397f4e9d83
Hide structure definitions and add explicit API instead, to keep an eye on the scope of the shared fields. Signed-off-by: Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com> Reviewed-by: Andrey Shinkevich <andrey.shinkevich@virtuozzo.com> Reviewed-by: Max Reitz <mreitz@redhat.com> Message-Id: <20200311103004.7649-10-vsementsov@virtuozzo.com> Signed-off-by: Max Reitz <mreitz@redhat.com>
579 lines
18 KiB
C
579 lines
18 KiB
C
/*
|
||
* block_copy API
|
||
*
|
||
* Copyright (C) 2013 Proxmox Server Solutions
|
||
* Copyright (c) 2019 Virtuozzo International GmbH.
|
||
*
|
||
* Authors:
|
||
* Dietmar Maurer (dietmar@proxmox.com)
|
||
* Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com>
|
||
*
|
||
* This work is licensed under the terms of the GNU GPL, version 2 or later.
|
||
* See the COPYING file in the top-level directory.
|
||
*/
|
||
|
||
#include "qemu/osdep.h"
|
||
|
||
#include "trace.h"
|
||
#include "qapi/error.h"
|
||
#include "block/block-copy.h"
|
||
#include "sysemu/block-backend.h"
|
||
#include "qemu/units.h"
|
||
|
||
#define BLOCK_COPY_MAX_COPY_RANGE (16 * MiB)
|
||
#define BLOCK_COPY_MAX_BUFFER (1 * MiB)
|
||
#define BLOCK_COPY_MAX_MEM (128 * MiB)
|
||
|
||
typedef struct BlockCopyInFlightReq {
|
||
int64_t offset;
|
||
int64_t bytes;
|
||
QLIST_ENTRY(BlockCopyInFlightReq) list;
|
||
CoQueue wait_queue; /* coroutines blocked on this request */
|
||
} BlockCopyInFlightReq;
|
||
|
||
typedef struct BlockCopyState {
|
||
/*
|
||
* BdrvChild objects are not owned or managed by block-copy. They are
|
||
* provided by block-copy user and user is responsible for appropriate
|
||
* permissions on these children.
|
||
*/
|
||
BdrvChild *source;
|
||
BdrvChild *target;
|
||
BdrvDirtyBitmap *copy_bitmap;
|
||
int64_t in_flight_bytes;
|
||
int64_t cluster_size;
|
||
bool use_copy_range;
|
||
int64_t copy_size;
|
||
uint64_t len;
|
||
QLIST_HEAD(, BlockCopyInFlightReq) inflight_reqs;
|
||
|
||
BdrvRequestFlags write_flags;
|
||
|
||
/*
|
||
* skip_unallocated:
|
||
*
|
||
* Used by sync=top jobs, which first scan the source node for unallocated
|
||
* areas and clear them in the copy_bitmap. During this process, the bitmap
|
||
* is thus not fully initialized: It may still have bits set for areas that
|
||
* are unallocated and should actually not be copied.
|
||
*
|
||
* This is indicated by skip_unallocated.
|
||
*
|
||
* In this case, block_copy() will query the source’s allocation status,
|
||
* skip unallocated regions, clear them in the copy_bitmap, and invoke
|
||
* block_copy_reset_unallocated() every time it does.
|
||
*/
|
||
bool skip_unallocated;
|
||
|
||
ProgressMeter *progress;
|
||
/* progress_bytes_callback: called when some copying progress is done. */
|
||
ProgressBytesCallbackFunc progress_bytes_callback;
|
||
void *progress_opaque;
|
||
|
||
SharedResource *mem;
|
||
} BlockCopyState;
|
||
|
||
static BlockCopyInFlightReq *find_conflicting_inflight_req(BlockCopyState *s,
|
||
int64_t offset,
|
||
int64_t bytes)
|
||
{
|
||
BlockCopyInFlightReq *req;
|
||
|
||
QLIST_FOREACH(req, &s->inflight_reqs, list) {
|
||
if (offset + bytes > req->offset && offset < req->offset + req->bytes) {
|
||
return req;
|
||
}
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/*
|
||
* If there are no intersecting requests return false. Otherwise, wait for the
|
||
* first found intersecting request to finish and return true.
