qemu/target/loongarch/kvm/kvm.c
Bibo Mao 47b54e15bb target/loongarch: Add steal time support on migration
With pv steal time supported, VM machine needs get physical address
of each vcpu and notify new host during migration. Here two
functions kvm_get_stealtime/kvm_set_stealtime, and guest steal time
physical address is only updated on KVM_PUT_FULL_STATE stage.

Signed-off-by: Bibo Mao <maobibo@loongson.cn>
Reviewed-by: Song Gao <gaosong@loongson.cn>
Message-Id: <20240930064040.753929-1-maobibo@loongson.cn>
Signed-off-by: Song Gao <gaosong@loongson.cn>
2024-11-02 15:45:45 +08:00

1088 lines
30 KiB
C

/* SPDX-License-Identifier: GPL-2.0-or-later */
/*
* QEMU LoongArch KVM
*
* Copyright (c) 2023 Loongson Technology Corporation Limited
*/
#include "qemu/osdep.h"
#include <sys/ioctl.h>
#include <linux/kvm.h>
#include "qapi/error.h"
#include "qemu/timer.h"
#include "qemu/error-report.h"
#include "qemu/main-loop.h"
#include "sysemu/sysemu.h"
#include "sysemu/kvm.h"
#include "sysemu/kvm_int.h"
#include "hw/pci/pci.h"
#include "exec/memattrs.h"
#include "exec/address-spaces.h"
#include "hw/boards.h"
#include "hw/irq.h"
#include "qemu/log.h"
#include "hw/loader.h"
#include "sysemu/runstate.h"
#include "cpu-csr.h"
#include "kvm_loongarch.h"
#include "trace.h"
static bool cap_has_mp_state;
static unsigned int brk_insn;
const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
KVM_CAP_LAST_INFO
};
static int kvm_get_stealtime(CPUState *cs)
{
CPULoongArchState *env = cpu_env(cs);
int err;
struct kvm_device_attr attr = {
.group = KVM_LOONGARCH_VCPU_PVTIME_CTRL,
.attr = KVM_LOONGARCH_VCPU_PVTIME_GPA,
.addr = (uint64_t)&env->stealtime.guest_addr,
};
err = kvm_vcpu_ioctl(cs, KVM_HAS_DEVICE_ATTR, attr);
if (err) {
return 0;
}
err = kvm_vcpu_ioctl(cs, KVM_GET_DEVICE_ATTR, attr);
if (err) {
error_report("PVTIME: KVM_GET_DEVICE_ATTR: %s", strerror(errno));
return err;
}
return 0;
}
static int kvm_set_stealtime(CPUState *cs)
{
CPULoongArchState *env = cpu_env(cs);
int err;
struct kvm_device_attr attr = {
.group = KVM_LOONGARCH_VCPU_PVTIME_CTRL,
.attr = KVM_LOONGARCH_VCPU_PVTIME_GPA,
.addr = (uint64_t)&env->stealtime.guest_addr,
};
err = kvm_vcpu_ioctl(cs, KVM_HAS_DEVICE_ATTR, attr);
if (err) {
return 0;
}
err = kvm_vcpu_ioctl(cs, KVM_SET_DEVICE_ATTR, attr);
if (err) {
error_report("PVTIME: KVM_SET_DEVICE_ATTR %s with gpa "TARGET_FMT_lx,
strerror(errno), env->stealtime.guest_addr);
return err;
}
return 0;
}
static int kvm_loongarch_get_regs_core(CPUState *cs)
{
int ret = 0;
int i;
struct kvm_regs regs;
CPULoongArchState *env = cpu_env(cs);
/* Get the current register set as KVM seems it */
ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
if (ret < 0) {
trace_kvm_failed_get_regs_core(strerror(errno));
return ret;
}
/* gpr[0] value is always 0 */
env->gpr[0] = 0;
for (i = 1; i < 32; i++) {
env->gpr[i] = regs.gpr[i];
}
env->pc = regs.pc;
return ret;
}
static int kvm_loongarch_put_regs_core(CPUState *cs)
{
int ret = 0;
int i;
struct kvm_regs regs;
CPULoongArchState *env = cpu_env(cs);
/* Set the registers based on QEMU's view of things */
for (i = 0; i < 32; i++) {
regs.gpr[i] = env->gpr[i];
}
regs.pc = env->pc;
ret = kvm_vcpu_ioctl(cs, KVM_SET_REGS, &regs);
if (ret < 0) {
trace_kvm_failed_put_regs_core(strerror(errno));
}
return ret;
}
static int kvm_loongarch_get_csr(CPUState *cs)
