qemu/target-i386/ops_sse.h
bellard b8b6a50b55 converted more helpers to TCG - fixed some SVM issues
git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@4459 c046a42c-6fe2-441c-8c8c-71466251a162
2008-05-15 16:46:30 +00:00

1286 lines
34 KiB
C

/*
* MMX/3DNow!/SSE/SSE2/SSE3/PNI support
*
* Copyright (c) 2005 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#if SHIFT == 0
#define Reg MMXReg
#define XMM_ONLY(x...)
#define B(n) MMX_B(n)
#define W(n) MMX_W(n)
#define L(n) MMX_L(n)
#define Q(n) q
#define SUFFIX _mmx
#else
#define Reg XMMReg
#define XMM_ONLY(x...) x
#define B(n) XMM_B(n)
#define W(n) XMM_W(n)
#define L(n) XMM_L(n)
#define Q(n) XMM_Q(n)
#define SUFFIX _xmm
#endif
void glue(helper_psrlw, SUFFIX)(Reg *d, Reg *s)
{
int shift;
if (s->Q(0) > 15) {
d->Q(0) = 0;
#if SHIFT == 1
d->Q(1) = 0;
#endif
} else {
shift = s->B(0);
d->W(0) >>= shift;
d->W(1) >>= shift;
d->W(2) >>= shift;
d->W(3) >>= shift;
#if SHIFT == 1
d->W(4) >>= shift;
d->W(5) >>= shift;
d->W(6) >>= shift;
d->W(7) >>= shift;
#endif
}
FORCE_RET();
}
void glue(helper_psraw, SUFFIX)(Reg *d, Reg *s)
{
int shift;
if (s->Q(0) > 15) {
shift = 15;
} else {
shift = s->B(0);
}
d->W(0) = (int16_t)d->W(0) >> shift;
d->W(1) = (int16_t)d->W(1) >> shift;
d->W(2) = (int16_t)d->W(2) >> shift;
d->W(3) = (int16_t)d->W(3) >> shift;
#if SHIFT == 1
d->W(4) = (int16_t)d->W(4) >> shift;
d->W(5) = (int16_t)d->W(5) >> shift;
d->W(6) = (int16_t)d->W(6) >> shift;
d->W(7) = (int16_t)d->W(7) >> shift;
#endif
}
void glue(helper_psllw, SUFFIX)(Reg *d, Reg *s)
{
int shift;
if (s->Q(0) > 15) {
d->Q(0) = 0;
#if SHIFT == 1
d->Q(1) = 0;
#endif
} else {
shift = s->B(0);
d->W(0) <<= shift;
d->W(1) <<= shift;
d->W(2) <<= shift;
d->W(3) <<= shift;
#if SHIFT == 1
d->W(4) <<= shift;
d->W(5) <<= shift;
d->W(6) <<= shift;
d->W(7) <<= shift;
#endif
}
FORCE_RET();
}
void glue(helper_psrld, SUFFIX)(Reg *d, Reg *s)
{
int shift;
if (s->Q(0) > 31) {
d->Q(0) = 0;
#if SHIFT == 1
d->Q(1) = 0;
#endif
} else {
shift = s->B(0);
d->L(0) >>= shift;
d->L(1) >>= shift;
#if SHIFT == 1
d->L(2) >>= shift;
d->L(3) >>= shift;
#endif
}
FORCE_RET();
}
void glue(helper_psrad, SUFFIX)(Reg *d, Reg *s)
{
int shift;
if (s->Q(0) > 31) {
shift = 31;
} else {
shift = s->B(0);
}
d->L(0) = (int32_t)d->L(0) >> shift;
d->L(1) = (int32_t)d->L(1) >> shift;
#if SHIFT == 1
d->L(2) = (int32_t)d->L(2) >> shift;
d->L(3) = (int32_t)d->L(3) >> shift;
#endif
}
void glue(helper_pslld, SUFFIX)(Reg *d, Reg *s)
{
int shift;
if (s->Q(0) > 31) {
d->Q(0) = 0;
#if SHIFT == 1
d->Q(1) = 0;
#endif
} else {
shift = s->B(0);
d->L(0) <<= shift;
d->L(1) <<= shift;
#if SHIFT == 1
d->L(2) <<= shift;
d->L(3) <<= shift;
#endif
}
FORCE_RET();
}
void glue(helper_psrlq, SUFFIX)(Reg *d, Reg *s)
{
int shift;
if (s->Q(0) > 63) {
d->Q(0) = 0;
#if SHIFT == 1
d->Q(1) = 0;
#endif
} else {
shift = s->B(0);
d->Q(0) >>= shift;
#if SHIFT == 1
d->Q(1) >>= shift;
#endif
}
FORCE_RET();
}
void glue(helper_psllq, SUFFIX)(Reg *d, Reg *s)
{
int shift;
if (s->Q(0) > 63) {
d->Q(0) = 0;
#if SHIFT == 1
d->Q(1) = 0;
#endif
} else {
shift = s->B(0);
d->Q(0) <<= shift;
#if SHIFT == 1
d->Q(1) <<= shift;
#endif
}
FORCE_RET();
}
#if SHIFT == 1
void glue(helper_psrldq, SUFFIX)(Reg *d, Reg *s)
{
int shift, i;
shift = s->L(0);
if (shift > 16)
shift = 16;
for(i = 0; i < 16 - shift; i++)
d->B(i) = d->B(i + shift);
for(i = 16 - shift; i < 16; i++)
d->B(i) = 0;
FORCE_RET();
}
void glue(helper_pslldq, SUFFIX)(Reg *d, Reg *s)
{
int shift, i;
shift = s->L(0);
if (shift > 16)
shift = 16;
for(i = 15; i >= shift; i--)
d->B(i) = d->B(i - shift);
for(i = 0; i < shift; i++)
d->B(i) = 0;
FORCE_RET();
}
#endif
#define SSE_HELPER_B(name, F)\
void glue(name, SUFFIX) (Reg *d, Reg *s)\
