f57467e3b3
The unicast case in h_signal_sys_reset() seems to be broken: rather than selecting the target CPU, it looks like it will pick either the first CPU or fail to find one at all. Fix it by using the search function rather than open coding the search. This was found by inspection; the code appears to be unused because the Linux kernel only uses the broadcast target. Signed-off-by: Sam Bobroff <sam.bobroff@au1.ibm.com> Reviewed-by: Greg Kurz <groug@kaod.org> Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
1725 lines
51 KiB
C
1725 lines
51 KiB
C
#include "qemu/osdep.h"
|
|
#include "qapi/error.h"
|
|
#include "sysemu/hw_accel.h"
|
|
#include "sysemu/sysemu.h"
|
|
#include "qemu/log.h"
|
|
#include "qemu/error-report.h"
|
|
#include "cpu.h"
|
|
#include "exec/exec-all.h"
|
|
#include "helper_regs.h"
|
|
#include "hw/ppc/spapr.h"
|
|
#include "mmu-hash64.h"
|
|
#include "cpu-models.h"
|
|
#include "trace.h"
|
|
#include "kvm_ppc.h"
|
|
#include "hw/ppc/spapr_ovec.h"
|
|
#include "qemu/error-report.h"
|
|
#include "mmu-book3s-v3.h"
|
|
|
|
struct SPRSyncState {
|
|
int spr;
|
|
target_ulong value;
|
|
target_ulong mask;
|
|
};
|
|
|
|
static void do_spr_sync(CPUState *cs, run_on_cpu_data arg)
|
|
{
|
|
struct SPRSyncState *s = arg.host_ptr;
|
|
PowerPCCPU *cpu = POWERPC_CPU(cs);
|
|
CPUPPCState *env = &cpu->env;
|
|
|
|
cpu_synchronize_state(cs);
|
|
env->spr[s->spr] &= ~s->mask;
|
|
env->spr[s->spr] |= s->value;
|
|
}
|
|
|
|
static void set_spr(CPUState *cs, int spr, target_ulong value,
|
|
target_ulong mask)
|
|
{
|
|
struct SPRSyncState s = {
|
|
.spr = spr,
|
|
.value = value,
|
|
.mask = mask
|
|
};
|
|
run_on_cpu(cs, do_spr_sync, RUN_ON_CPU_HOST_PTR(&s));
|
|
}
|
|
|
|
static bool has_spr(PowerPCCPU *cpu, int spr)
|
|
{
|
|
/* We can test whether the SPR is defined by checking for a valid name */
|
|
return cpu->env.spr_cb[spr].name != NULL;
|
|
}
|
|
|
|
static inline bool valid_ptex(PowerPCCPU *cpu, target_ulong ptex)
|
|
{
|
|
/*
|
|
* hash value/pteg group index is normalized by HPT mask
|
|
*/
|
|
if (((ptex & ~7ULL) / HPTES_PER_GROUP) & ~ppc_hash64_hpt_mask(cpu)) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool is_ram_address(sPAPRMachineState *spapr, hwaddr addr)
|
|
{
|
|
MachineState *machine = MACHINE(spapr);
|
|
MemoryHotplugState *hpms = &spapr->hotplug_memory;
|
|
|
|
if (addr < machine->ram_size) {
|
|
return true;
|
|
}
|
|
if ((addr >= hpms->base)
|
|
&& ((addr - hpms->base) < memory_region_size(&hpms->mr))) {
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static target_ulong h_enter(PowerPCCPU *cpu, sPAPRMachineState *spapr,
|
|
target_ulong opcode, target_ulong *args)
|
|
{
|
|
target_ulong flags = args[0];
|
|
target_ulong ptex = args[1];
|
|
target_ulong pteh = args[2];
|
|
target_ulong ptel = args[3];
|
|
unsigned apshift;
|
|
target_ulong raddr;
|
|
target_ulong slot;
|
|
const ppc_hash_pte64_t *hptes;
|
|
|
|
apshift = ppc_hash64_hpte_page_shift_noslb(cpu, pteh, ptel);
|
|
if (!apshift) {
|
|
/* Bad page size encoding */
|
|
return H_PARAMETER;
|
|
}
|
|
|
|
raddr = (ptel & HPTE64_R_RPN) & ~((1ULL << apshift) - 1);
|
|
|
|
if (is_ram_address(spapr, raddr)) {
|
|
/* Regular RAM - should have WIMG=0010 */
|
|
if ((ptel & HPTE64_R_WIMG) != HPTE64_R_M) {
|
|
return H_PARAMETER;
|
|
}
|
|
} else {
|
|
target_ulong wimg_flags;
|
|
/* Looks like an IO address */
|
|
/* FIXME: What WIMG combinations could be sensible for IO?