{
int ret = 0;
CPULoongArchState *env = cpu_env(cs);
ret |= kvm_get_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_CRMD),
&env->CSR_CRMD);
ret |= kvm_get_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_PRMD),
&env->CSR_PRMD);
ret |= kvm_get_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_EUEN),
&env->CSR_EUEN);
ret |= kvm_get_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_MISC),
&env->CSR_MISC);
ret |= kvm_get_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_ECFG),
&env->CSR_ECFG);
ret |= kvm_get_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_ESTAT),
&env->CSR_ESTAT);
ret |= kvm_get_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_ERA),
&env->CSR_ERA);
ret |= kvm_get_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_BADV),
&env->CSR_BADV);
ret |= kvm_get_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_BADI),
&env->CSR_BADI);
ret |= kvm_get_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_EENTRY),
&env->CSR_EENTRY);
ret |= kvm_get_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_TLBIDX),
&env->CSR_TLBIDX);
ret |= kvm_get_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_TLBEHI),
&env->CSR_TLBEHI);
ret |= kvm_get_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_TLBELO0),
&env->CSR_TLBELO0);
ret |= kvm_get_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_TLBELO1),
&env->CSR_TLBELO1);
ret |= kvm_get_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_ASID),
&env->CSR_ASID);
ret |= kvm_get_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_PGDL),
&env->CSR_PGDL);
ret |= kvm_get_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_PGDH),
&env->CSR_PGDH);
ret |= kvm_get_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_PGD),
&env->CSR_PGD);
ret |= kvm_get_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_PWCL),
&env->CSR_PWCL);
ret |= kvm_get_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_PWCH),
&env->CSR_PWCH);
ret |= kvm_get_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_STLBPS),
&env->CSR_STLBPS);
ret |= kvm_get_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_RVACFG),
&env->CSR_RVACFG);
ret |= kvm_get_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_CPUID),
&env->CSR_CPUID);
ret |= kvm_get_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_PRCFG1),
&env->CSR_PRCFG1);
ret |= kvm_get_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_PRCFG2),
&env->CSR_PRCFG2);
ret |= kvm_get_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_PRCFG3),
&env->CSR_PRCFG3);
ret |= kvm_get_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_SAVE(0)),
&env->CSR_SAVE[0]);
ret |= kvm_get_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_SAVE(1)),
&env->CSR_SAVE[1]);
ret |= kvm_get_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_SAVE(2)),
&env->CSR_SAVE[2]);
ret |= kvm_get_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_SAVE(3)),
&env->CSR_SAVE[3]);
ret |= kvm_get_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_SAVE(4)),
&env->CSR_SAVE[4]);
ret |= kvm_get_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_SAVE(5)),
&env->CSR_SAVE[5]);
ret |= kvm_get_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_SAVE(6)),
&env->CSR_SAVE[6]);
ret |= kvm_get_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_SAVE(7)),
&env->CSR_SAVE[7]);
