qemu/target/riscv/tcg/tcg-cpu.c
Daniel Henrique Barboza 4de9151b20 target/riscv/tcg: move riscv_cpu_add_misa_properties() to tcg-cpu.c
All code related to MISA TCG properties is also moved.

At this point, all TCG properties handling is done in tcg-cpu.c, all KVM
properties handling is done in kvm-cpu.c.

Signed-off-by: Daniel Henrique Barboza <dbarboza@ventanamicro.com>
Reviewed-by: Andrew Jones <ajones@ventanamicro.com>
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Message-ID: <20230925175709.35696-18-dbarboza@ventanamicro.com>
Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
2023-10-12 12:26:30 +10:00

846 lines
26 KiB
C

/*
* riscv TCG cpu class initialization
*
* Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
* Copyright (c) 2017-2018 SiFive, Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2 or later, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "exec/exec-all.h"
#include "tcg-cpu.h"
#include "cpu.h"
#include "pmu.h"
#include "time_helper.h"
#include "qapi/error.h"
#include "qapi/visitor.h"
#include "qemu/accel.h"
#include "qemu/error-report.h"
#include "qemu/log.h"
#include "hw/core/accel-cpu.h"
#include "hw/core/tcg-cpu-ops.h"
#include "tcg/tcg.h"
/* Hash that stores user set extensions */
static GHashTable *multi_ext_user_opts;
static bool cpu_cfg_ext_is_user_set(uint32_t ext_offset)
{
return g_hash_table_contains(multi_ext_user_opts,
GUINT_TO_POINTER(ext_offset));
}
static void riscv_cpu_synchronize_from_tb(CPUState *cs,
const TranslationBlock *tb)
{
if (!(tb_cflags(tb) & CF_PCREL)) {
RISCVCPU *cpu = RISCV_CPU(cs);
CPURISCVState *env = &cpu->env;
RISCVMXL xl = FIELD_EX32(tb->flags, TB_FLAGS, XL);
tcg_debug_assert(!(cs->tcg_cflags & CF_PCREL));
if (xl == MXL_RV32) {
env->pc = (int32_t) tb->pc;
} else {
env->pc = tb->pc;
}
}
}
static void riscv_restore_state_to_opc(CPUState *cs,
const TranslationBlock *tb,
const uint64_t *data)
{
RISCVCPU *cpu = RISCV_CPU(cs);
CPURISCVState *env = &cpu->env;
RISCVMXL xl = FIELD_EX32(tb->flags, TB_FLAGS, XL);
target_ulong pc;
if (tb_cflags(tb) & CF_PCREL) {
pc = (env->pc & TARGET_PAGE_MASK) | data[0];
} else {
pc = data[0];
}
if (xl == MXL_RV32) {
env->pc = (int32_t)pc;
} else {
env->pc = pc;
}
env->bins = data[1];
}
static const struct TCGCPUOps riscv_tcg_ops = {
.initialize = riscv_translate_init,
.synchronize_from_tb = riscv_cpu_synchronize_from_tb,
.restore_state_to_opc = riscv_restore_state_to_opc,
#ifndef CONFIG_USER_ONLY
.tlb_fill = riscv_cpu_tlb_fill,
.cpu_exec_interrupt = riscv_cpu_exec_interrupt,
.do_interrupt = riscv_cpu_do_interrupt,
.do_transaction_failed = riscv_cpu_do_transaction_failed,
.do_unaligned_access = riscv_cpu_do_unaligned_access,
.debug_excp_handler = riscv_cpu_debug_excp_handler,
.debug_check_breakpoint = riscv_cpu_debug_check_breakpoint,
.debug_check_watchpoint = riscv_cpu_debug_check_watchpoint,
#endif /* !CONFIG_USER_ONLY */
};
static void cpu_cfg_ext_auto_update(RISCVCPU *cpu, uint32_t ext_offset,