|
|
* For now we allow WIMG=010x, but are there others? */
|
|
/* FIXME: Should we check against registered IO addresses? */
|
|
wimg_flags = (ptel & (HPTE64_R_W | HPTE64_R_I | HPTE64_R_M));
|
|
|
|
if (wimg_flags != HPTE64_R_I &&
|
|
wimg_flags != (HPTE64_R_I | HPTE64_R_M)) {
|
|
return H_PARAMETER;
|
|
}
|
|
}
|
|
|
|
pteh &= ~0x60ULL;
|
|
|
|
if (!valid_ptex(cpu, ptex)) {
|
|
return H_PARAMETER;
|
|
}
|
|
|
|
slot = ptex & 7ULL;
|
|
ptex = ptex & ~7ULL;
|
|
|
|
if (likely((flags & H_EXACT) == 0)) {
|
|
hptes = ppc_hash64_map_hptes(cpu, ptex, HPTES_PER_GROUP);
|
|
for (slot = 0; slot < 8; slot++) {
|
|
if (!(ppc_hash64_hpte0(cpu, hptes, slot) & HPTE64_V_VALID)) {
|
|
break;
|
|
}
|
|
}
|
|
ppc_hash64_unmap_hptes(cpu, hptes, ptex, HPTES_PER_GROUP);
|
|
if (slot == 8) {
|
|
return H_PTEG_FULL;
|
|
}
|
|
} else {
|
|
hptes = ppc_hash64_map_hptes(cpu, ptex + slot, 1);
|
|
if (ppc_hash64_hpte0(cpu, hptes, 0) & HPTE64_V_VALID) {
|
|
ppc_hash64_unmap_hptes(cpu, hptes, ptex + slot, 1);
|
|
return H_PTEG_FULL;
|
|
}
|
|
ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1);
|
|
}
|
|
|
|
ppc_hash64_store_hpte(cpu, ptex + slot, pteh | HPTE64_V_HPTE_DIRTY, ptel);
|
|
|
|
args[0] = ptex + slot;
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
typedef enum {
|
|
REMOVE_SUCCESS = 0,
|
|
REMOVE_NOT_FOUND = 1,
|
|
REMOVE_PARM = 2,
|
|
REMOVE_HW = 3,
|
|
} RemoveResult;
|
|
|
|
static RemoveResult remove_hpte(PowerPCCPU *cpu, target_ulong ptex,
|
|
target_ulong avpn,
|
|
target_ulong flags,
|
|
target_ulong *vp, target_ulong *rp)
|
|
{
|
|
const ppc_hash_pte64_t *hptes;
|
|
target_ulong v, r;
|
|
|
|
if (!valid_ptex(cpu, ptex)) {
|
|
return REMOVE_PARM;
|
|
}
|
|
|
|
hptes = ppc_hash64_map_hptes(cpu, ptex, 1);
|
|
v = ppc_hash64_hpte0(cpu, hptes, 0);
|
|
r = ppc_hash64_hpte1(cpu, hptes, 0);
|
|
ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1);
|
|
|
|
if ((v & HPTE64_V_VALID) == 0 ||
|
|
((flags & H_AVPN) && (v & ~0x7fULL) != avpn) ||
|
|
((flags & H_ANDCOND) && (v & avpn) != 0)) {
|
|
return REMOVE_NOT_FOUND;
|
|
}
|
|
*vp = v;
|
|
*rp = r;
|
|
ppc_hash64_store_hpte(cpu, ptex, HPTE64_V_HPTE_DIRTY, 0);
|
|
ppc_hash64_tlb_flush_hpte(cpu, ptex, v, r);
|
|
return REMOVE_SUCCESS;
|
|
}
|
|
|
|
static target_ulong h_remove(PowerPCCPU *cpu, sPAPRMachineState *spapr,
|
|
target_ulong opcode, target_ulong *args)
|
|
{
|
|
CPUPPCState *env = &cpu->env;
|
|
target_ulong flags = args[0];
|
|
target_ulong ptex = args[1];
|
|
target_ulong avpn = args[2];
|
|
RemoveResult ret;
|
|
|
|
ret = remove_hpte(cpu, ptex, avpn, flags,
|
|
&args[0], &args[1]);
|
|
|
|
switch (ret) {
|
|
case REMOVE_SUCCESS:
|
|
check_tlb_flush(env, true);
|
|
return H_SUCCESS;
|
|
|
|
case REMOVE_NOT_FOUND:
|
|
return H_NOT_FOUND;
|
|
|
|
case REMOVE_PARM:
|
|
return H_PARAMETER;
|
|
|
|
case REMOVE_HW:
|
|
return H_HARDWARE;
|
|
}
|
|
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
#define H_BULK_REMOVE_TYPE 0xc000000000000000ULL
|
|
#define H_BULK_REMOVE_REQUEST 0x4000000000000000ULL
|
|
#define H_BULK_REMOVE_RESPONSE 0x8000000000000000ULL
|
|
#define H_BULK_REMOVE_END 0xc000000000000000ULL
|
|
#define H_BULK_REMOVE_CODE 0x3000000000000000ULL
|
|
#define H_BULK_REMOVE_SUCCESS 0x0000000000000000ULL
|
|
#define H_BULK_REMOVE_NOT_FOUND 0x1000000000000000ULL
|
|
#define H_BULK_REMOVE_PARM 0x2000000000000000ULL
|
|
#define H_BULK_REMOVE_HW 0x3000000000000000ULL
|
|
#define H_BULK_REMOVE_RC 0x0c00000000000000ULL
|
|
#define H_BULK_REMOVE_FLAGS 0x0300000000000000ULL
|
|
#define H_BULK_REMOVE_ABSOLUTE 0x0000000000000000ULL
|
|
#define H_BULK_REMOVE_ANDCOND 0x0100000000000000ULL
|
|
#define H_BULK_REMOVE_AVPN 0x0200000000000000ULL
|
|
#define H_BULK_REMOVE_PTEX 0x00ffffffffffffffULL
|
|
|
|
#define H_BULK_REMOVE_MAX_BATCH 4
|
|
|
|
static target_ulong h_bulk_remove(PowerPCCPU *cpu, sPAPRMachineState *spapr,
|
|
target_ulong opcode, target_ulong *args)
|
|
{
|
|
CPUPPCState *env = &cpu->env;
|
|
int i;
|
|
target_ulong rc = H_SUCCESS;
|
|
|
|
for (i = 0; i < H_BULK_REMOVE_MAX_BATCH; i++) {
|
|
target_ulong *tsh = &args[i*2];
|
|
target_ulong tsl = args[i*2 + 1];
|
|
target_ulong v, r, ret;
|
|
|
|