{\
d->B(0) = F(d->B(0), s->B(0));\
d->B(1) = F(d->B(1), s->B(1));\
d->B(2) = F(d->B(2), s->B(2));\
d->B(3) = F(d->B(3), s->B(3));\
d->B(4) = F(d->B(4), s->B(4));\
d->B(5) = F(d->B(5), s->B(5));\
d->B(6) = F(d->B(6), s->B(6));\
d->B(7) = F(d->B(7), s->B(7));\
XMM_ONLY(\
d->B(8) = F(d->B(8), s->B(8));\
d->B(9) = F(d->B(9), s->B(9));\
d->B(10) = F(d->B(10), s->B(10));\
d->B(11) = F(d->B(11), s->B(11));\
d->B(12) = F(d->B(12), s->B(12));\
d->B(13) = F(d->B(13), s->B(13));\
d->B(14) = F(d->B(14), s->B(14));\
d->B(15) = F(d->B(15), s->B(15));\
)\
}
#define SSE_HELPER_W(name, F)\
void glue(name, SUFFIX) (Reg *d, Reg *s)\
{\
d->W(0) = F(d->W(0), s->W(0));\
d->W(1) = F(d->W(1), s->W(1));\
d->W(2) = F(d->W(2), s->W(2));\
d->W(3) = F(d->W(3), s->W(3));\
XMM_ONLY(\
d->W(4) = F(d->W(4), s->W(4));\
d->W(5) = F(d->W(5), s->W(5));\
d->W(6) = F(d->W(6), s->W(6));\
d->W(7) = F(d->W(7), s->W(7));\
)\
}
#define SSE_HELPER_L(name, F)\
void glue(name, SUFFIX) (Reg *d, Reg *s)\
{\
d->L(0) = F(d->L(0), s->L(0));\
d->L(1) = F(d->L(1), s->L(1));\
XMM_ONLY(\
d->L(2) = F(d->L(2), s->L(2));\
d->L(3) = F(d->L(3), s->L(3));\
)\
}
#define SSE_HELPER_Q(name, F)\
void glue(name, SUFFIX) (Reg *d, Reg *s)\
{\
d->Q(0) = F(d->Q(0), s->Q(0));\
XMM_ONLY(\
d->Q(1) = F(d->Q(1), s->Q(1));\
)\
}
#if SHIFT == 0
static inline int satub(int x)
{
if (x < 0)
return 0;
else if (x > 255)
return 255;
else
return x;
}
static inline int satuw(int x)
{
if (x < 0)
return 0;
else if (x > 65535)
return 65535;
else
return x;
}
static inline int satsb(int x)
{
if (x < -128)
return -128;
else if (x > 127)
return 127;
else
return x;
}
static inline int satsw(int x)
{
if (x < -32768)
return -32768;
else if (x > 32767)
return 32767;
else
return x;
}
#define FADD(a, b) ((a) + (b))
#define FADDUB(a, b) satub((a) + (b))
#define FADDUW(a, b) satuw((a) + (b))
#define FADDSB(a, b) satsb((int8_t)(a) + (int8_t)(b))
#define FADDSW(a, b) satsw((int16_t)(a) + (int16_t)(b))
#define FSUB(a, b) ((a) - (b))
#define FSUBUB(a, b) satub((a) - (b))
#define FSUBUW(a, b) satuw((a) - (b))
#define FSUBSB(a, b) satsb((int8_t)(a) - (int8_t)(b))
#define FSUBSW(a, b) satsw((int16_t)(a) - (int16_t)(b))
#define FMINUB(a, b) ((a) < (b)) ? (a) : (b)
#define FMINSW(a, b) ((int16_t)(a) < (int16_t)(b)) ? (a) : (b)
#define FMAXUB(a, b) ((a) > (b)) ? (a) : (b)
#define FMAXSW(a, b) ((int16_t)(a) > (int16_t)(b)) ? (a) : (b)
#define FAND(a, b) (a) & (b)
#define FANDN(a, b) ((~(a)) & (b))
#define FOR(a, b) (a) | (b)
#define FXOR(a, b) (a) ^ (b)
#define FCMPGTB(a, b) (int8_t)(a) > (int8_t)(b) ? -1 : 0
#define FCMPGTW(a, b) (int16_t)(a) > (int16_t)(b) ? -1 : 0
#define FCMPGTL(a, b) (int32_t)(a) > (int32_t)(b) ? -1 : 0
#define FCMPEQ(a, b) (a) == (b) ? -1 : 0
#define FMULLW(a, b) (a) * (b)
#define FMULHRW(a, b) ((int16_t)(a) * (int16_t)(b) + 0x8000) >> 16
#define FMULHUW(a, b) (a) * (b) >> 16
#define FMULHW(a, b) (int16_t)(a) * (int16_t)(b) >> 16
#define FAVG(a, b) ((a) + (b) + 1) >> 1
#endif
SSE_HELPER_B(helper_paddb, FADD)
SSE_HELPER_W(helper_paddw, FADD)
SSE_HELPER_L(helper_paddl, FADD)
SSE_HELPER_Q(helper_paddq, FADD)
SSE_HELPER_B(helper_psubb, FSUB)
SSE_HELPER_W(helper_psubw, FSUB)
SSE_HELPER_L(helper_psubl, FSUB)
SSE_HELPER_Q(helper_psubq, FSUB)
SSE_HELPER_B(helper_paddusb, FADDUB)
SSE_HELPER_B(helper_paddsb, FADDSB)
SSE_HELPER_B(helper_psubusb, FSUBUB)
SSE_HELPER_B(helper_psubsb, FSUBSB)
SSE_HELPER_W(helper_paddusw, FADDUW)
SSE_HELPER_W(helper_paddsw, FADDSW)
SSE_HELPER_W(helper_psubusw, FSUBUW)
SSE_HELPER_W(helper_psubsw, FSUBSW)
SSE_HELPER_B(helper_pminub, FMINUB)
SSE_HELPER_B(helper_pmaxub, FMAXUB)
SSE_HELPER_W(helper_pminsw, FMINSW)
SSE_HELPER_W(helper_pmaxsw, FMAXSW)
