qemu/docs/system/arm/emulation.rst
Richard Henderson 7a928f43d8 target/arm: Implement FEAT_LPA
This feature widens physical addresses (and intermediate physical
addresses for 2-stage translation) from 48 to 52 bits, when using
64k pages.  The only thing left at this point is to handle the
extra bits in the TTBR and in the table descriptors.

Note that PAR_EL1 and HPFAR_EL2 are nominally extended, but we don't
mask out the high bits when writing to those registers, so no changes
are required there.

Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20220301215958.157011-11-richard.henderson@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
2022-03-02 19:27:37 +00:00

106 lines
4.5 KiB
ReStructuredText

A-profile CPU architecture support
==================================
QEMU's TCG emulation includes support for the Armv5, Armv6, Armv7 and
Armv8 versions of the A-profile architecture. It also has support for
the following architecture extensions:
- FEAT_AA32BF16 (AArch32 BFloat16 instructions)
- FEAT_AA32HPD (AArch32 hierarchical permission disables)
- FEAT_AA32I8MM (AArch32 Int8 matrix multiplication instructions)
- FEAT_AES (AESD and AESE instructions)
- FEAT_BF16 (AArch64 BFloat16 instructions)
- FEAT_BTI (Branch Target Identification)
- FEAT_DIT (Data Independent Timing instructions)
- FEAT_DPB (DC CVAP instruction)
- FEAT_DotProd (Advanced SIMD dot product instructions)
- FEAT_FCMA (Floating-point complex number instructions)
- FEAT_FHM (Floating-point half-precision multiplication instructions)
- FEAT_FP16 (Half-precision floating-point data processing)
- FEAT_FRINTTS (Floating-point to integer instructions)
- FEAT_FlagM (Flag manipulation instructions v2)
- FEAT_FlagM2 (Enhancements to flag manipulation instructions)
- FEAT_HPDS (Hierarchical permission disables)
- FEAT_I8MM (AArch64 Int8 matrix multiplication instructions)
- FEAT_JSCVT (JavaScript conversion instructions)
- FEAT_LOR (Limited ordering regions)
- FEAT_LPA (Large Physical Address space)
- FEAT_LRCPC (Load-acquire RCpc instructions)
- FEAT_LRCPC2 (Load-acquire RCpc instructions v2)
- FEAT_LSE (Large System Extensions)
- FEAT_LVA (Large Virtual Address space)
- FEAT_MTE (Memory Tagging Extension)
- FEAT_MTE2 (Memory Tagging Extension)
- FEAT_MTE3 (MTE Asymmetric Fault Handling)
- FEAT_PAN (Privileged access never)
- FEAT_PAN2 (AT S1E1R and AT S1E1W instruction variants affected by PSTATE.PAN)
- FEAT_PAuth (Pointer authentication)
- FEAT_PMULL (PMULL, PMULL2 instructions)
- FEAT_PMUv3p1 (PMU Extensions v3.1)
- FEAT_PMUv3p4 (PMU Extensions v3.4)
- FEAT_RDM (Advanced SIMD rounding double multiply accumulate instructions)
- FEAT_RNG (Random number generator)
- FEAT_SB (Speculation Barrier)
- FEAT_SEL2 (Secure EL2)
- FEAT_SHA1 (SHA1 instructions)
- FEAT_SHA256 (SHA256 instructions)
- FEAT_SHA3 (Advanced SIMD SHA3 instructions)
- FEAT_SHA512 (Advanced SIMD SHA512 instructions)
- FEAT_SM3 (Advanced SIMD SM3 instructions)
- FEAT_SM4 (Advanced SIMD SM4 instructions)
- FEAT_SPECRES (Speculation restriction instructions)
- FEAT_SSBS (Speculative Store Bypass Safe)
- FEAT_TLBIOS (TLB invalidate instructions in Outer Shareable domain)
- FEAT_TLBIRANGE (TLB invalidate range instructions)
- FEAT_TTCNP (Translation table Common not private translations)
- FEAT_TTST (Small translation tables)
- FEAT_UAO (Unprivileged Access Override control)
- FEAT_VHE (Virtualization Host Extensions)
- FEAT_VMID16 (16-bit VMID)
- FEAT_XNX (Translation table stage 2 Unprivileged Execute-never)
- SVE (The Scalable Vector Extension)
- SVE2 (The Scalable Vector Extension v2)
For information on the specifics of these extensions, please refer
to the `Armv8-A Arm Architecture Reference Manual
<https://developer.arm.com/documentation/ddi0487/latest>`_.
When a specific named CPU is being emulated, only those features which
are present in hardware for that CPU are emulated. (If a feature is
not in the list above then it is not supported, even if the real
hardware should have it.) The ``max`` CPU enables all features.
R-profile CPU architecture support
==================================
QEMU's TCG emulation support for R-profile CPUs is currently limited.
We emulate only the Cortex-R5 and Cortex-R5F CPUs.
M-profile CPU architecture support
==================================
QEMU's TCG emulation includes support for Armv6-M, Armv7-M, Armv8-M, and
Armv8.1-M versions of the M-profile architucture. It also has support
for the following architecture extensions:
- FP (Floating-point Extension)
- FPCXT (FPCXT access instructions)
- HP (Half-precision floating-point instructions)
- LOB (Low Overhead loops and Branch future)
- M (Main Extension)
- MPU (Memory Protection Unit Extension)
- PXN (Privileged Execute Never)
- RAS (Reliability, Serviceability and Availability): "minimum RAS Extension" only
- S (Security Extension)
- ST (System Timer Extension)
For information on the specifics of these extensions, please refer
to the `Armv8-M Arm Architecture Reference Manual
<https://developer.arm.com/documentation/ddi0553/latest>`_.
When a specific named CPU is being emulated, only those features which
are present in hardware for that CPU are emulated. (If a feature is
not in the list above then it is not supported, even if the real
hardware should have it.) There is no equivalent of the ``max`` CPU for
M-profile.