if ((*tsh & H_BULK_REMOVE_TYPE) == H_BULK_REMOVE_END) {
|
|
break;
|
|
} else if ((*tsh & H_BULK_REMOVE_TYPE) != H_BULK_REMOVE_REQUEST) {
|
|
return H_PARAMETER;
|
|
}
|
|
|
|
*tsh &= H_BULK_REMOVE_PTEX | H_BULK_REMOVE_FLAGS;
|
|
*tsh |= H_BULK_REMOVE_RESPONSE;
|
|
|
|
if ((*tsh & H_BULK_REMOVE_ANDCOND) && (*tsh & H_BULK_REMOVE_AVPN)) {
|
|
*tsh |= H_BULK_REMOVE_PARM;
|
|
return H_PARAMETER;
|
|
}
|
|
|
|
ret = remove_hpte(cpu, *tsh & H_BULK_REMOVE_PTEX, tsl,
|
|
(*tsh & H_BULK_REMOVE_FLAGS) >> 26,
|
|
&v, &r);
|
|
|
|
*tsh |= ret << 60;
|
|
|
|
switch (ret) {
|
|
case REMOVE_SUCCESS:
|
|
*tsh |= (r & (HPTE64_R_C | HPTE64_R_R)) << 43;
|
|
break;
|
|
|
|
case REMOVE_PARM:
|
|
rc = H_PARAMETER;
|
|
goto exit;
|
|
|
|
case REMOVE_HW:
|
|
rc = H_HARDWARE;
|
|
goto exit;
|
|
}
|
|
}
|
|
exit:
|
|
check_tlb_flush(env, true);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static target_ulong h_protect(PowerPCCPU *cpu, sPAPRMachineState *spapr,
|
|
target_ulong opcode, target_ulong *args)
|
|
{
|
|
CPUPPCState *env = &cpu->env;
|
|
target_ulong flags = args[0];
|
|
target_ulong ptex = args[1];
|
|
target_ulong avpn = args[2];
|
|
const ppc_hash_pte64_t *hptes;
|
|
target_ulong v, r;
|
|
|
|
if (!valid_ptex(cpu, ptex)) {
|
|
return H_PARAMETER;
|
|
}
|
|
|
|
hptes = ppc_hash64_map_hptes(cpu, ptex, 1);
|
|
v = ppc_hash64_hpte0(cpu, hptes, 0);
|
|
r = ppc_hash64_hpte1(cpu, hptes, 0);
|
|
ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1);
|
|
|
|
if ((v & HPTE64_V_VALID) == 0 ||
|
|
((flags & H_AVPN) && (v & ~0x7fULL) != avpn)) {
|
|
return H_NOT_FOUND;
|
|
}
|
|
|
|
r &= ~(HPTE64_R_PP0 | HPTE64_R_PP | HPTE64_R_N |
|
|
HPTE64_R_KEY_HI | HPTE64_R_KEY_LO);
|
|
r |= (flags << 55) & HPTE64_R_PP0;
|
|
r |= (flags << 48) & HPTE64_R_KEY_HI;
|
|
r |= flags & (HPTE64_R_PP | HPTE64_R_N | HPTE64_R_KEY_LO);
|
|
ppc_hash64_store_hpte(cpu, ptex,
|
|
(v & ~HPTE64_V_VALID) | HPTE64_V_HPTE_DIRTY, 0);
|
|
ppc_hash64_tlb_flush_hpte(cpu, ptex, v, r);
|
|
/* Flush the tlb */
|
|
check_tlb_flush(env, true);
|
|
/* Don't need a memory barrier, due to qemu's global lock */
|
|
ppc_hash64_store_hpte(cpu, ptex, v | HPTE64_V_HPTE_DIRTY, r);
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
static target_ulong h_read(PowerPCCPU *cpu, sPAPRMachineState *spapr,
|
|
target_ulong opcode, target_ulong *args)
|
|
{
|
|
target_ulong flags = args[0];
|
|
target_ulong ptex = args[1];
|
|
uint8_t *hpte;
|
|
int i, ridx, n_entries = 1;
|
|
|
|
if (!valid_ptex(cpu, ptex)) {
|
|
return H_PARAMETER;
|
|
}
|
|
|
|
if (flags & H_READ_4) {
|
|
/* Clear the two low order bits */
|
|
ptex &= ~(3ULL);
|
|
n_entries = 4;
|
|
}
|
|
|
|
hpte = spapr->htab + (ptex * HASH_PTE_SIZE_64);
|
|
|
|
for (i = 0, ridx = 0; i < n_entries; i++) {
|
|
args[ridx++] = ldq_p(hpte);
|
|
args[ridx++] = ldq_p(hpte + (HASH_PTE_SIZE_64/2));
|
|
hpte += HASH_PTE_SIZE_64;
|
|
}
|
|
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
struct sPAPRPendingHPT {
|
|
/* These fields are read-only after initialization */
|
|
int shift;
|
|
QemuThread thread;
|
|
|
|
/* These fields are protected by the BQL */
|
|
bool complete;
|
|
|
|
/* These fields are private to the preparation thread if
|
|
* !complete, otherwise protected by the BQL */
|
|
int ret;
|
|
void *hpt;
|
|
};
|
|
|
|
static void free_pending_hpt(sPAPRPendingHPT *pending)
|
|
{
|
|
if (pending->hpt) {
|
|
qemu_vfree(pending->hpt);
|
|
}
|
|
|
|
g_free(pending);
|
|
}
|
|
|
|
static void *hpt_prepare_thread(void *opaque)
|
|
{
|
|
sPAPRPendingHPT *pending = opaque;
|
|
size_t size = 1ULL << pending->shift;
|
|
|
|
pending->hpt = qemu_memalign(size, size);
|
|
if (pending->hpt) {
|
|
memset(pending->hpt, 0, size);
|
|
pending->ret = H_SUCCESS;
|
|
} else {
|
|
pending->ret = H_NO_MEM;
|
|
}
|
|
|
|
qemu_mutex_lock_iothread();
|
|
|
|
if (SPAPR_MACHINE(qdev_get_machine())->pending_hpt == pending) {
|
|
/* Ready to go */
|
|
pending->complete = true;
|
|
} else {
|
|
/* We've been cancelled, clean ourselves up */
|
|
free_pending_hpt(pending);
|
|
}
|
|
|
|
qemu_mutex_unlock_iothread();
|
|
return NULL;
|
|
}
|
|
|
|
/* Must be called with BQL held */
|
|