SSE_HELPER_Q(helper_pand, FAND)
SSE_HELPER_Q(helper_pandn, FANDN)
SSE_HELPER_Q(helper_por, FOR)
SSE_HELPER_Q(helper_pxor, FXOR)
SSE_HELPER_B(helper_pcmpgtb, FCMPGTB)
SSE_HELPER_W(helper_pcmpgtw, FCMPGTW)
SSE_HELPER_L(helper_pcmpgtl, FCMPGTL)
SSE_HELPER_B(helper_pcmpeqb, FCMPEQ)
SSE_HELPER_W(helper_pcmpeqw, FCMPEQ)
SSE_HELPER_L(helper_pcmpeql, FCMPEQ)
SSE_HELPER_W(helper_pmullw, FMULLW)
#if SHIFT == 0
SSE_HELPER_W(helper_pmulhrw, FMULHRW)
#endif
SSE_HELPER_W(helper_pmulhuw, FMULHUW)
SSE_HELPER_W(helper_pmulhw, FMULHW)
SSE_HELPER_B(helper_pavgb, FAVG)
SSE_HELPER_W(helper_pavgw, FAVG)
void glue(helper_pmuludq, SUFFIX) (Reg *d, Reg *s)
{
d->Q(0) = (uint64_t)s->L(0) * (uint64_t)d->L(0);
#if SHIFT == 1
d->Q(1) = (uint64_t)s->L(2) * (uint64_t)d->L(2);
#endif
}
void glue(helper_pmaddwd, SUFFIX) (Reg *d, Reg *s)
{
int i;
for(i = 0; i < (2 << SHIFT); i++) {
d->L(i) = (int16_t)s->W(2*i) * (int16_t)d->W(2*i) +
(int16_t)s->W(2*i+1) * (int16_t)d->W(2*i+1);
}
FORCE_RET();
}
#if SHIFT == 0
static inline int abs1(int a)
{
if (a < 0)
return -a;
else
return a;
}
#endif
void glue(helper_psadbw, SUFFIX) (Reg *d, Reg *s)
{
unsigned int val;
val = 0;
val += abs1(d->B(0) - s->B(0));
val += abs1(d->B(1) - s->B(1));
val += abs1(d->B(2) - s->B(2));
val += abs1(d->B(3) - s->B(3));
val += abs1(d->B(4) - s->B(4));
val += abs1(d->B(5) - s->B(5));
val += abs1(d->B(6) - s->B(6));
val += abs1(d->B(7) - s->B(7));
d->Q(0) = val;
#if SHIFT == 1
val = 0;
val += abs1(d->B(8) - s->B(8));
val += abs1(d->B(9) - s->B(9));
val += abs1(d->B(10) - s->B(10));
val += abs1(d->B(11) - s->B(11));
val += abs1(d->B(12) - s->B(12));
val += abs1(d->B(13) - s->B(13));
val += abs1(d->B(14) - s->B(14));
val += abs1(d->B(15) - s->B(15));
d->Q(1) = val;
#endif
}
void glue(helper_maskmov, SUFFIX) (Reg *d, Reg *s, target_ulong a0)
{
int i;
for(i = 0; i < (8 << SHIFT); i++) {
if (s->B(i) & 0x80)
stb(a0 + i, d->B(i));
}
FORCE_RET();
}
void glue(helper_movl_mm_T0, SUFFIX) (Reg *d, uint32_t val)
{
d->L(0) = val;
d->L(1) = 0;
#if SHIFT == 1
d->Q(1) = 0;
#endif
}
#ifdef TARGET_X86_64
void glue(helper_movq_mm_T0, SUFFIX) (Reg *d, uint64_t val)
{
d->Q(0) = val;
#if SHIFT == 1
d->Q(1) = 0;
#endif
}
#endif
#if SHIFT == 0
void glue(helper_pshufw, SUFFIX) (Reg *d, Reg *s, int order)
{
Reg r;
r.W(0) = s->W(order & 3);
r.W(1) = s->W((order >> 2) & 3);
r.W(2) = s->W((order >> 4) & 3);
r.W(3) = s->W((order >> 6) & 3);
*d = r;
}
#else
void helper_shufps(Reg *d, Reg *s, int order)
{
Reg r;
r.L(0) = d->L(order & 3);
r.L(1) = d->L((order >> 2) & 3);
r.L(2) = s->L((order >> 4) & 3);
r.L(3) = s->L((order >> 6) & 3);
*d = r;
}
void helper_shufpd(Reg *d, Reg *s, int order)
{
Reg r;
r.Q(0) = d->Q(order & 1);
r.Q(1) = s->Q((order >> 1) & 1);
*d = r;
}
void glue(helper_pshufd, SUFFIX) (Reg *d, Reg *s, int order)
{
Reg r;
r.L(0) = s->L(order & 3);
r.L(1) = s->L((order >> 2) & 3);
r.L(2) = s->L((order >> 4) & 3);
r.L(3) = s->L((order >> 6) & 3);
*d = r;
}
void glue(helper_pshuflw, SUFFIX) (Reg *d, Reg *s, int order)
{
Reg r;
r.W(0) = s->W(order & 3);
r.W(1) = s->W((order >> 2) & 3);
r.W(2) = s->W((order >> 4) & 3);
r.W(3) = s->W((order >> 6) & 3);
r.Q(1) = s->Q(1);
*d = r;
}
void glue(helper_pshufhw, SUFFIX) (Reg *d, Reg *s, int order)
{
Reg r;
r.Q(0) = s->Q(0);
r.W(4) = s->W(4 + (order & 3));
r.W(5) = s->W(4 + ((order >> 2) & 3));
r.W(6) = s->W(4 + ((order >> 4) & 3));
r.W(7) = s->W(4 + ((order >> 6) & 3));
*d = r;
}
#endif
#if SHIFT == 1
/* FPU ops */
/* XXX: not accurate */
#define SSE_HELPER_S(name, F)\
void helper_ ## name ## ps (Reg *d, Reg *s)\
{\
d->XMM_S(0) = F(32, d->XMM_S(0), s->XMM_S(0));\
d->XMM_S(1) = F(32, d->XMM_S(1), s->XMM_S(1));\