ret |= kvm_get_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_TID),
&env->CSR_TID);
ret |= kvm_get_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_CNTC),
&env->CSR_CNTC);
ret |= kvm_get_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_TICLR),
&env->CSR_TICLR);
ret |= kvm_get_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_LLBCTL),
&env->CSR_LLBCTL);
ret |= kvm_get_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_IMPCTL1),
&env->CSR_IMPCTL1);
ret |= kvm_get_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_IMPCTL2),
&env->CSR_IMPCTL2);
ret |= kvm_get_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_TLBRENTRY),
&env->CSR_TLBRENTRY);
ret |= kvm_get_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_TLBRBADV),
&env->CSR_TLBRBADV);
ret |= kvm_get_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_TLBRERA),
&env->CSR_TLBRERA);
ret |= kvm_get_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_TLBRSAVE),
&env->CSR_TLBRSAVE);
ret |= kvm_get_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_TLBRELO0),
&env->CSR_TLBRELO0);
ret |= kvm_get_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_TLBRELO1),
&env->CSR_TLBRELO1);
ret |= kvm_get_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_TLBREHI),
&env->CSR_TLBREHI);
ret |= kvm_get_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_TLBRPRMD),
&env->CSR_TLBRPRMD);
ret |= kvm_get_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_DMW(0)),
&env->CSR_DMW[0]);
ret |= kvm_get_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_DMW(1)),
&env->CSR_DMW[1]);
ret |= kvm_get_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_DMW(2)),
&env->CSR_DMW[2]);
ret |= kvm_get_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_DMW(3)),
&env->CSR_DMW[3]);
ret |= kvm_get_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_TVAL),
&env->CSR_TVAL);
ret |= kvm_get_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_TCFG),
&env->CSR_TCFG);
return ret;
}
static int kvm_loongarch_put_csr(CPUState *cs, int level)
{
int ret = 0;
CPULoongArchState *env = cpu_env(cs);
ret |= kvm_set_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_CRMD),
&env->CSR_CRMD);
ret |= kvm_set_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_PRMD),
&env->CSR_PRMD);
ret |= kvm_set_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_EUEN),
&env->CSR_EUEN);
ret |= kvm_set_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_MISC),
&env->CSR_MISC);
ret |= kvm_set_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_ECFG),
&env->CSR_ECFG);
ret |= kvm_set_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_ESTAT),
&env->CSR_ESTAT);
ret |= kvm_set_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_ERA),
&env->CSR_ERA);
ret |= kvm_set_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_BADV),
&env->CSR_BADV);
ret |= kvm_set_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_BADI),
&env->CSR_BADI);
ret |= kvm_set_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_EENTRY),
&env->CSR_EENTRY);
ret |= kvm_set_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_TLBIDX),
&env->CSR_TLBIDX);
ret |= kvm_set_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_TLBEHI),
&env->CSR_TLBEHI);
ret |= kvm_set_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_TLBELO0),
&env->CSR_TLBELO0);