|
||
*/
|
||
static bool coroutine_fn block_copy_wait_one(BlockCopyState *s, int64_t offset,
|
||
int64_t bytes)
|
||
{
|
||
BlockCopyInFlightReq *req = find_conflicting_inflight_req(s, offset, bytes);
|
||
|
||
if (!req) {
|
||
return false;
|
||
}
|
||
|
||
qemu_co_queue_wait(&req->wait_queue, NULL);
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Called only on full-dirty region */
|
||
static void block_copy_inflight_req_begin(BlockCopyState *s,
|
||
BlockCopyInFlightReq *req,
|
||
int64_t offset, int64_t bytes)
|
||
{
|
||
assert(!find_conflicting_inflight_req(s, offset, bytes));
|
||
|
||
bdrv_reset_dirty_bitmap(s->copy_bitmap, offset, bytes);
|
||
s->in_flight_bytes += bytes;
|
||
|
||
req->offset = offset;
|
||
req->bytes = bytes;
|
||
qemu_co_queue_init(&req->wait_queue);
|
||
QLIST_INSERT_HEAD(&s->inflight_reqs, req, list);
|
||
}
|
||
|
||
/*
|
||
* block_copy_inflight_req_shrink
|
||
*
|
||
* Drop the tail of the request to be handled later. Set dirty bits back and
|
||
* wake up all requests waiting for us (may be some of them are not intersecting
|
||
* with shrunk request)
|
||
*/
|
||
static void coroutine_fn block_copy_inflight_req_shrink(BlockCopyState *s,
|
||
BlockCopyInFlightReq *req, int64_t new_bytes)
|
||
{
|
||
if (new_bytes == req->bytes) {
|
||
return;
|
||
}
|
||
|
||
assert(new_bytes > 0 && new_bytes < req->bytes);
|
||
|
||
s->in_flight_bytes -= req->bytes - new_bytes;
|
||
bdrv_set_dirty_bitmap(s->copy_bitmap,
|
||
req->offset + new_bytes, req->bytes - new_bytes);
|
||
|
||
req->bytes = new_bytes;
|
||
qemu_co_queue_restart_all(&req->wait_queue);
|
||
}
|
||
|
||
static void coroutine_fn block_copy_inflight_req_end(BlockCopyState *s,
|
||
BlockCopyInFlightReq *req,
|
||
int ret)
|
||
{
|
||
s->in_flight_bytes -= req->bytes;
|
||
if (ret < 0) {
|
||
bdrv_set_dirty_bitmap(s->copy_bitmap, req->offset, req->bytes);
|
||
}
|
||
QLIST_REMOVE(req, list);
|
||
qemu_co_queue_restart_all(&req->wait_queue);
|
||
}
|
||
|
||
void block_copy_state_free(BlockCopyState *s)
|
||
{
|
||
if (!s) {
|
||
return;
|
||
}
|
||
|
||
bdrv_release_dirty_bitmap(s->copy_bitmap);
|
||
shres_destroy(s->mem);
|
||
g_free(s);
|
||
}
|
||
|
||
static uint32_t block_copy_max_transfer(BdrvChild *source, BdrvChild *target)
|
||
{
|
||
return MIN_NON_ZERO(INT_MAX,
|
||
MIN_NON_ZERO(source->bs->bl.max_transfer,
|
||
target->bs->bl.max_transfer));
|
||
}
|
||
|
||
BlockCopyState *block_copy_state_new(BdrvChild *source, BdrvChild *target,
|
||
int64_t cluster_size,
|
||
BdrvRequestFlags write_flags, Error **errp)
|
||
{
|
||
BlockCopyState *s;
|
||
BdrvDirtyBitmap *copy_bitmap;
|
||
|
||
copy_bitmap = bdrv_create_dirty_bitmap(source->bs, cluster_size, NULL,
|
||
errp);
|
||
if (!copy_bitmap) {
|
||
return NULL;
|
||
}
|
||
bdrv_disable_dirty_bitmap(copy_bitmap);
|
||
|
||
s = g_new(BlockCopyState, 1);
|
||
*s = (BlockCopyState) {
|
||
.source = source,
|
||
.target = target,
|
||
.copy_bitmap = copy_bitmap,
|
||
.cluster_size = cluster_size,
|
||
.len = bdrv_dirty_bitmap_size(copy_bitmap),
|
||
.write_flags = write_flags,
|
||
.mem = shres_create(BLOCK_COPY_MAX_MEM),
|
||
};
|
||
|
||
if (block_copy_max_transfer(source, target) < cluster_size) {
|
||
/*
|
||
* copy_range does not respect max_transfer. We don't want to bother
|
||
* with requests smaller than block-copy cluster size, so fallback to
|
||
* buffered copying (read and write respect max_transfer on their
|
||
* behalf).
