qemu/hw/eccmemctl.c
blueswir1 7eb0c8e8f9 Add support for eccmemctl (Robert Reif)
git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@3785 c046a42c-6fe2-441c-8c8c-71466251a162
2007-12-09 17:03:50 +00:00

267 lines
7.7 KiB
C
Executable File

/*
* QEMU Sparc Sun4m ECC memory controller emulation
*
* Copyright (c) 2007 Robert Reif
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "hw.h"
#include "sun4m.h"
#include "sysemu.h"
//#define DEBUG_ECC
#ifdef DEBUG_ECC
#define DPRINTF(fmt, args...) \
do { printf("ECC: " fmt , ##args); } while (0)
#else
#define DPRINTF(fmt, args...)
#endif
/* There are 3 versions of this chip used in SMP sun4m systems:
* MCC (version 0, implementation 0) SS-600MP
* EMC (version 0, implementation 1) SS-10
* SMC (version 0, implementation 2) SS-10SX and SS-20
*/
/* Register offsets */
#define ECC_FCR_REG 0
#define ECC_FSR_REG 8
#define ECC_FAR0_REG 16
#define ECC_FAR1_REG 20
#define ECC_DIAG_REG 24
/* ECC fault control register */
#define ECC_FCR_EE 0x00000001 /* Enable ECC checking */
#define ECC_FCR_EI 0x00000010 /* Enable Interrupts on correctable errors */
#define ECC_FCR_VER 0x0f000000 /* Version */
#define ECC_FCR_IMPL 0xf0000000 /* Implementation */
/* ECC fault status register */
#define ECC_FSR_CE 0x00000001 /* Correctable error */
#define ECC_FSR_BS 0x00000002 /* C2 graphics bad slot access */
#define ECC_FSR_TO 0x00000004 /* Timeout on write */
#define ECC_FSR_UE 0x00000008 /* Uncorrectable error */
#define ECC_FSR_DW 0x000000f0 /* Index of double word in block */
#define ECC_FSR_SYND 0x0000ff00 /* Syndrome for correctable error */
#define ECC_FSR_ME 0x00010000 /* Multiple errors */
#define ECC_FSR_C2ERR 0x00020000 /* C2 graphics error */
/* ECC fault address register 0 */
#define ECC_FAR0_PADDR 0x0000000f /* PA[32-35] */
#define ECC_FAR0_TYPE 0x000000f0 /* Transaction type */
#define ECC_FAR0_SIZE 0x00000700 /* Transaction size */
#define ECC_FAR0_CACHE 0x00000800 /* Mapped cacheable */
#define ECC_FAR0_LOCK 0x00001000 /* Error occurred in attomic cycle */
#define ECC_FAR0_BMODE 0x00002000 /* Boot mode */
#define ECC_FAR0_VADDR 0x003fc000 /* VA[12-19] (superset bits) */
#define ECC_FAR0_S 0x08000000 /* Supervisor mode */
#define ECC_FARO_MID 0xf0000000 /* Module ID */
/* ECC diagnostic register */
#define ECC_DIAG_CBX 0x00000001
#define ECC_DIAG_CB0 0x00000002
#define ECC_DIAG_CB1 0x00000004
#define ECC_DIAG_CB2 0x00000008
#define ECC_DIAG_CB4 0x00000010
#define ECC_DIAG_CB8 0x00000020
#define ECC_DIAG_CB16 0x00000040
#define ECC_DIAG_CB32 0x00000080
#define ECC_DIAG_DMODE 0x00000c00
#define ECC_NREGS 8
#define ECC_SIZE (ECC_NREGS * sizeof(uint32_t))
#define ECC_ADDR_MASK (ECC_SIZE - 1)
typedef struct ECCState {
uint32_t regs[ECC_NREGS];
} ECCState;
static void ecc_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
{
printf("ECC: Unsupported write 0x" TARGET_FMT_plx " %02x\n",
addr, val & 0xff);
}
static uint32_t ecc_mem_readb(void *opaque, target_phys_addr_t addr)
{
printf("ECC: Unsupported read 0x" TARGET_FMT_plx " 00\n", addr);
return 0;
}