ret |= kvm_set_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_TLBELO1),
&env->CSR_TLBELO1);
ret |= kvm_set_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_ASID),
&env->CSR_ASID);
ret |= kvm_set_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_PGDL),
&env->CSR_PGDL);
ret |= kvm_set_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_PGDH),
&env->CSR_PGDH);
ret |= kvm_set_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_PGD),
&env->CSR_PGD);
ret |= kvm_set_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_PWCL),
&env->CSR_PWCL);
ret |= kvm_set_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_PWCH),
&env->CSR_PWCH);
ret |= kvm_set_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_STLBPS),
&env->CSR_STLBPS);
ret |= kvm_set_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_RVACFG),
&env->CSR_RVACFG);
/* CPUID is constant after poweron, it should be set only once */
if (level >= KVM_PUT_FULL_STATE) {
ret |= kvm_set_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_CPUID),
&env->CSR_CPUID);
}
ret |= kvm_set_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_PRCFG1),
&env->CSR_PRCFG1);
ret |= kvm_set_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_PRCFG2),
&env->CSR_PRCFG2);
ret |= kvm_set_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_PRCFG3),
&env->CSR_PRCFG3);
ret |= kvm_set_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_SAVE(0)),
&env->CSR_SAVE[0]);
ret |= kvm_set_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_SAVE(1)),
&env->CSR_SAVE[1]);
ret |= kvm_set_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_SAVE(2)),
&env->CSR_SAVE[2]);
ret |= kvm_set_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_SAVE(3)),
&env->CSR_SAVE[3]);
ret |= kvm_set_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_SAVE(4)),
&env->CSR_SAVE[4]);
ret |= kvm_set_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_SAVE(5)),
&env->CSR_SAVE[5]);
ret |= kvm_set_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_SAVE(6)),
&env->CSR_SAVE[6]);
ret |= kvm_set_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_SAVE(7)),
&env->CSR_SAVE[7]);
ret |= kvm_set_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_TID),
&env->CSR_TID);
ret |= kvm_set_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_CNTC),
&env->CSR_CNTC);
ret |= kvm_set_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_TICLR),
&env->CSR_TICLR);
ret |= kvm_set_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_LLBCTL),
&env->CSR_LLBCTL);
ret |= kvm_set_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_IMPCTL1),
&env->CSR_IMPCTL1);
ret |= kvm_set_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_IMPCTL2),
&env->CSR_IMPCTL2);
ret |= kvm_set_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_TLBRENTRY),
&env->CSR_TLBRENTRY);
ret |= kvm_set_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_TLBRBADV),
&env->CSR_TLBRBADV);
ret |= kvm_set_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_TLBRERA),
&env->CSR_TLBRERA);
ret |= kvm_set_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_TLBRSAVE),
&env->CSR_TLBRSAVE);
ret |= kvm_set_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_TLBRELO0),
&env->CSR_TLBRELO0);
ret |= kvm_set_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_TLBRELO1),
&env->CSR_TLBRELO1);