|
||
*/
|
||
s->use_copy_range = false;
|
||
s->copy_size = cluster_size;
|
||
} else if (write_flags & BDRV_REQ_WRITE_COMPRESSED) {
|
||
/* Compression supports only cluster-size writes and no copy-range. */
|
||
s->use_copy_range = false;
|
||
s->copy_size = cluster_size;
|
||
} else {
|
||
/*
|
||
* We enable copy-range, but keep small copy_size, until first
|
||
* successful copy_range (look at block_copy_do_copy).
|
||
*/
|
||
s->use_copy_range = true;
|
||
s->copy_size = MAX(s->cluster_size, BLOCK_COPY_MAX_BUFFER);
|
||
}
|
||
|
||
QLIST_INIT(&s->inflight_reqs);
|
||
|
||
return s;
|
||
}
|
||
|
||
void block_copy_set_progress_callback(
|
||
BlockCopyState *s,
|
||
ProgressBytesCallbackFunc progress_bytes_callback,
|
||
void *progress_opaque)
|
||
{
|
||
s->progress_bytes_callback = progress_bytes_callback;
|
||
s->progress_opaque = progress_opaque;
|
||
}
|
||
|
||
void block_copy_set_progress_meter(BlockCopyState *s, ProgressMeter *pm)
|
||
{
|
||
s->progress = pm;
|
||
}
|
||
|
||
/*
|
||
* block_copy_do_copy
|
||
*
|
||
* Do copy of cluster-aligned chunk. Requested region is allowed to exceed
|
||
* s->len only to cover last cluster when s->len is not aligned to clusters.
|
||
*
|
||
* No sync here: nor bitmap neighter intersecting requests handling, only copy.
|
||
*
|
||
* Returns 0 on success.
|
||
*/
|
||
static int coroutine_fn block_copy_do_copy(BlockCopyState *s,
|
||
int64_t offset, int64_t bytes,
|
||
bool zeroes, bool *error_is_read)
|
||
{
|
||
int ret;
|
||
int64_t nbytes = MIN(offset + bytes, s->len) - offset;
|
||
void *bounce_buffer = NULL;
|
||
|
||
assert(offset >= 0 && bytes > 0 && INT64_MAX - offset >= bytes);
|
||
assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
|
||
assert(QEMU_IS_ALIGNED(bytes, s->cluster_size));
|
||
assert(offset < s->len);
|
||
assert(offset + bytes <= s->len ||
|
||
offset + bytes == QEMU_ALIGN_UP(s->len, s->cluster_size));
|
||
assert(nbytes < INT_MAX);
|
||
|
||
if (zeroes) {
|
||
ret = bdrv_co_pwrite_zeroes(s->target, offset, nbytes, s->write_flags &
|
||
~BDRV_REQ_WRITE_COMPRESSED);
|
||
if (ret < 0) {
|
||
trace_block_copy_write_zeroes_fail(s, offset, ret);
|
||
if (error_is_read) {
|
||
*error_is_read = false;
|
||
}
|
||
}
|
||
return ret;
|
||
}
|
||
|
||
if (s->use_copy_range) {
|
||
ret = bdrv_co_copy_range(s->source, offset, s->target, offset, nbytes,
|
||
0, s->write_flags);
|
||
if (ret < 0) {
|
||
trace_block_copy_copy_range_fail(s, offset, ret);
|
||
s->use_copy_range = false;
|
||
s->copy_size = MAX(s->cluster_size, BLOCK_COPY_MAX_BUFFER);
|
||
/* Fallback to read+write with allocated buffer */
|
||
} else {
|
||
if (s->use_copy_range) {
|
||
/*
|
||
* Successful copy-range. Now increase copy_size. copy_range
|
||
* does not respect max_transfer (it's a TODO), so we factor
|
||
* that in here.
