qemu/target/s390x/tcg/int_helper.c
Ilya Leoshkevich b4b8d58e56 target/s390x: Emulate CVB, CVBY and CVBG
Convert to Binary - counterparts of the already implemented Convert
to Decimal (CVD*) instructions.
Example from the Principles of Operation: 25594C becomes 63FA.

Co-developed-by: Pavel Zbitskiy <pavel.zbitskiy@gmail.com>
Signed-off-by: Ilya Leoshkevich <iii@linux.ibm.com>
Reviewed-by: Thomas Huth <thuth@redhat.com>
Message-ID: <20240205205830.6425-3-iii@linux.ibm.com>
Signed-off-by: Thomas Huth <thuth@redhat.com>
2024-02-06 09:51:37 +01:00

226 lines
5.8 KiB
C

/*
* S/390 integer helper routines
*
* Copyright (c) 2009 Ulrich Hecht
* Copyright (c) 2009 Alexander Graf
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "cpu.h"
#include "s390x-internal.h"
#include "tcg_s390x.h"
#include "exec/exec-all.h"
#include "qemu/host-utils.h"
#include "exec/helper-proto.h"
#include "exec/cpu_ldst.h"
/* #define DEBUG_HELPER */
#ifdef DEBUG_HELPER
#define HELPER_LOG(x...) qemu_log(x)
#else
#define HELPER_LOG(x...)
#endif
/* 64/32 -> 32 signed division */
uint64_t HELPER(divs32)(CPUS390XState *env, int64_t a, int64_t b64)
{
int32_t b = b64;
int64_t q, r;
if (b == 0) {
tcg_s390_program_interrupt(env, PGM_FIXPT_DIVIDE, GETPC());
}
q = a / b;
r = a % b;
/* Catch non-representable quotient. */
if (q != (int32_t)q) {
tcg_s390_program_interrupt(env, PGM_FIXPT_DIVIDE, GETPC());
}
return deposit64(q, 32, 32, r);
}
/* 64/32 -> 32 unsigned division */
uint64_t HELPER(divu32)(CPUS390XState *env, uint64_t a, uint64_t b64)
{
uint32_t b = b64;
uint64_t q, r;
if (b == 0) {
tcg_s390_program_interrupt(env, PGM_FIXPT_DIVIDE, GETPC());
}
q = a / b;
r = a % b;
/* Catch non-representable quotient. */
if (q != (uint32_t)q) {
tcg_s390_program_interrupt(env, PGM_FIXPT_DIVIDE, GETPC());
}
return deposit64(q, 32, 32, r);
}
/* 64/64 -> 64 signed division */
Int128 HELPER(divs64)(CPUS390XState *env, int64_t a, int64_t b)
{
/* Catch divide by zero, and non-representable quotient (MIN / -1). */
if (b == 0 || (b == -1 && a == (1ll << 63))) {
tcg_s390_program_interrupt(env, PGM_FIXPT_DIVIDE, GETPC());
}
return int128_make128(a / b, a % b);
}
/* 128 -> 64/64 unsigned division */
Int128 HELPER(divu64)(CPUS390XState *env, uint64_t ah, uint64_t al, uint64_t b)
{
if (b != 0) {
uint64_t r = divu128(&al, &ah, b);
if (ah == 0) {
return int128_make128(al, r);
}
}
/* divide by zero or overflow */
tcg_s390_program_interrupt(env, PGM_FIXPT_DIVIDE, GETPC());
}
void HELPER(cvb)(CPUS390XState *env, uint32_t r1, uint64_t dec)
{
int64_t pow10 = 1, bin = 0;
int digit, sign;
sign = dec & 0xf;
if (sign < 0xa) {
tcg_s390_data_exception(env, 0, GETPC());
}
dec >>= 4;
while (dec) {
digit = dec & 0xf;
if (digit > 0x9) {
tcg_s390_data_exception(env, 0, GETPC());
}
dec >>= 4;
bin += digit * pow10;
pow10 *= 10;
}
if (sign == 0xb || sign == 0xd) {
bin = -bin;
}
/* R1 is updated even on fixed-point-divide exception. */
env->regs[r1] = (env->regs[r1] & 0xffffffff00000000ULL) | (uint32_t)bin;
if (bin != (int32_t)bin) {
tcg_s390_program_interrupt(env, PGM_FIXPT_DIVIDE, GETPC());
}
}
uint64_t HELPER(cvbg)(CPUS390XState *env, Int128 dec)
{
uint64_t dec64[] = {int128_getlo(dec), int128_gethi(dec)};
int64_t bin = 0, pow10, tmp;
int digit, i, sign;
sign = dec64[0] & 0xf;
if (sign < 0xa) {
tcg_s390_data_exception(env, 0, GETPC());
}
dec64[0] >>= 4;
pow10 = (sign == 0xb || sign == 0xd) ? -1 : 1;
for (i = 1; i < 20; i++) {
digit = dec64[i >> 4] & 0xf;
if (digit > 0x9) {
tcg_s390_data_exception(env, 0, GETPC());
}
dec64[i >> 4] >>= 4;
/*
* Prepend the next digit and check for overflow. The multiplication
* cannot overflow, since, conveniently, the int64_t limits are
* approximately +-9.2E+18. If bin is zero, the addition cannot
* overflow. Otherwise bin is known to have the same sign as the rhs
* addend, in which case overflow happens if and only if the result
* has a different sign.
*/
tmp = bin + pow10 * digit;
if (bin && ((tmp ^ bin) < 0)) {
tcg_s390_program_interrupt(env, PGM_FIXPT_DIVIDE, GETPC());
}
bin = tmp;
pow10 *= 10;
}
g_assert(!dec64[0]);
if (dec64[1]) {
tcg_s390_program_interrupt(env, PGM_FIXPT_DIVIDE, GETPC());
}
return bin;
}
uint64_t HELPER(cvd)(int32_t reg)
{
/* positive 0 */
uint64_t dec = 0x0c;
int64_t bin = reg;
int shift;
if (bin < 0) {
bin = -bin;
dec = 0x0d;
}
for (shift = 4; (shift < 64) && bin; shift += 4) {
dec |= (bin % 10) << shift;
bin /= 10;
}
return dec;
}
Int128 HELPER(cvdg)(int64_t reg)
{
/* positive 0 */
Int128 dec = int128_make64(0x0c);
Int128 bin = int128_makes64(reg);
Int128 base = int128_make64(10);
int shift;
if (!int128_nonneg(bin)) {
bin = int128_neg(bin);
dec = int128_make64(0x0d);
}
for (shift = 4; (shift < 128) && int128_nz(bin); shift += 4) {
dec = int128_or(dec, int128_lshift(int128_remu(bin, base), shift));
bin = int128_divu(bin, base);
}
return dec;
}
uint64_t HELPER(popcnt)(uint64_t val)
{
/* Note that we don't fold past bytes. */
val = (val & 0x5555555555555555ULL) + ((val >> 1) & 0x5555555555555555ULL);
val = (val & 0x3333333333333333ULL) + ((val >> 2) & 0x3333333333333333ULL);
val = (val + (val >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
return val;
}