ret |= kvm_set_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_TLBREHI),
&env->CSR_TLBREHI);
ret |= kvm_set_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_TLBRPRMD),
&env->CSR_TLBRPRMD);
ret |= kvm_set_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_DMW(0)),
&env->CSR_DMW[0]);
ret |= kvm_set_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_DMW(1)),
&env->CSR_DMW[1]);
ret |= kvm_set_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_DMW(2)),
&env->CSR_DMW[2]);
ret |= kvm_set_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_DMW(3)),
&env->CSR_DMW[3]);
/*
* timer cfg must be put at last since it is used to enable
* guest timer
*/
ret |= kvm_set_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_TVAL),
&env->CSR_TVAL);
ret |= kvm_set_one_reg(cs, KVM_IOC_CSRID(LOONGARCH_CSR_TCFG),
&env->CSR_TCFG);
return ret;
}
static int kvm_loongarch_get_regs_fp(CPUState *cs)
{
int ret, i;
struct kvm_fpu fpu;
CPULoongArchState *env = cpu_env(cs);
ret = kvm_vcpu_ioctl(cs, KVM_GET_FPU, &fpu);
if (ret < 0) {
trace_kvm_failed_get_fpu(strerror(errno));
return ret;
}
env->fcsr0 = fpu.fcsr;
for (i = 0; i < 32; i++) {
env->fpr[i].vreg.UD[0] = fpu.fpr[i].val64[0];
env->fpr[i].vreg.UD[1] = fpu.fpr[i].val64[1];
env->fpr[i].vreg.UD[2] = fpu.fpr[i].val64[2];
env->fpr[i].vreg.UD[3] = fpu.fpr[i].val64[3];
}
for (i = 0; i < 8; i++) {
env->cf[i] = fpu.fcc & 0xFF;
fpu.fcc = fpu.fcc >> 8;
}
return ret;
}
static int kvm_loongarch_put_regs_fp(CPUState *cs)
{
int ret, i;
struct kvm_fpu fpu;
CPULoongArchState *env = cpu_env(cs);
fpu.fcsr = env->fcsr0;
fpu.fcc = 0;
for (i = 0; i < 32; i++) {
fpu.fpr[i].val64[0] = env->fpr[i].vreg.UD[0];
fpu.fpr[i].val64[1] = env->fpr[i].vreg.UD[1];
fpu.fpr[i].val64[2] = env->fpr[i].vreg.UD[2];
fpu.fpr[i].val64[3] = env->fpr[i].vreg.UD[3];
}
for (i = 0; i < 8; i++) {
fpu.fcc |= env->cf[i] << (8 * i);
}
ret = kvm_vcpu_ioctl(cs, KVM_SET_FPU, &fpu);
if (ret < 0) {
trace_kvm_failed_put_fpu(strerror(errno));
}
return ret;
}
static int kvm_loongarch_put_lbt(CPUState *cs)
{
CPULoongArchState *env = cpu_env(cs);
uint64_t val;
int ret;
/* check whether vm support LBT firstly */
if (FIELD_EX32(env->cpucfg[2], CPUCFG2, LBT_ALL) != 7) {
return 0;
}
/* set six LBT registers including scr0-scr3, eflags, ftop */
ret = kvm_set_one_reg(cs, KVM_REG_LOONGARCH_LBT_SCR0, &env->lbt.scr0);
ret |= kvm_set_one_reg(cs, KVM_REG_LOONGARCH_LBT_SCR1, &env->lbt.scr1);
ret |= kvm_set_one_reg(cs, KVM_REG_LOONGARCH_LBT_SCR2, &env->lbt.scr2);
ret |= kvm_set_one_reg(cs, KVM_REG_LOONGARCH_LBT_SCR3, &env->lbt.scr3);
/*
* Be cautious, KVM_REG_LOONGARCH_LBT_FTOP is defined as 64-bit however
* lbt.ftop is 32-bit; the same with KVM_REG_LOONGARCH_LBT_EFLAGS register
*/
val = env->lbt.eflags;
ret |= kvm_set_one_reg(cs, KVM_REG_LOONGARCH_LBT_EFLAGS, &val);
val = env->lbt.ftop;
ret |= kvm_set_one_reg(cs, KVM_REG_LOONGARCH_LBT_FTOP, &val);
return ret;
}
static int kvm_loongarch_get_lbt(CPUState *cs)
{
CPULoongArchState *env = cpu_env(cs);
uint64_t val;
int ret;
/* check whether vm support LBT firstly */
if (FIELD_EX32(env->cpucfg[2], CPUCFG2, LBT_ALL) != 7) {
return 0;
}
/* get six LBT registers including scr0-scr3, eflags, ftop */
ret = kvm_get_one_reg(cs, KVM_REG_LOONGARCH_LBT_SCR0, &env->lbt.scr0);
ret |= kvm_get_one_reg(cs, KVM_REG_LOONGARCH_LBT_SCR1, &env->lbt.scr1);
ret |= kvm_get_one_reg(cs, KVM_REG_LOONGARCH_LBT_SCR2, &env->lbt.scr2);