bool value)
{
CPURISCVState *env = &cpu->env;
bool prev_val = isa_ext_is_enabled(cpu, ext_offset);
int min_version;
if (prev_val == value) {
return;
}
if (cpu_cfg_ext_is_user_set(ext_offset)) {
return;
}
if (value && env->priv_ver != PRIV_VERSION_LATEST) {
/* Do not enable it if priv_ver is older than min_version */
min_version = cpu_cfg_ext_get_min_version(ext_offset);
if (env->priv_ver < min_version) {
return;
}
}
isa_ext_update_enabled(cpu, ext_offset, value);
}
static void riscv_cpu_validate_misa_priv(CPURISCVState *env, Error **errp)
{
if (riscv_has_ext(env, RVH) && env->priv_ver < PRIV_VERSION_1_12_0) {
error_setg(errp, "H extension requires priv spec 1.12.0");
return;
}
}
static void riscv_cpu_validate_misa_mxl(RISCVCPU *cpu, Error **errp)
{
RISCVCPUClass *mcc = RISCV_CPU_GET_CLASS(cpu);
CPUClass *cc = CPU_CLASS(mcc);
CPURISCVState *env = &cpu->env;
/* Validate that MISA_MXL is set properly. */
switch (env->misa_mxl_max) {
#ifdef TARGET_RISCV64
case MXL_RV64:
case MXL_RV128:
cc->gdb_core_xml_file = "riscv-64bit-cpu.xml";
break;
#endif
case MXL_RV32:
cc->gdb_core_xml_file = "riscv-32bit-cpu.xml";
break;
default:
g_assert_not_reached();
}
if (env->misa_mxl_max != env->misa_mxl) {
error_setg(errp, "misa_mxl_max must be equal to misa_mxl");
return;
}
}
static void riscv_cpu_validate_priv_spec(RISCVCPU *cpu, Error **errp)
{
CPURISCVState *env = &cpu->env;
int priv_version = -1;
if (cpu->cfg.priv_spec) {
if (!g_strcmp0(cpu->cfg.priv_spec, "v1.12.0")) {
priv_version = PRIV_VERSION_1_12_0;
} else if (!g_strcmp0(cpu->cfg.priv_spec, "v1.11.0")) {
priv_version = PRIV_VERSION_1_11_0;
} else if (!g_strcmp0(cpu->cfg.priv_spec, "v1.10.0")) {
priv_version = PRIV_VERSION_1_10_0;
} else {
error_setg(errp,
"Unsupported privilege spec version '%s'",
cpu->cfg.priv_spec);
return;
}
env->priv_ver = priv_version;
}
}
static void riscv_cpu_validate_v(CPURISCVState *env, RISCVCPUConfig *cfg,
Error **errp)
{
if (!is_power_of_2(cfg->vlen)) {
error_setg(errp, "Vector extension VLEN must be power of 2");
return;
}
if (cfg->vlen > RV_VLEN_MAX || cfg->vlen < 128) {
error_setg(errp,
"Vector extension implementation only supports VLEN "
"in the range [128, %d]", RV_VLEN_MAX);
return;
}
if (!is_power_of_2(cfg->elen)) {
error_setg(errp, "Vector extension ELEN must be power of 2");
return;
}
if (cfg->elen > 64 || cfg->elen < 8) {
error_setg(errp,
"Vector extension implementation only supports ELEN "
"in the range [8, 64]");
return;
}
if (cfg->vext_spec) {
if (!g_strcmp0(cfg->vext_spec, "v1.0")) {
env->vext_ver = VEXT_VERSION_1_00_0;
} else {
error_setg(errp, "Unsupported vector spec version '%s'",
cfg->vext_spec);
return;
}
} else if (env->vext_ver == 0) {
qemu_log("vector version is not specified, "
"use the default value v1.0\n");
env->vext_ver = VEXT_VERSION_1_00_0;
}
}
/*
* Check consistency between chosen extensions while setting
* cpu->cfg accordingly.