d->XMM_S(2) = F(32, d->XMM_S(2), s->XMM_S(2));\
d->XMM_S(3) = F(32, d->XMM_S(3), s->XMM_S(3));\
}\
\
void helper_ ## name ## ss (Reg *d, Reg *s)\
{\
d->XMM_S(0) = F(32, d->XMM_S(0), s->XMM_S(0));\
}\
void helper_ ## name ## pd (Reg *d, Reg *s)\
{\
d->XMM_D(0) = F(64, d->XMM_D(0), s->XMM_D(0));\
d->XMM_D(1) = F(64, d->XMM_D(1), s->XMM_D(1));\
}\
\
void helper_ ## name ## sd (Reg *d, Reg *s)\
{\
d->XMM_D(0) = F(64, d->XMM_D(0), s->XMM_D(0));\
}
#define FPU_ADD(size, a, b) float ## size ## _add(a, b, &env->sse_status)
#define FPU_SUB(size, a, b) float ## size ## _sub(a, b, &env->sse_status)
#define FPU_MUL(size, a, b) float ## size ## _mul(a, b, &env->sse_status)
#define FPU_DIV(size, a, b) float ## size ## _div(a, b, &env->sse_status)
#define FPU_MIN(size, a, b) (a) < (b) ? (a) : (b)
#define FPU_MAX(size, a, b) (a) > (b) ? (a) : (b)
#define FPU_SQRT(size, a, b) float ## size ## _sqrt(b, &env->sse_status)
SSE_HELPER_S(add, FPU_ADD)
SSE_HELPER_S(sub, FPU_SUB)
SSE_HELPER_S(mul, FPU_MUL)
SSE_HELPER_S(div, FPU_DIV)
SSE_HELPER_S(min, FPU_MIN)
SSE_HELPER_S(max, FPU_MAX)
SSE_HELPER_S(sqrt, FPU_SQRT)
/* float to float conversions */
void helper_cvtps2pd(Reg *d, Reg *s)
{
float32 s0, s1;
s0 = s->XMM_S(0);
s1 = s->XMM_S(1);
d->XMM_D(0) = float32_to_float64(s0, &env->sse_status);
d->XMM_D(1) = float32_to_float64(s1, &env->sse_status);
}
void helper_cvtpd2ps(Reg *d, Reg *s)
{
d->XMM_S(0) = float64_to_float32(s->XMM_D(0), &env->sse_status);
d->XMM_S(1) = float64_to_float32(s->XMM_D(1), &env->sse_status);
d->Q(1) = 0;
}
void helper_cvtss2sd(Reg *d, Reg *s)
{
d->XMM_D(0) = float32_to_float64(s->XMM_S(0), &env->sse_status);
}
void helper_cvtsd2ss(Reg *d, Reg *s)
{
d->XMM_S(0) = float64_to_float32(s->XMM_D(0), &env->sse_status);
}
/* integer to float */
void helper_cvtdq2ps(Reg *d, Reg *s)
{
d->XMM_S(0) = int32_to_float32(s->XMM_L(0), &env->sse_status);
d->XMM_S(1) = int32_to_float32(s->XMM_L(1), &env->sse_status);
d->XMM_S(2) = int32_to_float32(s->XMM_L(2), &env->sse_status);
d->XMM_S(3) = int32_to_float32(s->XMM_L(3), &env->sse_status);
}
void helper_cvtdq2pd(Reg *d, Reg *s)
{
int32_t l0, l1;
l0 = (int32_t)s->XMM_L(0);
l1 = (int32_t)s->XMM_L(1);
d->XMM_D(0) = int32_to_float64(l0, &env->sse_status);
d->XMM_D(1) = int32_to_float64(l1, &env->sse_status);
}
void helper_cvtpi2ps(XMMReg *d, MMXReg *s)
{
d->XMM_S(0) = int32_to_float32(s->MMX_L(0), &env->sse_status);
d->XMM_S(1) = int32_to_float32(s->MMX_L(1), &env->sse_status);
}
void helper_cvtpi2pd(XMMReg *d, MMXReg *s)
{
d->XMM_D(0) = int32_to_float64(s->MMX_L(0), &env->sse_status);
d->XMM_D(1) = int32_to_float64(s->MMX_L(1), &env->sse_status);
}
void helper_cvtsi2ss(XMMReg *d, uint32_t val)
{
d->XMM_S(0) = int32_to_float32(val, &env->sse_status);
}
void helper_cvtsi2sd(XMMReg *d, uint32_t val)
{
d->XMM_D(0) = int32_to_float64(val, &env->sse_status);
}
#ifdef TARGET_X86_64
void helper_cvtsq2ss(XMMReg *d, uint64_t val)
{
d->XMM_S(0) = int64_to_float32(val, &env->sse_status);
}
void helper_cvtsq2sd(XMMReg *d, uint64_t val)
{
d->XMM_D(0) = int64_to_float64(val, &env->sse_status);
}
#endif
/* float to integer */
void helper_cvtps2dq(XMMReg *d, XMMReg *s)
{
d->XMM_L(0) = float32_to_int32(s->XMM_S(0), &env->sse_status);
d->XMM_L(1) = float32_to_int32(s->XMM_S(1), &env->sse_status);
d->XMM_L(2) = float32_to_int32(s->XMM_S(2), &env->sse_status);
d->XMM_L(3) = float32_to_int32(s->XMM_S(3), &env->sse_status);
}
void helper_cvtpd2dq(XMMReg *d, XMMReg *s)
{
d->XMM_L(0) = float64_to_int32(s->XMM_D(0), &env->sse_status);
d->XMM_L(1) = float64_to_int32(s->XMM_D(1), &env->sse_status);
d->XMM_Q(1) = 0;
}
void helper_cvtps2pi(MMXReg *d, XMMReg *s)
{