ret |= kvm_get_one_reg(cs, KVM_REG_LOONGARCH_LBT_SCR3, &env->lbt.scr3);
ret |= kvm_get_one_reg(cs, KVM_REG_LOONGARCH_LBT_EFLAGS, &val);
env->lbt.eflags = (uint32_t)val;
ret |= kvm_get_one_reg(cs, KVM_REG_LOONGARCH_LBT_FTOP, &val);
env->lbt.ftop = (uint32_t)val;
return ret;
}
void kvm_arch_reset_vcpu(CPUState *cs)
{
CPULoongArchState *env = cpu_env(cs);
env->mp_state = KVM_MP_STATE_RUNNABLE;
kvm_set_one_reg(cs, KVM_REG_LOONGARCH_VCPU_RESET, 0);
}
static int kvm_loongarch_get_mpstate(CPUState *cs)
{
int ret = 0;
struct kvm_mp_state mp_state;
CPULoongArchState *env = cpu_env(cs);
if (cap_has_mp_state) {
ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state);
if (ret) {
trace_kvm_failed_get_mpstate(strerror(errno));
return ret;
}
env->mp_state = mp_state.mp_state;
}
return ret;
}
static int kvm_loongarch_put_mpstate(CPUState *cs)
{
int ret = 0;
struct kvm_mp_state mp_state = {
.mp_state = cpu_env(cs)->mp_state
};
if (cap_has_mp_state) {
ret = kvm_vcpu_ioctl(cs, KVM_SET_MP_STATE, &mp_state);
if (ret) {
trace_kvm_failed_put_mpstate(strerror(errno));
}
}
return ret;
}
static int kvm_loongarch_get_cpucfg(CPUState *cs)
{
int i, ret = 0;
uint64_t val;
CPULoongArchState *env = cpu_env(cs);
for (i = 0; i < 21; i++) {
ret = kvm_get_one_reg(cs, KVM_IOC_CPUCFG(i), &val);
if (ret < 0) {
trace_kvm_failed_get_cpucfg(strerror(errno));
}
env->cpucfg[i] = (uint32_t)val;
}
return ret;
}
static int kvm_check_cpucfg2(CPUState *cs)
{
int ret;
uint64_t val;
struct kvm_device_attr attr = {
.group = KVM_LOONGARCH_VCPU_CPUCFG,
.attr = 2,
.addr = (uint64_t)&val,
};
CPULoongArchState *env = cpu_env(cs);
ret = kvm_vcpu_ioctl(cs, KVM_HAS_DEVICE_ATTR, &attr);
if (!ret) {
kvm_vcpu_ioctl(cs, KVM_GET_DEVICE_ATTR, &attr);
env->cpucfg[2] &= val;
if (FIELD_EX32(env->cpucfg[2], CPUCFG2, FP)) {
/* The FP minimal version is 1. */
env->cpucfg[2] = FIELD_DP32(env->cpucfg[2], CPUCFG2, FP_VER, 1);
}
if (FIELD_EX32(env->cpucfg[2], CPUCFG2, LLFTP)) {
/* The LLFTP minimal version is 1. */
env->cpucfg[2] = FIELD_DP32(env->cpucfg[2], CPUCFG2, LLFTP_VER, 1);
}
}
return ret;
}
static int kvm_loongarch_put_cpucfg(CPUState *cs)
{
int i, ret = 0;
CPULoongArchState *env = cpu_env(cs);
uint64_t val;
for (i = 0; i < 21; i++) {
if (i == 2) {
ret = kvm_check_cpucfg2(cs);
if (ret) {
return ret;
}
}
val = env->cpucfg[i];
ret = kvm_set_one_reg(cs, KVM_IOC_CPUCFG(i), &val);
if (ret < 0) {
trace_kvm_failed_put_cpucfg(strerror(errno));
}
}
return ret;
}
int kvm_arch_get_registers(CPUState *cs, Error **errp)
{
int ret;
ret = kvm_loongarch_get_regs_core(cs);
if (ret) {
return ret;
}
ret = kvm_loongarch_get_cpucfg(cs);
if (ret) {
return ret;
}
ret = kvm_loongarch_get_csr(cs);
if (ret) {
return ret;
}
ret = kvm_loongarch_get_regs_fp(cs);
if (ret) {
return ret;
}
ret = kvm_loongarch_get_lbt(cs);
if (ret) {
return ret;
}
ret = kvm_get_stealtime(cs);
if (ret) {
return ret;
}
ret = kvm_loongarch_get_mpstate(cs);
return ret;
}
int kvm_arch_put_registers(CPUState *cs, int level, Error **errp)
{
int ret;
ret = kvm_loongarch_put_regs_core(cs);
if (ret) {
return ret;
}
ret = kvm_loongarch_put_cpucfg(cs);
if (ret) {
return ret;
}
ret = kvm_loongarch_put_csr(cs, level);
if (ret) {
return ret;
}
ret = kvm_loongarch_put_regs_fp(cs);
if (ret) {
return ret;
}
ret = kvm_loongarch_put_lbt(cs);
if (ret) {