*/
void riscv_cpu_validate_set_extensions(RISCVCPU *cpu, Error **errp)
{
CPURISCVState *env = &cpu->env;
Error *local_err = NULL;
/* Do some ISA extension error checking */
if (riscv_has_ext(env, RVG) &&
!(riscv_has_ext(env, RVI) && riscv_has_ext(env, RVM) &&
riscv_has_ext(env, RVA) && riscv_has_ext(env, RVF) &&
riscv_has_ext(env, RVD) &&
cpu->cfg.ext_icsr && cpu->cfg.ext_ifencei)) {
if (cpu_cfg_ext_is_user_set(CPU_CFG_OFFSET(ext_icsr)) &&
!cpu->cfg.ext_icsr) {
error_setg(errp, "RVG requires Zicsr but user set Zicsr to false");
return;
}
if (cpu_cfg_ext_is_user_set(CPU_CFG_OFFSET(ext_ifencei)) &&
!cpu->cfg.ext_ifencei) {
error_setg(errp, "RVG requires Zifencei but user set "
"Zifencei to false");
return;
}
warn_report("Setting G will also set IMAFD_Zicsr_Zifencei");
cpu_cfg_ext_auto_update(cpu, CPU_CFG_OFFSET(ext_icsr), true);
cpu_cfg_ext_auto_update(cpu, CPU_CFG_OFFSET(ext_ifencei), true);
env->misa_ext |= RVI | RVM | RVA | RVF | RVD;
env->misa_ext_mask |= RVI | RVM | RVA | RVF | RVD;
}
if (riscv_has_ext(env, RVI) && riscv_has_ext(env, RVE)) {
error_setg(errp,
"I and E extensions are incompatible");
return;
}
if (!riscv_has_ext(env, RVI) && !riscv_has_ext(env, RVE)) {
error_setg(errp,
"Either I or E extension must be set");
return;
}
if (riscv_has_ext(env, RVS) && !riscv_has_ext(env, RVU)) {
error_setg(errp,
"Setting S extension without U extension is illegal");
return;
}
if (riscv_has_ext(env, RVH) && !riscv_has_ext(env, RVI)) {
error_setg(errp,
"H depends on an I base integer ISA with 32 x registers");
return;
}
if (riscv_has_ext(env, RVH) && !riscv_has_ext(env, RVS)) {
error_setg(errp, "H extension implicitly requires S-mode");
return;
}
if (riscv_has_ext(env, RVF) && !cpu->cfg.ext_icsr) {
error_setg(errp, "F extension requires Zicsr");
return;
}
if ((cpu->cfg.ext_zawrs) && !riscv_has_ext(env, RVA)) {
error_setg(errp, "Zawrs extension requires A extension");
return;
}
if (cpu->cfg.ext_zfa && !riscv_has_ext(env, RVF)) {
error_setg(errp, "Zfa extension requires F extension");
return;
}
if (cpu->cfg.ext_zfh) {
cpu_cfg_ext_auto_update(cpu, CPU_CFG_OFFSET(ext_zfhmin), true);
}
if (cpu->cfg.ext_zfhmin && !riscv_has_ext(env, RVF)) {
error_setg(errp, "Zfh/Zfhmin extensions require F extension");
return;
}
if (cpu->cfg.ext_zfbfmin && !riscv_has_ext(env, RVF)) {
error_setg(errp, "Zfbfmin extension depends on F extension");
return;
}
if (riscv_has_ext(env, RVD) && !riscv_has_ext(env, RVF)) {
error_setg(errp, "D extension requires F extension");
return;
}
if (riscv_has_ext(env, RVV)) {
riscv_cpu_validate_v(env, &cpu->cfg, &local_err);
if (local_err != NULL) {
error_propagate(errp, local_err);
return;
}
/* The V vector extension depends on the Zve64d extension */
cpu_cfg_ext_auto_update(cpu, CPU_CFG_OFFSET(ext_zve64d), true);
}
/* The Zve64d extension depends on the Zve64f extension */
if (cpu->cfg.ext_zve64d) {
cpu_cfg_ext_auto_update(cpu, CPU_CFG_OFFSET(ext_zve64f), true);
}
/* The Zve64f extension depends on the Zve32f extension */
if (cpu->cfg.ext_zve64f) {
cpu_cfg_ext_auto_update(cpu, CPU_CFG_OFFSET(ext_zve32f), true);
}
if (cpu->cfg.ext_zve64d && !riscv_has_ext(env, RVD)) {
error_setg(errp, "Zve64d/V extensions require D extension");
return;
}