|
||
*
|
||
* Note: we double-check s->use_copy_range for the case when
|
||
* parallel block-copy request unsets it during previous
|
||
* bdrv_co_copy_range call.
|
||
*/
|
||
s->copy_size =
|
||
MIN(MAX(s->cluster_size, BLOCK_COPY_MAX_COPY_RANGE),
|
||
QEMU_ALIGN_DOWN(block_copy_max_transfer(s->source,
|
||
s->target),
|
||
s->cluster_size));
|
||
}
|
||
goto out;
|
||
}
|
||
}
|
||
|
||
/*
|
||
* In case of failed copy_range request above, we may proceed with buffered
|
||
* request larger than BLOCK_COPY_MAX_BUFFER. Still, further requests will
|
||
* be properly limited, so don't care too much. Moreover the most likely
|
||
* case (copy_range is unsupported for the configuration, so the very first
|
||
* copy_range request fails) is handled by setting large copy_size only
|
||
* after first successful copy_range.
|
||
*/
|
||
|
||
bounce_buffer = qemu_blockalign(s->source->bs, nbytes);
|
||
|
||
ret = bdrv_co_pread(s->source, offset, nbytes, bounce_buffer, 0);
|
||
if (ret < 0) {
|
||
trace_block_copy_read_fail(s, offset, ret);
|
||
if (error_is_read) {
|
||
*error_is_read = true;
|
||
}
|
||
goto out;
|
||
}
|
||
|
||
ret = bdrv_co_pwrite(s->target, offset, nbytes, bounce_buffer,
|
||
s->write_flags);
|
||
if (ret < 0) {
|
||
trace_block_copy_write_fail(s, offset, ret);
|
||
if (error_is_read) {
|
||
*error_is_read = false;
|
||
}
|
||
goto out;
|
||
}
|
||
|
||
out:
|
||
qemu_vfree(bounce_buffer);
|
||
|
||
return ret;
|
||
}
|
||
|
||
static int block_copy_block_status(BlockCopyState *s, int64_t offset,
|
||
int64_t bytes, int64_t *pnum)
|
||
{
|
||
int64_t num;
|
||
BlockDriverState *base;
|
||
int ret;
|
||
|
||
if (s->skip_unallocated && s->source->bs->backing) {
|
||
base = s->source->bs->backing->bs;
|
||
} else {
|
||
base = NULL;
|
||
}
|
||
|
||
ret = bdrv_block_status_above(s->source->bs, base, offset, bytes, &num,
|
||
NULL, NULL);
|
||
if (ret < 0 || num < s->cluster_size) {
|
||
/*
|
||
* On error or if failed to obtain large enough chunk just fallback to
|
||
* copy one cluster.
|
||
*/
|
||
num = s->cluster_size;
|
||
ret = BDRV_BLOCK_ALLOCATED | BDRV_BLOCK_DATA;
|
||
} else if (offset + num == s->len) {
|
||
num = QEMU_ALIGN_UP(num, s->cluster_size);
|
||
} else {
|
||
num = QEMU_ALIGN_DOWN(num, s->cluster_size);
|
||
}
|
||
|
||
*pnum = num;
|
||
return ret;
|
||
}
|
||
|
||
/*
|
||
* Check if the cluster starting at offset is allocated or not.