static void cancel_hpt_prepare(sPAPRMachineState *spapr)
|
|
{
|
|
sPAPRPendingHPT *pending = spapr->pending_hpt;
|
|
|
|
/* Let the thread know it's cancelled */
|
|
spapr->pending_hpt = NULL;
|
|
|
|
if (!pending) {
|
|
/* Nothing to do */
|
|
return;
|
|
}
|
|
|
|
if (!pending->complete) {
|
|
/* thread will clean itself up */
|
|
return;
|
|
}
|
|
|
|
free_pending_hpt(pending);
|
|
}
|
|
|
|
/* Convert a return code from the KVM ioctl()s implementing resize HPT
|
|
* into a PAPR hypercall return code */
|
|
static target_ulong resize_hpt_convert_rc(int ret)
|
|
{
|
|
if (ret >= 100000) {
|
|
return H_LONG_BUSY_ORDER_100_SEC;
|
|
} else if (ret >= 10000) {
|
|
return H_LONG_BUSY_ORDER_10_SEC;
|
|
} else if (ret >= 1000) {
|
|
return H_LONG_BUSY_ORDER_1_SEC;
|
|
} else if (ret >= 100) {
|
|
return H_LONG_BUSY_ORDER_100_MSEC;
|
|
} else if (ret >= 10) {
|
|
return H_LONG_BUSY_ORDER_10_MSEC;
|
|
} else if (ret > 0) {
|
|
return H_LONG_BUSY_ORDER_1_MSEC;
|
|
}
|
|
|
|
switch (ret) {
|
|
case 0:
|
|
return H_SUCCESS;
|
|
case -EPERM:
|
|
return H_AUTHORITY;
|
|
case -EINVAL:
|
|
return H_PARAMETER;
|
|
case -ENXIO:
|
|
return H_CLOSED;
|
|
case -ENOSPC:
|
|
return H_PTEG_FULL;
|
|
case -EBUSY:
|
|
return H_BUSY;
|
|
case -ENOMEM:
|
|
return H_NO_MEM;
|
|
default:
|
|
return H_HARDWARE;
|
|
}
|
|
}
|
|
|
|
static target_ulong h_resize_hpt_prepare(PowerPCCPU *cpu,
|
|
sPAPRMachineState *spapr,
|
|
target_ulong opcode,
|
|
target_ulong *args)
|
|
{
|
|
target_ulong flags = args[0];
|
|
int shift = args[1];
|
|
sPAPRPendingHPT *pending = spapr->pending_hpt;
|
|
uint64_t current_ram_size = MACHINE(spapr)->ram_size;
|
|
int rc;
|
|
|
|
if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
|
|
return H_AUTHORITY;
|
|
}
|
|
|
|
if (!spapr->htab_shift) {
|
|
/* Radix guest, no HPT */
|
|
return H_NOT_AVAILABLE;
|
|
}
|
|
|
|
trace_spapr_h_resize_hpt_prepare(flags, shift);
|
|
|
|
if (flags != 0) {
|
|
return H_PARAMETER;
|
|
}
|
|
|
|
if (shift && ((shift < 18) || (shift > 46))) {
|
|
return H_PARAMETER;
|
|
}
|
|
|
|
current_ram_size = pc_existing_dimms_capacity(&error_fatal);
|
|
|
|
/* We only allow the guest to allocate an HPT one order above what
|
|
* we'd normally give them (to stop a small guest claiming a huge
|
|
* chunk of resources in the HPT */
|
|
if (shift > (spapr_hpt_shift_for_ramsize(current_ram_size) + 1)) {
|
|
return H_RESOURCE;
|
|
}
|
|
|
|
rc = kvmppc_resize_hpt_prepare(cpu, flags, shift);
|
|
if (rc != -ENOSYS) {
|
|
return resize_hpt_convert_rc(rc);
|
|
}
|
|
|
|
if (pending) {
|
|
/* something already in progress */
|
|
if (pending->shift == shift) {
|
|
/* and it's suitable */
|
|
if (pending->complete) {
|
|
return pending->ret;
|
|
} else {
|
|
return H_LONG_BUSY_ORDER_100_MSEC;
|
|
}
|
|
}
|
|
|
|
/* not suitable, cancel and replace */
|
|
cancel_hpt_prepare(spapr);
|
|
}
|
|
|
|
if (!shift) {
|
|
/* nothing to do */
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
/* start new prepare */
|
|
|
|
pending = g_new0(sPAPRPendingHPT, 1);
|
|
pending->shift = shift;
|
|
pending->ret = H_HARDWARE;
|
|
|
|
qemu_thread_create(&pending->thread, "sPAPR HPT prepare",
|
|
hpt_prepare_thread, pending, QEMU_THREAD_DETACHED);
|
|
|
|
spapr->pending_hpt = pending;
|
|
|
|
/* In theory we could estimate the time more accurately based on
|
|
* the new size, but there's not much point */
|
|
return H_LONG_BUSY_ORDER_100_MSEC;
|
|
}
|
|
|
|
static uint64_t new_hpte_load0(void *htab, uint64_t pteg, int slot)
|
|
{
|
|
uint8_t *addr = htab;
|
|
|
|
addr += pteg * HASH_PTEG_SIZE_64;
|
|
addr += slot * HASH_PTE_SIZE_64;
|
|
return ldq_p(addr);
|
|
}
|
|
|
|
static void new_hpte_store(void *htab, uint64_t pteg, int slot,
|
|
uint64_t pte0, uint64_t pte1)
|
|
{
|
|
uint8_t *addr = htab;
|
|
|
|
addr += pteg * HASH_PTEG_SIZE_64;
|
|
addr += slot * HASH_PTE_SIZE_64;
|
|
|
|
stq_p(addr, pte0);
|
|
stq_p(addr + HASH_PTE_SIZE_64 / 2, pte1);
|
|
}
|
|
|
|
static int rehash_hpte(PowerPCCPU *cpu,
|
|
const ppc_hash_pte64_t *hptes,
|
|
void *old_hpt, uint64_t oldsize,
|
|
void *new_hpt, uint64_t newsize,
|
|
uint64_t pteg, int slot)
|
|
{
|
|
uint64_t old_hash_mask = (oldsize >> 7) - 1;