if (cpu->cfg.ext_zve32f && !riscv_has_ext(env, RVF)) {
error_setg(errp, "Zve32f/Zve64f extensions require F extension");
return;
}
if (cpu->cfg.ext_zvfh) {
cpu_cfg_ext_auto_update(cpu, CPU_CFG_OFFSET(ext_zvfhmin), true);
}
if (cpu->cfg.ext_zvfhmin && !cpu->cfg.ext_zve32f) {
error_setg(errp, "Zvfh/Zvfhmin extensions require Zve32f extension");
return;
}
if (cpu->cfg.ext_zvfh && !cpu->cfg.ext_zfhmin) {
error_setg(errp, "Zvfh extensions requires Zfhmin extension");
return;
}
if (cpu->cfg.ext_zvfbfmin && !cpu->cfg.ext_zfbfmin) {
error_setg(errp, "Zvfbfmin extension depends on Zfbfmin extension");
return;
}
if (cpu->cfg.ext_zvfbfmin && !cpu->cfg.ext_zve32f) {
error_setg(errp, "Zvfbfmin extension depends on Zve32f extension");
return;
}
if (cpu->cfg.ext_zvfbfwma && !cpu->cfg.ext_zvfbfmin) {
error_setg(errp, "Zvfbfwma extension depends on Zvfbfmin extension");
return;
}
/* Set the ISA extensions, checks should have happened above */
if (cpu->cfg.ext_zhinx) {
cpu_cfg_ext_auto_update(cpu, CPU_CFG_OFFSET(ext_zca), true);
}
if ((cpu->cfg.ext_zdinx || cpu->cfg.ext_zhinxmin) && !cpu->cfg.ext_zfinx) {
error_setg(errp, "Zdinx/Zhinx/Zhinxmin extensions require Zfinx");
return;
}
if (cpu->cfg.ext_zfinx) {
if (!cpu->cfg.ext_icsr) {
error_setg(errp, "Zfinx extension requires Zicsr");
return;
}
if (riscv_has_ext(env, RVF)) {
error_setg(errp,
"Zfinx cannot be supported together with F extension");
return;
}
}
if (cpu->cfg.ext_zce) {
cpu_cfg_ext_auto_update(cpu, CPU_CFG_OFFSET(ext_zca), true);
cpu_cfg_ext_auto_update(cpu, CPU_CFG_OFFSET(ext_zcb), true);
cpu_cfg_ext_auto_update(cpu, CPU_CFG_OFFSET(ext_zcmp), true);
cpu_cfg_ext_auto_update(cpu, CPU_CFG_OFFSET(ext_zcmt), true);
if (riscv_has_ext(env, RVF) && env->misa_mxl_max == MXL_RV32) {
cpu_cfg_ext_auto_update(cpu, CPU_CFG_OFFSET(ext_zcf), true);
}
}
/* zca, zcd and zcf has a PRIV 1.12.0 restriction */
if (riscv_has_ext(env, RVC) && env->priv_ver >= PRIV_VERSION_1_12_0) {
cpu_cfg_ext_auto_update(cpu, CPU_CFG_OFFSET(ext_zca), true);
if (riscv_has_ext(env, RVF) && env->misa_mxl_max == MXL_RV32) {
cpu_cfg_ext_auto_update(cpu, CPU_CFG_OFFSET(ext_zcf), true);
}
if (riscv_has_ext(env, RVD)) {
cpu_cfg_ext_auto_update(cpu, CPU_CFG_OFFSET(ext_zcd), true);
}
}
if (env->misa_mxl_max != MXL_RV32 && cpu->cfg.ext_zcf) {
error_setg(errp, "Zcf extension is only relevant to RV32");
return;
}
if (!riscv_has_ext(env, RVF) && cpu->cfg.ext_zcf) {
error_setg(errp, "Zcf extension requires F extension");
return;
}
if (!riscv_has_ext(env, RVD) && cpu->cfg.ext_zcd) {
error_setg(errp, "Zcd extension requires D extension");
return;
}
if ((cpu->cfg.ext_zcf || cpu->cfg.ext_zcd || cpu->cfg.ext_zcb ||
cpu->cfg.ext_zcmp || cpu->cfg.ext_zcmt) && !cpu->cfg.ext_zca) {
error_setg(errp, "Zcf/Zcd/Zcb/Zcmp/Zcmt extensions require Zca "
"extension");
return;
}
if (cpu->cfg.ext_zcd && (cpu->cfg.ext_zcmp || cpu->cfg.ext_zcmt)) {
error_setg(errp, "Zcmp/Zcmt extensions are incompatible with "
"Zcd extension");
return;
}
if (cpu->cfg.ext_zcmt && !cpu->cfg.ext_icsr) {
error_setg(errp, "Zcmt extension requires Zicsr extension");
return;
}
/*
* In principle Zve*x would also suffice here, were they supported
* in qemu
*/
if ((cpu->cfg.ext_zvbb || cpu->cfg.ext_zvkg || cpu->cfg.ext_zvkned ||
