.
*
* On failure, set *@obj to NULL and store an error through @errp.
* Can happen only when @v is an input visitor.
*
* Note that some kinds of input can't express arbitrary QObject.
* E.g. the visitor returned by qobject_input_visitor_new_keyval()
* can't create numbers or booleans, only strings.
*/
void visit_type_any(Visitor *v, const char *name, QObject **obj, Error **errp);
/*
* Visit a JSON null value.
*
* @name expresses the relationship of the null value to its parent
* container; see the general description of @name above.
*
* @obj must be non-NULL. Input visitors set *@obj to the value;
* other visitors ignore *@obj.
*
* On failure, set *@obj to NULL and store an error through @errp.
* Can happen only when @v is an input visitor.
*/
void visit_type_null(Visitor *v, const char *name, QNull **obj,
Error **errp);
#endif