|
|
uint64_t new_hash_mask = (newsize >> 7) - 1;
|
|
target_ulong pte0 = ppc_hash64_hpte0(cpu, hptes, slot);
|
|
target_ulong pte1;
|
|
uint64_t avpn;
|
|
unsigned base_pg_shift;
|
|
uint64_t hash, new_pteg, replace_pte0;
|
|
|
|
if (!(pte0 & HPTE64_V_VALID) || !(pte0 & HPTE64_V_BOLTED)) {
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
pte1 = ppc_hash64_hpte1(cpu, hptes, slot);
|
|
|
|
base_pg_shift = ppc_hash64_hpte_page_shift_noslb(cpu, pte0, pte1);
|
|
assert(base_pg_shift); /* H_ENTER shouldn't allow a bad encoding */
|
|
avpn = HPTE64_V_AVPN_VAL(pte0) & ~(((1ULL << base_pg_shift) - 1) >> 23);
|
|
|
|
if (pte0 & HPTE64_V_SECONDARY) {
|
|
pteg = ~pteg;
|
|
}
|
|
|
|
if ((pte0 & HPTE64_V_SSIZE) == HPTE64_V_SSIZE_256M) {
|
|
uint64_t offset, vsid;
|
|
|
|
/* We only have 28 - 23 bits of offset in avpn */
|
|
offset = (avpn & 0x1f) << 23;
|
|
vsid = avpn >> 5;
|
|
/* We can find more bits from the pteg value */
|
|
if (base_pg_shift < 23) {
|
|
offset |= ((vsid ^ pteg) & old_hash_mask) << base_pg_shift;
|
|
}
|
|
|
|
hash = vsid ^ (offset >> base_pg_shift);
|
|
} else if ((pte0 & HPTE64_V_SSIZE) == HPTE64_V_SSIZE_1T) {
|
|
uint64_t offset, vsid;
|
|
|
|
/* We only have 40 - 23 bits of seg_off in avpn */
|
|
offset = (avpn & 0x1ffff) << 23;
|
|
vsid = avpn >> 17;
|
|
if (base_pg_shift < 23) {
|
|
offset |= ((vsid ^ (vsid << 25) ^ pteg) & old_hash_mask)
|
|
<< base_pg_shift;
|
|
}
|
|
|
|
hash = vsid ^ (vsid << 25) ^ (offset >> base_pg_shift);
|
|
} else {
|
|
error_report("rehash_pte: Bad segment size in HPTE");
|
|
return H_HARDWARE;
|
|
}
|
|
|
|
new_pteg = hash & new_hash_mask;
|
|
if (pte0 & HPTE64_V_SECONDARY) {
|
|
assert(~pteg == (hash & old_hash_mask));
|
|
new_pteg = ~new_pteg;
|
|
} else {
|
|
assert(pteg == (hash & old_hash_mask));
|
|
}
|
|
assert((oldsize != newsize) || (pteg == new_pteg));
|
|
replace_pte0 = new_hpte_load0(new_hpt, new_pteg, slot);
|
|
/*
|
|
* Strictly speaking, we don't need all these tests, since we only
|
|
* ever rehash bolted HPTEs. We might in future handle non-bolted
|
|
* HPTEs, though so make the logic correct for those cases as
|
|
* well.
|
|
*/
|
|
if (replace_pte0 & HPTE64_V_VALID) {
|
|
assert(newsize < oldsize);
|
|
if (replace_pte0 & HPTE64_V_BOLTED) {
|
|
if (pte0 & HPTE64_V_BOLTED) {
|
|
/* Bolted collision, nothing we can do */
|
|
return H_PTEG_FULL;
|
|
} else {
|
|
/* Discard this hpte */
|
|
return H_SUCCESS;
|
|
}
|
|
}
|
|
}
|
|
|
|
new_hpte_store(new_hpt, new_pteg, slot, pte0, pte1);
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
static int rehash_hpt(PowerPCCPU *cpu,
|
|
void *old_hpt, uint64_t oldsize,
|
|
void *new_hpt, uint64_t newsize)
|
|
{
|
|
uint64_t n_ptegs = oldsize >> 7;
|
|
uint64_t pteg;
|
|
int slot;
|
|
int rc;
|
|
|
|
for (pteg = 0; pteg < n_ptegs; pteg++) {
|
|
hwaddr ptex = pteg * HPTES_PER_GROUP;
|
|
const ppc_hash_pte64_t *hptes
|
|
= ppc_hash64_map_hptes(cpu, ptex, HPTES_PER_GROUP);
|
|
|
|
if (!hptes) {
|
|
return H_HARDWARE;
|
|
}
|
|
|
|
for (slot = 0; slot < HPTES_PER_GROUP; slot++) {
|
|
rc = rehash_hpte(cpu, hptes, old_hpt, oldsize, new_hpt, newsize,
|
|
pteg, slot);
|
|
if (rc != H_SUCCESS) {
|
|
ppc_hash64_unmap_hptes(cpu, hptes, ptex, HPTES_PER_GROUP);
|
|
return rc;
|
|
}
|
|
}
|
|
ppc_hash64_unmap_hptes(cpu, hptes, ptex, HPTES_PER_GROUP);
|
|
}
|
|
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
static target_ulong h_resize_hpt_commit(PowerPCCPU *cpu,
|
|
sPAPRMachineState *spapr,
|
|
target_ulong opcode,
|
|
target_ulong *args)
|
|
{
|
|
target_ulong flags = args[0];
|
|
target_ulong shift = args[1];
|
|
sPAPRPendingHPT *pending = spapr->pending_hpt;
|
|
int rc;
|
|
size_t newsize;
|
|
|
|
if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
|
|
return H_AUTHORITY;
|
|
}
|
|
|
|
trace_spapr_h_resize_hpt_commit(flags, shift);
|
|
|
|
rc = kvmppc_resize_hpt_commit(cpu, flags, shift);
|
|
if (rc != -ENOSYS) {
|
|
return resize_hpt_convert_rc(rc);
|
|
}
|
|
|
|
if (flags != 0) {
|
|
return H_PARAMETER;
|
|
}
|
|
|
|
if (!pending || (pending->shift != shift)) {
|
|
/* no matching prepare */
|
|
return H_CLOSED;
|
|
}
|
|
|
|
if (!pending->complete) {
|