cpu->cfg.ext_zvknha || cpu->cfg.ext_zvksed || cpu->cfg.ext_zvksh) &&
!cpu->cfg.ext_zve32f) {
error_setg(errp,
"Vector crypto extensions require V or Zve* extensions");
return;
}
if ((cpu->cfg.ext_zvbc || cpu->cfg.ext_zvknhb) && !cpu->cfg.ext_zve64f) {
error_setg(
errp,
"Zvbc and Zvknhb extensions require V or Zve64{f,d} extensions");
return;
}
if (cpu->cfg.ext_zk) {
cpu_cfg_ext_auto_update(cpu, CPU_CFG_OFFSET(ext_zkn), true);
cpu_cfg_ext_auto_update(cpu, CPU_CFG_OFFSET(ext_zkr), true);
cpu_cfg_ext_auto_update(cpu, CPU_CFG_OFFSET(ext_zkt), true);
}
if (cpu->cfg.ext_zkn) {
cpu_cfg_ext_auto_update(cpu, CPU_CFG_OFFSET(ext_zbkb), true);
cpu_cfg_ext_auto_update(cpu, CPU_CFG_OFFSET(ext_zbkc), true);
cpu_cfg_ext_auto_update(cpu, CPU_CFG_OFFSET(ext_zbkx), true);
cpu_cfg_ext_auto_update(cpu, CPU_CFG_OFFSET(ext_zkne), true);
cpu_cfg_ext_auto_update(cpu, CPU_CFG_OFFSET(ext_zknd), true);
cpu_cfg_ext_auto_update(cpu, CPU_CFG_OFFSET(ext_zknh), true);
}
if (cpu->cfg.ext_zks) {
cpu_cfg_ext_auto_update(cpu, CPU_CFG_OFFSET(ext_zbkb), true);
cpu_cfg_ext_auto_update(cpu, CPU_CFG_OFFSET(ext_zbkc), true);
cpu_cfg_ext_auto_update(cpu, CPU_CFG_OFFSET(ext_zbkx), true);
cpu_cfg_ext_auto_update(cpu, CPU_CFG_OFFSET(ext_zksed), true);
cpu_cfg_ext_auto_update(cpu, CPU_CFG_OFFSET(ext_zksh), true);
}
/*
* Disable isa extensions based on priv spec after we
* validated and set everything we need.
*/
riscv_cpu_disable_priv_spec_isa_exts(cpu);
}
/*
* We'll get here via the following path:
*
* riscv_cpu_realize()
* -> cpu_exec_realizefn()
* -> tcg_cpu_realize() (via accel_cpu_common_realize())
*/
static bool tcg_cpu_realize(CPUState *cs, Error **errp)
{
RISCVCPU *cpu = RISCV_CPU(cs);
CPURISCVState *env = &cpu->env;
Error *local_err = NULL;
if (object_dynamic_cast(OBJECT(cpu), TYPE_RISCV_CPU_HOST)) {
error_setg(errp, "'host' CPU is not compatible with TCG acceleration");
return false;
}
riscv_cpu_validate_misa_mxl(cpu, &local_err);
if (local_err != NULL) {
error_propagate(errp, local_err);
return false;
}
riscv_cpu_validate_priv_spec(cpu, &local_err);
if (local_err != NULL) {
error_propagate(errp, local_err);
return false;
}
riscv_cpu_validate_misa_priv(env, &local_err);
if (local_err != NULL) {
error_propagate(errp, local_err);
return false;
}
if (cpu->cfg.epmp && !cpu->cfg.pmp) {
/*
* Enhanced PMP should only be available
* on harts with PMP support
*/
error_setg(errp, "Invalid configuration: EPMP requires PMP support");
return false;
}
riscv_cpu_validate_set_extensions(cpu, &local_err);
if (local_err != NULL) {
error_propagate(errp, local_err);
return false;
}
#ifndef CONFIG_USER_ONLY
CPU(cs)->tcg_cflags |= CF_PCREL;
if (cpu->cfg.ext_sstc) {
riscv_timer_init(cpu);
}
if (cpu->cfg.pmu_num) {
if (!riscv_pmu_init(cpu, cpu->cfg.pmu_num) && cpu->cfg.ext_sscofpmf) {
cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
riscv_pmu_timer_cb, cpu);
}
}
#endif
return true;
}
typedef struct RISCVCPUMisaExtConfig {
target_ulong misa_bit;
bool enabled;
} RISCVCPUMisaExtConfig;
static void cpu_set_misa_ext_cfg(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
const RISCVCPUMisaExtConfig *misa_ext_cfg = opaque;
target_ulong misa_bit = misa_ext_cfg->misa_bit;
RISCVCPU *cpu = RISCV_CPU(obj);