return ret;
}
if (level >= KVM_PUT_FULL_STATE) {
/*
* only KVM_PUT_FULL_STATE is required, kvm kernel will clear
* guest_addr for KVM_PUT_RESET_STATE
*/
ret = kvm_set_stealtime(cs);
if (ret) {
return ret;
}
}
ret = kvm_loongarch_put_mpstate(cs);
return ret;
}
static void kvm_loongarch_vm_stage_change(void *opaque, bool running,
RunState state)
{
int ret;
CPUState *cs = opaque;
LoongArchCPU *cpu = LOONGARCH_CPU(cs);
if (running) {
ret = kvm_set_one_reg(cs, KVM_REG_LOONGARCH_COUNTER,
&cpu->kvm_state_counter);
if (ret < 0) {
trace_kvm_failed_put_counter(strerror(errno));
}
} else {
ret = kvm_get_one_reg(cs, KVM_REG_LOONGARCH_COUNTER,
&cpu->kvm_state_counter);
if (ret < 0) {
trace_kvm_failed_get_counter(strerror(errno));
}
}
}
static bool kvm_feature_supported(CPUState *cs, enum loongarch_features feature)
{
int ret;
struct kvm_device_attr attr;
switch (feature) {
case LOONGARCH_FEATURE_LBT:
/*
* Return all if all the LBT features are supported such as:
* KVM_LOONGARCH_VM_FEAT_X86BT
* KVM_LOONGARCH_VM_FEAT_ARMBT
* KVM_LOONGARCH_VM_FEAT_MIPSBT
*/
attr.group = KVM_LOONGARCH_VM_FEAT_CTRL;
attr.attr = KVM_LOONGARCH_VM_FEAT_X86BT;
ret = kvm_vm_ioctl(kvm_state, KVM_HAS_DEVICE_ATTR, &attr);
attr.attr = KVM_LOONGARCH_VM_FEAT_ARMBT;
ret |= kvm_vm_ioctl(kvm_state, KVM_HAS_DEVICE_ATTR, &attr);
attr.attr = KVM_LOONGARCH_VM_FEAT_MIPSBT;
ret |= kvm_vm_ioctl(kvm_state, KVM_HAS_DEVICE_ATTR, &attr);
return (ret == 0);
case LOONGARCH_FEATURE_PMU:
attr.group = KVM_LOONGARCH_VM_FEAT_CTRL;
attr.attr = KVM_LOONGARCH_VM_FEAT_PMU;
ret = kvm_vm_ioctl(kvm_state, KVM_HAS_DEVICE_ATTR, &attr);
return (ret == 0);
default:
return false;
}
return false;
}
static int kvm_cpu_check_lbt(CPUState *cs, Error **errp)
{
CPULoongArchState *env = cpu_env(cs);
LoongArchCPU *cpu = LOONGARCH_CPU(cs);
bool kvm_supported;
kvm_supported = kvm_feature_supported(cs, LOONGARCH_FEATURE_LBT);
if (cpu->lbt == ON_OFF_AUTO_ON) {
if (kvm_supported) {
env->cpucfg[2] = FIELD_DP32(env->cpucfg[2], CPUCFG2, LBT_ALL, 7);
} else {
error_setg(errp, "'lbt' feature not supported by KVM on this host");
return -ENOTSUP;
}
} else if ((cpu->lbt == ON_OFF_AUTO_AUTO) && kvm_supported) {
env->cpucfg[2] = FIELD_DP32(env->cpucfg[2], CPUCFG2, LBT_ALL, 7);
}
return 0;
}
static int kvm_cpu_check_pmu(CPUState *cs, Error **errp)
{
LoongArchCPU *cpu = LOONGARCH_CPU(cs);
CPULoongArchState *env = cpu_env(cs);
bool kvm_supported;
kvm_supported = kvm_feature_supported(cs, LOONGARCH_FEATURE_PMU);
if (cpu->pmu == ON_OFF_AUTO_ON) {
if (!kvm_supported) {
error_setg(errp, "'pmu' feature not supported by KVM on the host");
return -ENOTSUP;
}
} else if (cpu->pmu != ON_OFF_AUTO_AUTO) {
/* disable pmu if ON_OFF_AUTO_OFF is set */
kvm_supported = false;
}
if (kvm_supported) {
env->cpucfg[6] = FIELD_DP32(env->cpucfg[6], CPUCFG6, PMP, 1);
env->cpucfg[6] = FIELD_DP32(env->cpucfg[6], CPUCFG6, PMNUM, 3);
env->cpucfg[6] = FIELD_DP32(env->cpucfg[6], CPUCFG6, PMBITS, 63);
env->cpucfg[6] = FIELD_DP32(env->cpucfg[6], CPUCFG6, UPM, 1);
}
return 0;
}
int kvm_arch_init_vcpu(CPUState *cs)
{
uint64_t val;
int ret;
Error *local_err = NULL;
ret = 0;
qemu_add_vm_change_state_handler(kvm_loongarch_vm_stage_change, cs);
if (!kvm_get_one_reg(cs, KVM_REG_LOONGARCH_DEBUG_INST, &val)) {
brk_insn = val;
}
ret = kvm_cpu_check_lbt(cs, &local_err);
if (ret < 0) {
error_report_err(local_err);