|
/* prepare has not completed */
|
|
return H_BUSY;
|
|
}
|
|
|
|
/* Shouldn't have got past PREPARE without an HPT */
|
|
g_assert(spapr->htab_shift);
|
|
|
|
newsize = 1ULL << pending->shift;
|
|
rc = rehash_hpt(cpu, spapr->htab, HTAB_SIZE(spapr),
|
|
pending->hpt, newsize);
|
|
if (rc == H_SUCCESS) {
|
|
qemu_vfree(spapr->htab);
|
|
spapr->htab = pending->hpt;
|
|
spapr->htab_shift = pending->shift;
|
|
|
|
if (kvm_enabled()) {
|
|
/* For KVM PR, update the HPT pointer */
|
|
target_ulong sdr1 = (target_ulong)(uintptr_t)spapr->htab
|
|
| (spapr->htab_shift - 18);
|
|
kvmppc_update_sdr1(sdr1);
|
|
}
|
|
|
|
pending->hpt = NULL; /* so it's not free()d */
|
|
}
|
|
|
|
/* Clean up */
|
|
spapr->pending_hpt = NULL;
|
|
free_pending_hpt(pending);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static target_ulong h_set_sprg0(PowerPCCPU *cpu, sPAPRMachineState *spapr,
|
|
target_ulong opcode, target_ulong *args)
|
|
{
|
|
cpu_synchronize_state(CPU(cpu));
|
|
cpu->env.spr[SPR_SPRG0] = args[0];
|
|
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
static target_ulong h_set_dabr(PowerPCCPU *cpu, sPAPRMachineState *spapr,
|
|
target_ulong opcode, target_ulong *args)
|
|
{
|
|
if (!has_spr(cpu, SPR_DABR)) {
|
|
return H_HARDWARE; /* DABR register not available */
|
|
}
|
|
cpu_synchronize_state(CPU(cpu));
|
|
|
|
if (has_spr(cpu, SPR_DABRX)) {
|
|
cpu->env.spr[SPR_DABRX] = 0x3; /* Use Problem and Privileged state */
|
|
} else if (!(args[0] & 0x4)) { /* Breakpoint Translation set? */
|
|
return H_RESERVED_DABR;
|
|
}
|
|
|
|
cpu->env.spr[SPR_DABR] = args[0];
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
static target_ulong h_set_xdabr(PowerPCCPU *cpu, sPAPRMachineState *spapr,
|
|
target_ulong opcode, target_ulong *args)
|
|
{
|
|
target_ulong dabrx = args[1];
|
|
|
|
if (!has_spr(cpu, SPR_DABR) || !has_spr(cpu, SPR_DABRX)) {
|
|
return H_HARDWARE;
|
|
}
|
|
|
|
if ((dabrx & ~0xfULL) != 0 || (dabrx & H_DABRX_HYPERVISOR) != 0
|
|
|| (dabrx & (H_DABRX_KERNEL | H_DABRX_USER)) == 0) {
|
|
return H_PARAMETER;
|
|
}
|
|
|
|
cpu_synchronize_state(CPU(cpu));
|
|
cpu->env.spr[SPR_DABRX] = dabrx;
|
|
cpu->env.spr[SPR_DABR] = args[0];
|
|
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
static target_ulong h_page_init(PowerPCCPU *cpu, sPAPRMachineState *spapr,
|
|
target_ulong opcode, target_ulong *args)
|
|
{
|
|
target_ulong flags = args[0];
|
|
hwaddr dst = args[1];
|
|
hwaddr src = args[2];
|
|
hwaddr len = TARGET_PAGE_SIZE;
|
|
uint8_t *pdst, *psrc;
|
|
target_long ret = H_SUCCESS;
|
|
|
|
if (flags & ~(H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE
|
|
| H_COPY_PAGE | H_ZERO_PAGE)) {
|
|
qemu_log_mask(LOG_UNIMP, "h_page_init: Bad flags (" TARGET_FMT_lx "\n",
|
|
flags);
|
|
return H_PARAMETER;
|
|
}
|
|
|
|
/* Map-in destination */
|
|
if (!is_ram_address(spapr, dst) || (dst & ~TARGET_PAGE_MASK) != 0) {
|
|
return H_PARAMETER;
|
|
}
|
|
pdst = cpu_physical_memory_map(dst, &len, 1);
|
|
if (!pdst || len != TARGET_PAGE_SIZE) {
|
|
return H_PARAMETER;
|
|
}
|
|
|
|
if (flags & H_COPY_PAGE) {
|
|
/* Map-in source, copy to destination, and unmap source again */
|
|
if (!is_ram_address(spapr, src) || (src & ~TARGET_PAGE_MASK) != 0) {
|
|
ret = H_PARAMETER;
|
|
goto unmap_out;
|
|
}
|
|
psrc = cpu_physical_memory_map(src, &len, 0);
|
|
if (!psrc || len != TARGET_PAGE_SIZE) {
|
|
ret = H_PARAMETER;
|
|
goto unmap_out;
|
|
}
|
|
memcpy(pdst, psrc, len);
|
|
cpu_physical_memory_unmap(psrc, len, 0, len);
|
|
} else if (flags & H_ZERO_PAGE) {
|
|
memset(pdst, 0, len); /* Just clear the destination page */
|
|
}
|
|
|
|
if (kvm_enabled() && (flags & H_ICACHE_SYNCHRONIZE) != 0) {
|
|
kvmppc_dcbst_range(cpu, pdst, len);
|
|
}
|
|
if (flags & (H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE)) {
|
|
if (kvm_enabled()) {
|
|
kvmppc_icbi_range(cpu, pdst, len);
|
|
} else {
|
|
tb_flush(CPU(cpu));
|
|
}
|
|
}
|
|
|
|
unmap_out:
|
|
cpu_physical_memory_unmap(pdst, TARGET_PAGE_SIZE, 1, len);
|
|
return ret;
|
|
}
|
|
|
|
#define FLAGS_REGISTER_VPA 0x0000200000000000ULL
|
|
#define FLAGS_REGISTER_DTL 0x0000400000000000ULL
|
|
#define FLAGS_REGISTER_SLBSHADOW 0x0000600000000000ULL