|
||
* return via pnum the number of contiguous clusters sharing this allocation.
|
||
*/
|
||
static int block_copy_is_cluster_allocated(BlockCopyState *s, int64_t offset,
|
||
int64_t *pnum)
|
||
{
|
||
BlockDriverState *bs = s->source->bs;
|
||
int64_t count, total_count = 0;
|
||
int64_t bytes = s->len - offset;
|
||
int ret;
|
||
|
||
assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
|
||
|
||
while (true) {
|
||
ret = bdrv_is_allocated(bs, offset, bytes, &count);
|
||
if (ret < 0) {
|
||
return ret;
|
||
}
|
||
|
||
total_count += count;
|
||
|
||
if (ret || count == 0) {
|
||
/*
|
||
* ret: partial segment(s) are considered allocated.
|
||
* otherwise: unallocated tail is treated as an entire segment.
|
||
*/
|
||
*pnum = DIV_ROUND_UP(total_count, s->cluster_size);
|
||
return ret;
|
||
}
|
||
|
||
/* Unallocated segment(s) with uncertain following segment(s) */
|
||
if (total_count >= s->cluster_size) {
|
||
*pnum = total_count / s->cluster_size;
|
||
return 0;
|
||
}
|
||
|
||
offset += count;
|
||
bytes -= count;
|
||
}
|
||
}
|
||
|
||
/*
|
||
* Reset bits in copy_bitmap starting at offset if they represent unallocated
|
||
* data in the image. May reset subsequent contiguous bits.
|
||
* @return 0 when the cluster at @offset was unallocated,
|
||
* 1 otherwise, and -ret on error.
|
||
*/
|
||
int64_t block_copy_reset_unallocated(BlockCopyState *s,
|
||
int64_t offset, int64_t *count)
|
||
{
|
||
int ret;
|
||
int64_t clusters, bytes;
|
||
|
||
ret = block_copy_is_cluster_allocated(s, offset, &clusters);
|
||
if (ret < 0) {
|
||
return ret;
|
||
}
|
||
|
||
bytes = clusters * s->cluster_size;
|
||
|
||
if (!ret) {
|
||
bdrv_reset_dirty_bitmap(s->copy_bitmap, offset, bytes);
|
||
progress_set_remaining(s->progress,
|
||
bdrv_get_dirty_count(s->copy_bitmap) +
|
||
s->in_flight_bytes);
|
||
}
|
||
|
||
*count = bytes;
|
||
return ret;
|
||
}
|
||
|
||
/*
|
||
* block_copy_dirty_clusters
|
||
*
|
||
* Copy dirty clusters in @offset/@bytes range.
|
||
* Returns 1 if dirty clusters found and successfully copied, 0 if no dirty
|
||
* clusters found and -errno on failure.