static void ecc_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
{
printf("ECC: Unsupported write 0x" TARGET_FMT_plx " %04x\n",
addr, val & 0xffff);
}
static uint32_t ecc_mem_readw(void *opaque, target_phys_addr_t addr)
{
printf("ECC: Unsupported read 0x" TARGET_FMT_plx " 0000\n", addr);
return 0;
}
static void ecc_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
{
ECCState *s = opaque;
switch (addr & ECC_ADDR_MASK) {
case ECC_FCR_REG:
s->regs[0] = (s->regs[0] & (ECC_FCR_VER | ECC_FCR_IMPL)) |
(val & ~(ECC_FCR_VER | ECC_FCR_IMPL));
DPRINTF("Write fault control %08x\n", val);
break;
case 4:
s->regs[1] = val;
DPRINTF("Write reg[1] %08x\n", val);
break;
case ECC_FSR_REG:
s->regs[2] = val;
DPRINTF("Write fault status %08x\n", val);
break;
case 12:
s->regs[3] = val;
DPRINTF("Write reg[3] %08x\n", val);
break;
case ECC_FAR0_REG:
s->regs[4] = val;
DPRINTF("Write fault address 0 %08x\n", val);
break;
case ECC_FAR1_REG:
s->regs[5] = val;
DPRINTF("Write fault address 1 %08x\n", val);
break;
case ECC_DIAG_REG:
s->regs[6] = val;
DPRINTF("Write diag %08x\n", val);
break;
case 28:
s->regs[7] = val;
DPRINTF("Write reg[7] %08x\n", val);
break;
}
}
static uint32_t ecc_mem_readl(void *opaque, target_phys_addr_t addr)
{
ECCState *s = opaque;
uint32_t ret = 0;
switch (addr & ECC_ADDR_MASK) {
case ECC_FCR_REG:
ret = s->regs[0];
DPRINTF("Read enable %08x\n", ret);
break;
case 4:
ret = s->regs[1];
DPRINTF("Read register[1] %08x\n", ret);
break;
case ECC_FSR_REG:
ret = s->regs[2];
DPRINTF("Read fault status %08x\n", ret);
break;
case 12:
ret = s->regs[3];
DPRINTF("Read reg[3] %08x\n", ret);
break;
case ECC_FAR0_REG:
ret = s->regs[4];
DPRINTF("Read fault address 0 %08x\n", ret);
break;
case ECC_FAR1_REG:
ret = s->regs[5];
DPRINTF("Read fault address 1 %08x\n", ret);
break;
case ECC_DIAG_REG:
ret = s->regs[6];
DPRINTF("Read diag %08x\n", ret);
break;
case 28:
ret = s->regs[7];
DPRINTF("Read reg[7] %08x\n", ret);
break;
}
return ret;
}
static CPUReadMemoryFunc *ecc_mem_read[3] = {
ecc_mem_readb,
ecc_mem_readw,
ecc_mem_readl,
};
static CPUWriteMemoryFunc *ecc_mem_write[3] = {
ecc_mem_writeb,
ecc_mem_writew,
ecc_mem_writel,
};
static int ecc_load(QEMUFile *f, void *opaque, int version_id)
{
ECCState *s = opaque;
int i;
if (version_id != 1)
return -EINVAL;
for (i = 0; i < ECC_NREGS; i++)
qemu_get_be32s(f, &s->regs[i]);
return 0;
}
static void ecc_save(QEMUFile *f, void *opaque)
{
ECCState *s = opaque;
int i;
for (i = 0; i < ECC_NREGS; i++)
qemu_put_be32s(f, &s->regs[i]);
}
static void ecc_reset(void *opaque)
{
ECCState *s = opaque;
int i;
s->regs[ECC_FCR_REG] &= (ECC_FCR_VER | ECC_FCR_IMPL);
for (i = 1; i < ECC_NREGS; i++)
s->regs[i] = 0;
}
void * ecc_init(target_phys_addr_t base, uint32_t version)
{
int ecc_io_memory;
ECCState *s;
s = qemu_mallocz(sizeof(ECCState));
if (!s)
return NULL;
s->regs[0] = version;
ecc_io_memory = cpu_register_io_memory(0, ecc_mem_read, ecc_mem_write, s);
cpu_register_physical_memory(base, ECC_SIZE, ecc_io_memory);
register_savevm("ECC", base, 1, ecc_save, ecc_load, s);
qemu_register_reset(ecc_reset, s);
ecc_reset(s);
return s;
}