|
|
#define FLAGS_DEREGISTER_VPA 0x0000a00000000000ULL
|
|
#define FLAGS_DEREGISTER_DTL 0x0000c00000000000ULL
|
|
#define FLAGS_DEREGISTER_SLBSHADOW 0x0000e00000000000ULL
|
|
|
|
#define VPA_MIN_SIZE 640
|
|
#define VPA_SIZE_OFFSET 0x4
|
|
#define VPA_SHARED_PROC_OFFSET 0x9
|
|
#define VPA_SHARED_PROC_VAL 0x2
|
|
|
|
static target_ulong register_vpa(CPUPPCState *env, target_ulong vpa)
|
|
{
|
|
CPUState *cs = CPU(ppc_env_get_cpu(env));
|
|
uint16_t size;
|
|
uint8_t tmp;
|
|
|
|
if (vpa == 0) {
|
|
hcall_dprintf("Can't cope with registering a VPA at logical 0\n");
|
|
return H_HARDWARE;
|
|
}
|
|
|
|
if (vpa % env->dcache_line_size) {
|
|
return H_PARAMETER;
|
|
}
|
|
/* FIXME: bounds check the address */
|
|
|
|
size = lduw_be_phys(cs->as, vpa + 0x4);
|
|
|
|
if (size < VPA_MIN_SIZE) {
|
|
return H_PARAMETER;
|
|
}
|
|
|
|
/* VPA is not allowed to cross a page boundary */
|
|
if ((vpa / 4096) != ((vpa + size - 1) / 4096)) {
|
|
return H_PARAMETER;
|
|
}
|
|
|
|
env->vpa_addr = vpa;
|
|
|
|
tmp = ldub_phys(cs->as, env->vpa_addr + VPA_SHARED_PROC_OFFSET);
|
|
tmp |= VPA_SHARED_PROC_VAL;
|
|
stb_phys(cs->as, env->vpa_addr + VPA_SHARED_PROC_OFFSET, tmp);
|
|
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
static target_ulong deregister_vpa(CPUPPCState *env, target_ulong vpa)
|
|
{
|
|
if (env->slb_shadow_addr) {
|
|
return H_RESOURCE;
|
|
}
|
|
|
|
if (env->dtl_addr) {
|
|
return H_RESOURCE;
|
|
}
|
|
|
|
env->vpa_addr = 0;
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
static target_ulong register_slb_shadow(CPUPPCState *env, target_ulong addr)
|
|
{
|
|
CPUState *cs = CPU(ppc_env_get_cpu(env));
|
|
uint32_t size;
|
|
|
|
if (addr == 0) {
|
|
hcall_dprintf("Can't cope with SLB shadow at logical 0\n");
|
|
return H_HARDWARE;
|
|
}
|
|
|
|
size = ldl_be_phys(cs->as, addr + 0x4);
|
|
if (size < 0x8) {
|
|
return H_PARAMETER;
|
|
}
|
|
|
|
if ((addr / 4096) != ((addr + size - 1) / 4096)) {
|
|
return H_PARAMETER;
|
|
}
|
|
|
|
if (!env->vpa_addr) {
|
|
return H_RESOURCE;
|
|
}
|
|
|
|
env->slb_shadow_addr = addr;
|
|
env->slb_shadow_size = size;
|
|
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
static target_ulong deregister_slb_shadow(CPUPPCState *env, target_ulong addr)
|
|
{
|
|
env->slb_shadow_addr = 0;
|
|
env->slb_shadow_size = 0;
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
static target_ulong register_dtl(CPUPPCState *env, target_ulong addr)
|
|
{
|
|
CPUState *cs = CPU(ppc_env_get_cpu(env));
|
|
uint32_t size;
|
|
|
|
if (addr == 0) {
|
|
hcall_dprintf("Can't cope with DTL at logical 0\n");
|
|
return H_HARDWARE;
|
|
}
|
|
|
|
size = ldl_be_phys(cs->as, addr + 0x4);
|
|
|
|
if (size < 48) {
|
|
return H_PARAMETER;
|
|
}
|
|
|
|
if (!env->vpa_addr) {
|
|
return H_RESOURCE;
|
|
}
|
|
|
|
env->dtl_addr = addr;
|
|
env->dtl_size = size;
|
|
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
static target_ulong deregister_dtl(CPUPPCState *env, target_ulong addr)
|
|
{
|
|
env->dtl_addr = 0;
|
|
env->dtl_size = 0;
|
|
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
static target_ulong h_register_vpa(PowerPCCPU *cpu, sPAPRMachineState *spapr,
|
|
target_ulong opcode, target_ulong *args)
|
|
{
|
|
target_ulong flags = args[0];
|
|
target_ulong procno = args[1];
|
|
target_ulong vpa = args[2];
|
|
target_ulong ret = H_PARAMETER;
|
|
CPUPPCState *tenv;
|
|
PowerPCCPU *tcpu;
|
|
|
|
tcpu = ppc_get_vcpu_by_dt_id(procno);
|
|
if (!tcpu) {
|
|
return H_PARAMETER;
|
|
}
|
|
tenv = &tcpu->env;
|
|
|
|
switch (flags) {
|
|
case FLAGS_REGISTER_VPA:
|
|
ret = register_vpa(tenv, vpa);
|
|
break;
|
|
|
|
case FLAGS_DEREGISTER_VPA:
|
|
ret = deregister_vpa(tenv, vpa);
|
|
break;
|
|
|
|
case FLAGS_REGISTER_SLBSHADOW:
|
|
ret = register_slb_shadow(tenv, vpa);
|
|
break;
|
|
|
|
case FLAGS_DEREGISTER_SLBSHADOW:
|
|
ret = deregister_slb_shadow(tenv, vpa);
|
|
break;
|
|
|
|
case FLAGS_REGISTER_DTL:
|
|
ret = register_dtl(tenv, vpa);
|
|
break;
|
|
|
|
case FLAGS_DEREGISTER_DTL:
|
|
ret = deregister_dtl(tenv, vpa);
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static target_ulong h_cede(PowerPCCPU *cpu, sPAPRMachineState *spapr,