CPURISCVState *env = &cpu->env;
bool value;
if (!visit_type_bool(v, name, &value, errp)) {
return;
}
if (value) {
env->misa_ext |= misa_bit;
env->misa_ext_mask |= misa_bit;
} else {
env->misa_ext &= ~misa_bit;
env->misa_ext_mask &= ~misa_bit;
}
}
static void cpu_get_misa_ext_cfg(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
const RISCVCPUMisaExtConfig *misa_ext_cfg = opaque;
target_ulong misa_bit = misa_ext_cfg->misa_bit;
RISCVCPU *cpu = RISCV_CPU(obj);
CPURISCVState *env = &cpu->env;
bool value;
value = env->misa_ext & misa_bit;
visit_type_bool(v, name, &value, errp);
}
#define MISA_CFG(_bit, _enabled) \
{.misa_bit = _bit, .enabled = _enabled}
static const RISCVCPUMisaExtConfig misa_ext_cfgs[] = {
MISA_CFG(RVA, true),
MISA_CFG(RVC, true),
MISA_CFG(RVD, true),
MISA_CFG(RVF, true),
MISA_CFG(RVI, true),
MISA_CFG(RVE, false),
MISA_CFG(RVM, true),
MISA_CFG(RVS, true),
MISA_CFG(RVU, true),
MISA_CFG(RVH, true),
MISA_CFG(RVJ, false),
MISA_CFG(RVV, false),
MISA_CFG(RVG, false),
};
/*
* We do not support user choice tracking for MISA
* extensions yet because, so far, we do not silently
* change MISA bits during realize() (RVG enables MISA
* bits but the user is warned about it).
*/
static void riscv_cpu_add_misa_properties(Object *cpu_obj)
{
int i;
for (i = 0; i < ARRAY_SIZE(misa_ext_cfgs); i++) {
const RISCVCPUMisaExtConfig *misa_cfg = &misa_ext_cfgs[i];
int bit = misa_cfg->misa_bit;
const char *name = riscv_get_misa_ext_name(bit);
const char *desc = riscv_get_misa_ext_description(bit);
/* Check if KVM already created the property */
if (object_property_find(cpu_obj, name)) {
continue;
}
object_property_add(cpu_obj, name, "bool",
cpu_get_misa_ext_cfg,
cpu_set_misa_ext_cfg,
NULL, (void *)misa_cfg);
object_property_set_description(cpu_obj, name, desc);
object_property_set_bool(cpu_obj, name, misa_cfg->enabled, NULL);
}
}
static void cpu_set_multi_ext_cfg(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
const RISCVCPUMultiExtConfig *multi_ext_cfg = opaque;
bool value;
if (!visit_type_bool(v, name, &value, errp)) {
return;
}
isa_ext_update_enabled(RISCV_CPU(obj), multi_ext_cfg->offset, value);
g_hash_table_insert(multi_ext_user_opts,
GUINT_TO_POINTER(multi_ext_cfg->offset),
(gpointer)value);
}
static void cpu_get_multi_ext_cfg(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
const RISCVCPUMultiExtConfig *multi_ext_cfg = opaque;
bool value = isa_ext_is_enabled(RISCV_CPU(obj), multi_ext_cfg->offset);
visit_type_bool(v, name, &value, errp);
}
static void cpu_add_multi_ext_prop(Object *cpu_obj,
const RISCVCPUMultiExtConfig *multi_cfg)
{
object_property_add(cpu_obj, multi_cfg->name, "bool",
cpu_get_multi_ext_cfg,
cpu_set_multi_ext_cfg,
NULL, (void *)multi_cfg);
/*
* Set def val directly instead of using
* object_property_set_bool() to save the set()
* callback hash for user inputs.
*/
isa_ext_update_enabled(RISCV_CPU(cpu_obj), multi_cfg->offset,
multi_cfg->enabled);
}
static void riscv_cpu_add_multiext_prop_array(Object *obj,
const RISCVCPUMultiExtConfig *array)
{
const RISCVCPUMultiExtConfig *prop;
g_assert(array);
for (prop = array; prop && prop->name; prop++) {
cpu_add_multi_ext_prop(obj, prop);
}
}
/*
* Add CPU properties with user-facing flags.