d->MMX_L(0) = float32_to_int32(s->XMM_S(0), &env->sse_status);
d->MMX_L(1) = float32_to_int32(s->XMM_S(1), &env->sse_status);
}
void helper_cvtpd2pi(MMXReg *d, XMMReg *s)
{
d->MMX_L(0) = float64_to_int32(s->XMM_D(0), &env->sse_status);
d->MMX_L(1) = float64_to_int32(s->XMM_D(1), &env->sse_status);
}
int32_t helper_cvtss2si(XMMReg *s)
{
return float32_to_int32(s->XMM_S(0), &env->sse_status);
}
int32_t helper_cvtsd2si(XMMReg *s)
{
return float64_to_int32(s->XMM_D(0), &env->sse_status);
}
#ifdef TARGET_X86_64
int64_t helper_cvtss2sq(XMMReg *s)
{
return float32_to_int64(s->XMM_S(0), &env->sse_status);
}
int64_t helper_cvtsd2sq(XMMReg *s)
{
return float64_to_int64(s->XMM_D(0), &env->sse_status);
}
#endif
/* float to integer truncated */
void helper_cvttps2dq(XMMReg *d, XMMReg *s)
{
d->XMM_L(0) = float32_to_int32_round_to_zero(s->XMM_S(0), &env->sse_status);
d->XMM_L(1) = float32_to_int32_round_to_zero(s->XMM_S(1), &env->sse_status);
d->XMM_L(2) = float32_to_int32_round_to_zero(s->XMM_S(2), &env->sse_status);
d->XMM_L(3) = float32_to_int32_round_to_zero(s->XMM_S(3), &env->sse_status);
}
void helper_cvttpd2dq(XMMReg *d, XMMReg *s)
{
d->XMM_L(0) = float64_to_int32_round_to_zero(s->XMM_D(0), &env->sse_status);
d->XMM_L(1) = float64_to_int32_round_to_zero(s->XMM_D(1), &env->sse_status);
d->XMM_Q(1) = 0;
}
void helper_cvttps2pi(MMXReg *d, XMMReg *s)
{
d->MMX_L(0) = float32_to_int32_round_to_zero(s->XMM_S(0), &env->sse_status);
d->MMX_L(1) = float32_to_int32_round_to_zero(s->XMM_S(1), &env->sse_status);
}
void helper_cvttpd2pi(MMXReg *d, XMMReg *s)
{
d->MMX_L(0) = float64_to_int32_round_to_zero(s->XMM_D(0), &env->sse_status);
d->MMX_L(1) = float64_to_int32_round_to_zero(s->XMM_D(1), &env->sse_status);
}
int32_t helper_cvttss2si(XMMReg *s)
{
return float32_to_int32_round_to_zero(s->XMM_S(0), &env->sse_status);
}
int32_t helper_cvttsd2si(XMMReg *s)
{
return float64_to_int32_round_to_zero(s->XMM_D(0), &env->sse_status);
}
#ifdef TARGET_X86_64
int64_t helper_cvttss2sq(XMMReg *s)
{
return float32_to_int64_round_to_zero(s->XMM_S(0), &env->sse_status);
}
int64_t helper_cvttsd2sq(XMMReg *s)
{
return float64_to_int64_round_to_zero(s->XMM_D(0), &env->sse_status);
}
#endif
void helper_rsqrtps(XMMReg *d, XMMReg *s)
{
d->XMM_S(0) = approx_rsqrt(s->XMM_S(0));
d->XMM_S(1) = approx_rsqrt(s->XMM_S(1));
d->XMM_S(2) = approx_rsqrt(s->XMM_S(2));
d->XMM_S(3) = approx_rsqrt(s->XMM_S(3));
}
void helper_rsqrtss(XMMReg *d, XMMReg *s)
{
d->XMM_S(0) = approx_rsqrt(s->XMM_S(0));
}
void helper_rcpps(XMMReg *d, XMMReg *s)
{
d->XMM_S(0) = approx_rcp(s->XMM_S(0));
d->XMM_S(1) = approx_rcp(s->XMM_S(1));
d->XMM_S(2) = approx_rcp(s->XMM_S(2));
d->XMM_S(3) = approx_rcp(s->XMM_S(3));
}
void helper_rcpss(XMMReg *d, XMMReg *s)
{
d->XMM_S(0) = approx_rcp(s->XMM_S(0));
}
void helper_haddps(XMMReg *d, XMMReg *s)
{
XMMReg r;
r.XMM_S(0) = d->XMM_S(0) + d->XMM_S(1);
r.XMM_S(1) = d->XMM_S(2) + d->XMM_S(3);
r.XMM_S(2) = s->XMM_S(0) + s->XMM_S(1);
r.XMM_S(3) = s->XMM_S(2) + s->XMM_S(3);
*d = r;
}
void helper_haddpd(XMMReg *d, XMMReg *s)
{
XMMReg r;
r.XMM_D(0) = d->XMM_D(0) + d->XMM_D(1);
r.XMM_D(1) = s->XMM_D(0) + s->XMM_D(1);
*d = r;
}
void helper_hsubps(XMMReg *d, XMMReg *s)
{
XMMReg r;
r.XMM_S(0) = d->XMM_S(0) - d->XMM_S(1);
r.XMM_S(1) = d->XMM_S(2) - d->XMM_S(3);
r.XMM_S(2) = s->XMM_S(0) - s->XMM_S(1);
r.XMM_S(3) = s->XMM_S(2) - s->XMM_S(3);
*d = r;
}
void helper_hsubpd(XMMReg *d, XMMReg *s)
{
XMMReg r;
r.XMM_D(0) = d->XMM_D(0) - d->XMM_D(1);
r.XMM_D(1) = s->XMM_D(0) - s->XMM_D(1);
*d = r;
}
void helper_addsubps(XMMReg *d, XMMReg *s)
{
d->XMM_S(0) = d->XMM_S(0) - s->XMM_S(0);
d->XMM_S(1) = d->XMM_S(1) + s->XMM_S(1);
d->XMM_S(2) = d->XMM_S(2) - s->XMM_S(2);