|
||
*/
|
||
static int coroutine_fn block_copy_dirty_clusters(BlockCopyState *s,
|
||
int64_t offset, int64_t bytes,
|
||
bool *error_is_read)
|
||
{
|
||
int ret = 0;
|
||
bool found_dirty = false;
|
||
|
||
/*
|
||
* block_copy() user is responsible for keeping source and target in same
|
||
* aio context
|
||
*/
|
||
assert(bdrv_get_aio_context(s->source->bs) ==
|
||
bdrv_get_aio_context(s->target->bs));
|
||
|
||
assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
|
||
assert(QEMU_IS_ALIGNED(bytes, s->cluster_size));
|
||
|
||
while (bytes) {
|
||
BlockCopyInFlightReq req;
|
||
int64_t next_zero, cur_bytes, status_bytes;
|
||
|
||
if (!bdrv_dirty_bitmap_get(s->copy_bitmap, offset)) {
|
||
trace_block_copy_skip(s, offset);
|
||
offset += s->cluster_size;
|
||
bytes -= s->cluster_size;
|
||
continue; /* already copied */
|
||
}
|
||
|
||
found_dirty = true;
|
||
|
||
cur_bytes = MIN(bytes, s->copy_size);
|
||
|
||
next_zero = bdrv_dirty_bitmap_next_zero(s->copy_bitmap, offset,
|
||
cur_bytes);
|
||
if (next_zero >= 0) {
|
||
assert(next_zero > offset); /* offset is dirty */
|
||
assert(next_zero < offset + cur_bytes); /* no need to do MIN() */
|
||
cur_bytes = next_zero - offset;
|
||
}
|
||
block_copy_inflight_req_begin(s, &req, offset, cur_bytes);
|
||
|
||
ret = block_copy_block_status(s, offset, cur_bytes, &status_bytes);
|
||
assert(ret >= 0); /* never fail */
|
||
cur_bytes = MIN(cur_bytes, status_bytes);
|
||
block_copy_inflight_req_shrink(s, &req, cur_bytes);
|
||
if (s->skip_unallocated && !(ret & BDRV_BLOCK_ALLOCATED)) {
|
||
block_copy_inflight_req_end(s, &req, 0);
|
||
progress_set_remaining(s->progress,
|
||
bdrv_get_dirty_count(s->copy_bitmap) +
|
||
s->in_flight_bytes);
|
||
trace_block_copy_skip_range(s, offset, status_bytes);
|
||
offset += status_bytes;
|
||
bytes -= status_bytes;
|
||
continue;
|
||
}
|
||
|
||
trace_block_copy_process(s, offset);
|
||
|
||
co_get_from_shres(s->mem, cur_bytes);
|
||
ret = block_copy_do_copy(s, offset, cur_bytes, ret & BDRV_BLOCK_ZERO,
|
||
error_is_read);
|
||
co_put_to_shres(s->mem, cur_bytes);
|
||
block_copy_inflight_req_end(s, &req, ret);
|
||
if (ret < 0) {
|
||
return ret;
|
||
}
|
||
|
||
progress_work_done(s->progress, cur_bytes);
|
||
s->progress_bytes_callback(cur_bytes, s->progress_opaque);
|
||
offset += cur_bytes;
|
||
bytes -= cur_bytes;
|
||
}
|
||
|
||
return found_dirty;
|
||
}
|
||
|
||
/*
|
||
* block_copy
|
||
*
|
||
* Copy requested region, accordingly to dirty bitmap.
|
||
* Collaborate with parallel block_copy requests: if they succeed it will help
|
||
* us. If they fail, we will retry not-copied regions. So, if we return error,
|
||
* it means that some I/O operation failed in context of _this_ block_copy call,
|
||
* not some parallel operation.
|
||
*/
|
||
int coroutine_fn block_copy(BlockCopyState *s, int64_t offset, int64_t bytes,
|
||
bool *error_is_read)
|
||
{
|
||
int ret;
|
||
|
||
do {
|
||
ret = block_copy_dirty_clusters(s, offset, bytes, error_is_read);
|
||
|
||
if (ret == 0) {
|
||
ret = block_copy_wait_one(s, offset, bytes);
|
||
}
|
||
|
||
/*
|
||
* We retry in two cases:
|
||
* 1. Some progress done
|
||
* Something was copied, which means that there were yield points
|
||
* and some new dirty bits may have appeared (due to failed parallel
|
||
* block-copy requests).
|
||
* 2. We have waited for some intersecting block-copy request
|
||
* It may have failed and produced new dirty bits.
|
||
*/
|
||
} while (ret > 0);
|
||
|
||
return ret;
|
||
}
|
||
|
||
BdrvDirtyBitmap *block_copy_dirty_bitmap(BlockCopyState *s)
|
||
{
|
||
return s->copy_bitmap;
|
||
}
|
||
|
||
void block_copy_set_skip_unallocated(BlockCopyState *s, bool skip)
|
||
{
|
||
s->skip_unallocated = skip;
|
||
}
|