*
* This will overwrite existing env->misa_ext values with the
* defaults set via riscv_cpu_add_misa_properties().
*/
static void riscv_cpu_add_user_properties(Object *obj)
{
#ifndef CONFIG_USER_ONLY
riscv_add_satp_mode_properties(obj);
#endif
riscv_cpu_add_misa_properties(obj);
riscv_cpu_add_multiext_prop_array(obj, riscv_cpu_extensions);
riscv_cpu_add_multiext_prop_array(obj, riscv_cpu_vendor_exts);
riscv_cpu_add_multiext_prop_array(obj, riscv_cpu_experimental_exts);
for (Property *prop = riscv_cpu_options; prop && prop->name; prop++) {
qdev_property_add_static(DEVICE(obj), prop);
}
}
/*
* The 'max' type CPU will have all possible ratified
* non-vendor extensions enabled.
*/
static void riscv_init_max_cpu_extensions(Object *obj)
{
RISCVCPU *cpu = RISCV_CPU(obj);
CPURISCVState *env = &cpu->env;
const RISCVCPUMultiExtConfig *prop;
/* Enable RVG, RVJ and RVV that are disabled by default */
riscv_cpu_set_misa(env, env->misa_mxl, env->misa_ext | RVG | RVJ | RVV);
for (prop = riscv_cpu_extensions; prop && prop->name; prop++) {
isa_ext_update_enabled(cpu, prop->offset, true);
}
/* set vector version */
env->vext_ver = VEXT_VERSION_1_00_0;
/* Zfinx is not compatible with F. Disable it */
isa_ext_update_enabled(cpu, CPU_CFG_OFFSET(ext_zfinx), false);
isa_ext_update_enabled(cpu, CPU_CFG_OFFSET(ext_zdinx), false);
isa_ext_update_enabled(cpu, CPU_CFG_OFFSET(ext_zhinx), false);
isa_ext_update_enabled(cpu, CPU_CFG_OFFSET(ext_zhinxmin), false);
isa_ext_update_enabled(cpu, CPU_CFG_OFFSET(ext_zce), false);
isa_ext_update_enabled(cpu, CPU_CFG_OFFSET(ext_zcmp), false);
isa_ext_update_enabled(cpu, CPU_CFG_OFFSET(ext_zcmt), false);
if (env->misa_mxl != MXL_RV32) {
isa_ext_update_enabled(cpu, CPU_CFG_OFFSET(ext_zcf), false);
}
}
static bool riscv_cpu_has_max_extensions(Object *cpu_obj)
{
return object_dynamic_cast(cpu_obj, TYPE_RISCV_CPU_MAX) != NULL;
}
static bool riscv_cpu_has_user_properties(Object *cpu_obj)
{
return object_dynamic_cast(cpu_obj, TYPE_RISCV_DYNAMIC_CPU) != NULL;
}
static void tcg_cpu_instance_init(CPUState *cs)
{
RISCVCPU *cpu = RISCV_CPU(cs);
Object *obj = OBJECT(cpu);
if (riscv_cpu_has_user_properties(obj)) {
multi_ext_user_opts = g_hash_table_new(NULL, g_direct_equal);
riscv_cpu_add_user_properties(obj);
}
if (riscv_cpu_has_max_extensions(obj)) {
riscv_init_max_cpu_extensions(obj);
}
}
static void tcg_cpu_init_ops(AccelCPUClass *accel_cpu, CPUClass *cc)
{
/*
* All cpus use the same set of operations.
*/
cc->tcg_ops = &riscv_tcg_ops;
}
static void tcg_cpu_class_init(CPUClass *cc)
{
cc->init_accel_cpu = tcg_cpu_init_ops;
}
static void tcg_cpu_accel_class_init(ObjectClass *oc, void *data)
{
AccelCPUClass *acc = ACCEL_CPU_CLASS(oc);
acc->cpu_class_init = tcg_cpu_class_init;
acc->cpu_instance_init = tcg_cpu_instance_init;
acc->cpu_target_realize = tcg_cpu_realize;
}
static const TypeInfo tcg_cpu_accel_type_info = {
.name = ACCEL_CPU_NAME("tcg"),
.parent = TYPE_ACCEL_CPU,
.class_init = tcg_cpu_accel_class_init,
.abstract = true,
};
static void tcg_cpu_accel_register_types(void)
{
type_register_static(&tcg_cpu_accel_type_info);
}
type_init(tcg_cpu_accel_register_types);