d->XMM_S(3) = d->XMM_S(3) + s->XMM_S(3);
}
void helper_addsubpd(XMMReg *d, XMMReg *s)
{
d->XMM_D(0) = d->XMM_D(0) - s->XMM_D(0);
d->XMM_D(1) = d->XMM_D(1) + s->XMM_D(1);
}
/* XXX: unordered */
#define SSE_HELPER_CMP(name, F)\
void helper_ ## name ## ps (Reg *d, Reg *s)\
{\
d->XMM_L(0) = F(32, d->XMM_S(0), s->XMM_S(0));\
d->XMM_L(1) = F(32, d->XMM_S(1), s->XMM_S(1));\
d->XMM_L(2) = F(32, d->XMM_S(2), s->XMM_S(2));\
d->XMM_L(3) = F(32, d->XMM_S(3), s->XMM_S(3));\
}\
\
void helper_ ## name ## ss (Reg *d, Reg *s)\
{\
d->XMM_L(0) = F(32, d->XMM_S(0), s->XMM_S(0));\
}\
void helper_ ## name ## pd (Reg *d, Reg *s)\
{\
d->XMM_Q(0) = F(64, d->XMM_D(0), s->XMM_D(0));\
d->XMM_Q(1) = F(64, d->XMM_D(1), s->XMM_D(1));\
}\
\
void helper_ ## name ## sd (Reg *d, Reg *s)\
{\
d->XMM_Q(0) = F(64, d->XMM_D(0), s->XMM_D(0));\
}
#define FPU_CMPEQ(size, a, b) float ## size ## _eq(a, b, &env->sse_status) ? -1 : 0
#define FPU_CMPLT(size, a, b) float ## size ## _lt(a, b, &env->sse_status) ? -1 : 0
#define FPU_CMPLE(size, a, b) float ## size ## _le(a, b, &env->sse_status) ? -1 : 0
#define FPU_CMPUNORD(size, a, b) float ## size ## _unordered(a, b, &env->sse_status) ? - 1 : 0
#define FPU_CMPNEQ(size, a, b) float ## size ## _eq(a, b, &env->sse_status) ? 0 : -1
#define FPU_CMPNLT(size, a, b) float ## size ## _lt(a, b, &env->sse_status) ? 0 : -1
#define FPU_CMPNLE(size, a, b) float ## size ## _le(a, b, &env->sse_status) ? 0 : -1
#define FPU_CMPORD(size, a, b) float ## size ## _unordered(a, b, &env->sse_status) ? 0 : -1
SSE_HELPER_CMP(cmpeq, FPU_CMPEQ)
SSE_HELPER_CMP(cmplt, FPU_CMPLT)
SSE_HELPER_CMP(cmple, FPU_CMPLE)
SSE_HELPER_CMP(cmpunord, FPU_CMPUNORD)
SSE_HELPER_CMP(cmpneq, FPU_CMPNEQ)
SSE_HELPER_CMP(cmpnlt, FPU_CMPNLT)
SSE_HELPER_CMP(cmpnle, FPU_CMPNLE)
SSE_HELPER_CMP(cmpord, FPU_CMPORD)
const int comis_eflags[4] = {CC_C, CC_Z, 0, CC_Z | CC_P | CC_C};
void helper_ucomiss(Reg *d, Reg *s)
{
int ret;
float32 s0, s1;
s0 = d->XMM_S(0);
s1 = s->XMM_S(0);
ret = float32_compare_quiet(s0, s1, &env->sse_status);
CC_SRC = comis_eflags[ret + 1];
FORCE_RET();
}
void helper_comiss(Reg *d, Reg *s)
{
int ret;
float32 s0, s1;
s0 = d->XMM_S(0);
s1 = s->XMM_S(0);
ret = float32_compare(s0, s1, &env->sse_status);
CC_SRC = comis_eflags[ret + 1];
FORCE_RET();
}
void helper_ucomisd(Reg *d, Reg *s)
{
int ret;
float64 d0, d1;
d0 = d->XMM_D(0);
d1 = s->XMM_D(0);
ret = float64_compare_quiet(d0, d1, &env->sse_status);
CC_SRC = comis_eflags[ret + 1];
FORCE_RET();
}
void helper_comisd(Reg *d, Reg *s)
{
int ret;
float64 d0, d1;
d0 = d->XMM_D(0);
d1 = s->XMM_D(0);
ret = float64_compare(d0, d1, &env->sse_status);
CC_SRC = comis_eflags[ret + 1];
FORCE_RET();
}
uint32_t helper_movmskps(Reg *s)
{
int b0, b1, b2, b3;
b0 = s->XMM_L(0) >> 31;
b1 = s->XMM_L(1) >> 31;
b2 = s->XMM_L(2) >> 31;
b3 = s->XMM_L(3) >> 31;
return b0 | (b1 << 1) | (b2 << 2) | (b3 << 3);
}
uint32_t helper_movmskpd(Reg *s)
{
int b0, b1;
b0 = s->XMM_L(1) >> 31;
b1 = s->XMM_L(3) >> 31;
return b0 | (b1 << 1);
}
#endif
uint32_t glue(helper_pmovmskb, SUFFIX)(Reg *s)
{
uint32_t val;
val = 0;
val |= (s->XMM_B(0) >> 7);
val |= (s->XMM_B(1) >> 6) & 0x02;
val |= (s->XMM_B(2) >> 5) & 0x04;
val |= (s->XMM_B(3) >> 4) & 0x08;
val |= (s->XMM_B(4) >> 3) & 0x10;
val |= (s->XMM_B(5) >> 2) & 0x20;
val |= (s->XMM_B(6) >> 1) & 0x40;
val |= (s->XMM_B(7)) & 0x80;
#if SHIFT == 1
val |= (s->XMM_B(8) << 1) & 0x0100;
val |= (s->XMM_B(9) << 2) & 0x0200;
val |= (s->XMM_B(10) << 3) & 0x0400;
val |= (s->XMM_B(11) << 4) & 0x0800;
val |= (s->XMM_B(12) << 5) & 0x1000;
val |= (s->XMM_B(13) << 6) & 0x2000;
val |= (s->XMM_B(14) << 7) & 0x4000;
val |= (s->XMM_B(15) << 8) & 0x8000;
#endif
return val;
}