}
ret = kvm_cpu_check_pmu(cs, &local_err);
if (ret < 0) {
error_report_err(local_err);
}
return ret;
}
int kvm_arch_destroy_vcpu(CPUState *cs)
{
return 0;
}
unsigned long kvm_arch_vcpu_id(CPUState *cs)
{
return cs->cpu_index;
}
int kvm_arch_release_virq_post(int virq)
{
return 0;
}
int kvm_arch_msi_data_to_gsi(uint32_t data)
{
abort();
}
int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
uint64_t address, uint32_t data, PCIDevice *dev)
{
return 0;
}
int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
int vector, PCIDevice *dev)
{
return 0;
}
void kvm_arch_init_irq_routing(KVMState *s)
{
}
int kvm_arch_get_default_type(MachineState *ms)
{
return 0;
}
int kvm_arch_init(MachineState *ms, KVMState *s)
{
cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE);
return 0;
}
int kvm_arch_irqchip_create(KVMState *s)
{
return 0;
}
void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
{
}
MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
{
return MEMTXATTRS_UNSPECIFIED;
}
int kvm_arch_process_async_events(CPUState *cs)
{
return cs->halted;
}
bool kvm_arch_stop_on_emulation_error(CPUState *cs)
{
return true;
}
void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
{
if (kvm_sw_breakpoints_active(cpu)) {
dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
}
}
int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
{
if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) ||
cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk_insn, 4, 1)) {
error_report("%s failed", __func__);
return -EINVAL;
}
return 0;
}
int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
{
static uint32_t brk;
if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk, 4, 0) ||
brk != brk_insn ||
cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 1)) {
error_report("%s failed", __func__);
return -EINVAL;
}
return 0;
}
int kvm_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type)
{
return -ENOSYS;
}
int kvm_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type)
{
return -ENOSYS;
}
void kvm_arch_remove_all_hw_breakpoints(void)
{
}
static bool kvm_loongarch_handle_debug(CPUState *cs, struct kvm_run *run)
{
LoongArchCPU *cpu = LOONGARCH_CPU(cs);
CPULoongArchState *env = &cpu->env;
kvm_cpu_synchronize_state(cs);
if (cs->singlestep_enabled) {
return true;
}
if (kvm_find_sw_breakpoint(cs, env->pc)) {
return true;
}
return false;
}
int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
{
int ret = 0;
CPULoongArchState *env = cpu_env(cs);
MemTxAttrs attrs = {};
attrs.requester_id = env_cpu(env)->cpu_index;
trace_kvm_arch_handle_exit(run->exit_reason);
switch (run->exit_reason) {
case KVM_EXIT_LOONGARCH_IOCSR:
address_space_rw(env->address_space_iocsr,
run->iocsr_io.phys_addr,
attrs,
run->iocsr_io.data,
run->iocsr_io.len,
run->iocsr_io.is_write);
break;
case KVM_EXIT_DEBUG:
if (kvm_loongarch_handle_debug(cs, run)) {
ret = EXCP_DEBUG;
}
break;
default:
ret = -1;
warn_report("KVM: unknown exit reason %d", run->exit_reason);
break;
}
return ret;
}
int kvm_loongarch_set_interrupt(LoongArchCPU *cpu, int irq, int level)
{
struct kvm_interrupt intr;
CPUState *cs = CPU(cpu);
if (level) {
intr.irq = irq;
} else {
intr.irq = -irq;
}
trace_kvm_set_intr(irq, level);
return kvm_vcpu_ioctl(cs, KVM_INTERRUPT, &intr);
}
void kvm_arch_accel_class_init(ObjectClass *oc)
{
}