void glue(helper_packsswb, SUFFIX) (Reg *d, Reg *s)
{
Reg r;
r.B(0) = satsb((int16_t)d->W(0));
r.B(1) = satsb((int16_t)d->W(1));
r.B(2) = satsb((int16_t)d->W(2));
r.B(3) = satsb((int16_t)d->W(3));
#if SHIFT == 1
r.B(4) = satsb((int16_t)d->W(4));
r.B(5) = satsb((int16_t)d->W(5));
r.B(6) = satsb((int16_t)d->W(6));
r.B(7) = satsb((int16_t)d->W(7));
#endif
r.B((4 << SHIFT) + 0) = satsb((int16_t)s->W(0));
r.B((4 << SHIFT) + 1) = satsb((int16_t)s->W(1));
r.B((4 << SHIFT) + 2) = satsb((int16_t)s->W(2));
r.B((4 << SHIFT) + 3) = satsb((int16_t)s->W(3));
#if SHIFT == 1
r.B(12) = satsb((int16_t)s->W(4));
r.B(13) = satsb((int16_t)s->W(5));
r.B(14) = satsb((int16_t)s->W(6));
r.B(15) = satsb((int16_t)s->W(7));
#endif
*d = r;
}
void glue(helper_packuswb, SUFFIX) (Reg *d, Reg *s)
{
Reg r;
r.B(0) = satub((int16_t)d->W(0));
r.B(1) = satub((int16_t)d->W(1));
r.B(2) = satub((int16_t)d->W(2));
r.B(3) = satub((int16_t)d->W(3));
#if SHIFT == 1
r.B(4) = satub((int16_t)d->W(4));
r.B(5) = satub((int16_t)d->W(5));
r.B(6) = satub((int16_t)d->W(6));
r.B(7) = satub((int16_t)d->W(7));
#endif
r.B((4 << SHIFT) + 0) = satub((int16_t)s->W(0));
r.B((4 << SHIFT) + 1) = satub((int16_t)s->W(1));
r.B((4 << SHIFT) + 2) = satub((int16_t)s->W(2));
r.B((4 << SHIFT) + 3) = satub((int16_t)s->W(3));
#if SHIFT == 1
r.B(12) = satub((int16_t)s->W(4));
r.B(13) = satub((int16_t)s->W(5));
r.B(14) = satub((int16_t)s->W(6));
r.B(15) = satub((int16_t)s->W(7));
#endif
*d = r;
}
void glue(helper_packssdw, SUFFIX) (Reg *d, Reg *s)
{
Reg r;
r.W(0) = satsw(d->L(0));
r.W(1) = satsw(d->L(1));
#if SHIFT == 1
r.W(2) = satsw(d->L(2));
r.W(3) = satsw(d->L(3));
#endif
r.W((2 << SHIFT) + 0) = satsw(s->L(0));
r.W((2 << SHIFT) + 1) = satsw(s->L(1));
#if SHIFT == 1
r.W(6) = satsw(s->L(2));
r.W(7) = satsw(s->L(3));
#endif
*d = r;
}
#define UNPCK_OP(base_name, base) \
\
void glue(helper_punpck ## base_name ## bw, SUFFIX) (Reg *d, Reg *s) \
{ \
Reg r; \
\
r.B(0) = d->B((base << (SHIFT + 2)) + 0); \
r.B(1) = s->B((base << (SHIFT + 2)) + 0); \
r.B(2) = d->B((base << (SHIFT + 2)) + 1); \
r.B(3) = s->B((base << (SHIFT + 2)) + 1); \
r.B(4) = d->B((base << (SHIFT + 2)) + 2); \
r.B(5) = s->B((base << (SHIFT + 2)) + 2); \
r.B(6) = d->B((base << (SHIFT + 2)) + 3); \
r.B(7) = s->B((base << (SHIFT + 2)) + 3); \
XMM_ONLY( \
r.B(8) = d->B((base << (SHIFT + 2)) + 4); \
r.B(9) = s->B((base << (SHIFT + 2)) + 4); \
r.B(10) = d->B((base << (SHIFT + 2)) + 5); \
r.B(11) = s->B((base << (SHIFT + 2)) + 5); \
r.B(12) = d->B((base << (SHIFT + 2)) + 6); \
r.B(13) = s->B((base << (SHIFT + 2)) + 6); \
r.B(14) = d->B((base << (SHIFT + 2)) + 7); \
r.B(15) = s->B((base << (SHIFT + 2)) + 7); \
) \
*d = r; \
} \
\
void glue(helper_punpck ## base_name ## wd, SUFFIX) (Reg *d, Reg *s) \
{ \
Reg r; \
\
r.W(0) = d->W((base << (SHIFT + 1)) + 0); \
r.W(1) = s->W((base << (SHIFT + 1)) + 0); \
r.W(2) = d->W((base << (SHIFT + 1)) + 1); \
r.W(3) = s->W((base << (SHIFT + 1)) + 1); \
XMM_ONLY( \
r.W(4) = d->W((base << (SHIFT + 1)) + 2); \
r.W(5) = s->W((base << (SHIFT + 1)) + 2); \
r.W(6) = d->W((base << (SHIFT + 1)) + 3); \
r.W(7) = s->W((base << (SHIFT + 1)) + 3); \
) \
*d = r; \
} \
\
void glue(helper_punpck ## base_name ## dq, SUFFIX) (Reg *d, Reg *s) \
{ \
Reg r; \
\
r.L(0) = d->L((base << SHIFT) + 0); \
r.L(1) = s->L((base << SHIFT) + 0); \
XMM_ONLY( \
r.L(2) = d->L((base << SHIFT) + 1); \
r.L(3) = s->L((base << SHIFT) + 1); \
) \
*d = r; \
} \
\
XMM_ONLY( \
void glue(helper_punpck ## base_name ## qdq, SUFFIX) (Reg *d, Reg *s) \
{ \
Reg r; \
\
r.Q(0) = d->Q(base); \
r.Q(1) = s->Q(base); \
*d = r; \
} \
)
UNPCK_OP(l, 0)
UNPCK_OP(h, 1)
/* 3DNow! float ops */
#if SHIFT == 0
void helper_pi2fd(MMXReg *d, MMXReg *s)
{
d->MMX_S(0) = int32_to_float32(s->MMX_L(0), &env->mmx_status);
d->MMX_S(1) = int32_to_float32(s->MMX_L(1), &env->mmx_status);
}
void helper_pi2fw(MMXReg *d, MMXReg *s)
{
d->MMX_S(0) = int32_to_float32((int16_t)s->MMX_W(0), &env->mmx_status);
d->MMX_S(1) = int32_to_float32((int16_t)s->MMX_W(2), &env->mmx_status);
}
void helper_pf2id(MMXReg *d, MMXReg *s)
{
d->MMX_L(0) = float32_to_int32_round_to_zero(s->MMX_S(0), &env->mmx_status);
d->MMX_L(1) = float32_to_int32_round_to_zero(s->MMX_S(1), &env->mmx_status);
}
void helper_pf2iw(MMXReg *d, MMXReg *s)
{
d->MMX_L(0) = satsw(float32_to_int32_round_to_zero(s->MMX_S(0), &env->mmx_status));
d->MMX_L(1) = satsw(float32_to_int32_round_to_zero(s->MMX_S(1), &env->mmx_status));
}
void helper_pfacc(MMXReg *d, MMXReg *s)
{
MMXReg r;
r.MMX_S(0) = float32_add(d->MMX_S(0), d->MMX_S(1), &env->mmx_status);
r.MMX_S(1) = float32_add(s->MMX_S(0), s->MMX_S(1), &env->mmx_status);
*d = r;
}
void helper_pfadd(MMXReg *d, MMXReg *s)
{
d->MMX_S(0) = float32_add(d->MMX_S(0), s->MMX_S(0), &env->mmx_status);
d->MMX_S(1) = float32_add(d->MMX_S(1), s->MMX_S(1), &env->mmx_status);
}
void helper_pfcmpeq(MMXReg *d, MMXReg *s)
{
d->MMX_L(0) = float32_eq(d->MMX_S(0), s->MMX_S(0), &env->mmx_status) ? -1 : 0;
d->MMX_L(1) = float32_eq(d->MMX_S(1), s->MMX_S(1), &env->mmx_status) ? -1 : 0;
}
void helper_pfcmpge(MMXReg *d, MMXReg *s)
{
d->MMX_L(0) = float32_le(s->MMX_S(0), d->MMX_S(0), &env->mmx_status) ? -1 : 0;
d->MMX_L(1) = float32_le(s->MMX_S(1), d->MMX_S(1), &env->mmx_status) ? -1 : 0;
}
void helper_pfcmpgt(MMXReg *d, MMXReg *s)
{
d->MMX_L(0) = float32_lt(s->MMX_S(0), d->MMX_S(0), &env->mmx_status) ? -1 : 0;
d->MMX_L(1) = float32_lt(s->MMX_S(1), d->MMX_S(1), &env->mmx_status) ? -1 : 0;
}
void helper_pfmax(MMXReg *d, MMXReg *s)
{
if (float32_lt(d->MMX_S(0), s->MMX_S(0), &env->mmx_status))
d->MMX_S(0) = s->MMX_S(0);
if (float32_lt(d->MMX_S(1), s->MMX_S(1), &env->mmx_status))
d->MMX_S(1) = s->MMX_S(1);
}
void helper_pfmin(MMXReg *d, MMXReg *s)
{
if (float32_lt(s->MMX_S(0), d->MMX_S(0), &env->mmx_status))
d->MMX_S(0) = s->MMX_S(0);
if (float32_lt(s->MMX_S(1), d->MMX_S(1), &env->mmx_status))
d->MMX_S(1) = s->MMX_S(1);
}
void helper_pfmul(MMXReg *d, MMXReg *s)
{
d->MMX_S(0) = float32_mul(d->MMX_S(0), s->MMX_S(0), &env->mmx_status);
d->MMX_S(1) = float32_mul(d->MMX_S(1), s->MMX_S(1), &env->mmx_status);
}
void helper_pfnacc(MMXReg *d, MMXReg *s)
{
MMXReg r;
r.MMX_S(0) = float32_sub(d->MMX_S(0), d->MMX_S(1), &env->mmx_status);
r.MMX_S(1) = float32_sub(s->MMX_S(0), s->MMX_S(1), &env->mmx_status);
*d = r;
}
void helper_pfpnacc(MMXReg *d, MMXReg *s)
{
MMXReg r;
r.MMX_S(0) = float32_sub(d->MMX_S(0), d->MMX_S(1), &env->mmx_status);
r.MMX_S(1) = float32_add(s->MMX_S(0), s->MMX_S(1), &env->mmx_status);
*d = r;
}
void helper_pfrcp(MMXReg *d, MMXReg *s)
{
d->MMX_S(0) = approx_rcp(s->MMX_S(0));
d->MMX_S(1) = d->MMX_S(0);
}
void helper_pfrsqrt(MMXReg *d, MMXReg *s)
{
d->MMX_L(1) = s->MMX_L(0) & 0x7fffffff;
d->MMX_S(1) = approx_rsqrt(d->MMX_S(1));
d->MMX_L(1) |= s->MMX_L(0) & 0x80000000;
d->MMX_L(0) = d->MMX_L(1);
}
void helper_pfsub(MMXReg *d, MMXReg *s)
{
d->MMX_S(0) = float32_sub(d->MMX_S(0), s->MMX_S(0), &env->mmx_status);
d->MMX_S(1) = float32_sub(d->MMX_S(1), s->MMX_S(1), &env->mmx_status);
}
void helper_pfsubr(MMXReg *d, MMXReg *s)
{
d->MMX_S(0) = float32_sub(s->MMX_S(0), d->MMX_S(0), &env->mmx_status);
d->MMX_S(1) = float32_sub(s->MMX_S(1), d->MMX_S(1), &env->mmx_status);
}
void helper_pswapd(MMXReg *d, MMXReg *s)
{
MMXReg r;
r.MMX_L(0) = s->MMX_L(1);
r.MMX_L(1) = s->MMX_L(0);
*d = r;
}
#endif
#undef SHIFT
#undef XMM_ONLY
#undef Reg
#undef B
#undef W
#undef L
#undef Q
#undef SUFFIX