|
|
target_ulong opcode, target_ulong *args)
|
|
{
|
|
CPUPPCState *env = &cpu->env;
|
|
CPUState *cs = CPU(cpu);
|
|
|
|
env->msr |= (1ULL << MSR_EE);
|
|
hreg_compute_hflags(env);
|
|
if (!cpu_has_work(cs)) {
|
|
cs->halted = 1;
|
|
cs->exception_index = EXCP_HLT;
|
|
cs->exit_request = 1;
|
|
}
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
static target_ulong h_rtas(PowerPCCPU *cpu, sPAPRMachineState *spapr,
|
|
target_ulong opcode, target_ulong *args)
|
|
{
|
|
target_ulong rtas_r3 = args[0];
|
|
uint32_t token = rtas_ld(rtas_r3, 0);
|
|
uint32_t nargs = rtas_ld(rtas_r3, 1);
|
|
uint32_t nret = rtas_ld(rtas_r3, 2);
|
|
|
|
return spapr_rtas_call(cpu, spapr, token, nargs, rtas_r3 + 12,
|
|
nret, rtas_r3 + 12 + 4*nargs);
|
|
}
|
|
|
|
static target_ulong h_logical_load(PowerPCCPU *cpu, sPAPRMachineState *spapr,
|
|
target_ulong opcode, target_ulong *args)
|
|
{
|
|
CPUState *cs = CPU(cpu);
|
|
target_ulong size = args[0];
|
|
target_ulong addr = args[1];
|
|
|
|
switch (size) {
|
|
case 1:
|
|
args[0] = ldub_phys(cs->as, addr);
|
|
return H_SUCCESS;
|
|
case 2:
|
|
args[0] = lduw_phys(cs->as, addr);
|
|
return H_SUCCESS;
|
|
case 4:
|
|
args[0] = ldl_phys(cs->as, addr);
|
|
return H_SUCCESS;
|
|
case 8:
|
|
args[0] = ldq_phys(cs->as, addr);
|
|
return H_SUCCESS;
|
|
}
|
|
return H_PARAMETER;
|
|
}
|
|
|
|
static target_ulong h_logical_store(PowerPCCPU *cpu, sPAPRMachineState *spapr,
|
|
target_ulong opcode, target_ulong *args)
|
|
{
|
|
CPUState *cs = CPU(cpu);
|
|
|
|
target_ulong size = args[0];
|
|
target_ulong addr = args[1];
|
|
target_ulong val = args[2];
|
|
|
|
switch (size) {
|
|
case 1:
|
|
stb_phys(cs->as, addr, val);
|
|
return H_SUCCESS;
|
|
case 2:
|
|
stw_phys(cs->as, addr, val);
|
|
return H_SUCCESS;
|
|
case 4:
|
|
stl_phys(cs->as, addr, val);
|
|
return H_SUCCESS;
|
|
case 8:
|
|
stq_phys(cs->as, addr, val);
|
|
return H_SUCCESS;
|
|
}
|
|
return H_PARAMETER;
|
|
}
|
|
|
|
static target_ulong h_logical_memop(PowerPCCPU *cpu, sPAPRMachineState *spapr,
|
|
target_ulong opcode, target_ulong *args)
|
|
{
|
|
CPUState *cs = CPU(cpu);
|
|
|
|
target_ulong dst = args[0]; /* Destination address */
|
|
target_ulong src = args[1]; /* Source address */
|
|
target_ulong esize = args[2]; /* Element size (0=1,1=2,2=4,3=8) */
|
|
target_ulong count = args[3]; /* Element count */
|
|
target_ulong op = args[4]; /* 0 = copy, 1 = invert */
|
|
uint64_t tmp;
|
|
unsigned int mask = (1 << esize) - 1;
|
|
int step = 1 << esize;
|
|
|
|
if (count > 0x80000000) {
|
|
return H_PARAMETER;
|
|
}
|
|
|
|
if ((dst & mask) || (src & mask) || (op > 1)) {
|
|
return H_PARAMETER;
|
|
}
|
|
|
|
if (dst >= src && dst < (src + (count << esize))) {
|
|
dst = dst + ((count - 1) << esize);
|
|
src = src + ((count - 1) << esize);
|
|
step = -step;
|
|
}
|
|
|
|
while (count--) {
|
|
switch (esize) {
|
|
case 0:
|
|
tmp = ldub_phys(cs->as, src);
|
|
break;
|
|
case 1:
|
|
tmp = lduw_phys(cs->as, src);
|
|
break;
|
|
case 2:
|
|
tmp = ldl_phys(cs->as, src);
|
|
break;
|
|
case 3:
|
|
tmp = ldq_phys(cs->as, src);
|
|
break;
|
|
default:
|
|
return H_PARAMETER;
|
|
}
|
|
if (op == 1) {
|
|
tmp = ~tmp;
|
|
}
|
|
switch (esize) {
|
|
case 0:
|
|
stb_phys(cs->as, dst, tmp);
|
|
break;
|
|
case 1:
|
|
stw_phys(cs->as, dst, tmp);
|
|
break;
|
|
case 2:
|
|
stl_phys(cs->as, dst, tmp);
|
|
break;
|
|
case 3:
|
|
stq_phys(cs->as, dst, tmp);
|
|
break;
|
|
}
|
|
dst = dst + step;
|
|
src = src + step;
|
|
}
|
|
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
static target_ulong h_logical_icbi(PowerPCCPU *cpu, sPAPRMachineState *spapr,
|
|
target_ulong opcode, target_ulong *args)
|
|
{
|
|
/* Nothing to do on emulation, KVM will trap this in the kernel */
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
static target_ulong h_logical_dcbf(PowerPCCPU *cpu, sPAPRMachineState *spapr,
|
|
target_ulong opcode, target_ulong *args)
|
|
{
|
|
/* Nothing to do on emulation, KVM will trap this in the kernel */
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
static target_ulong h_set_mode_resource_le(PowerPCCPU *cpu,
|
|
target_ulong mflags,
|
|
target_ulong value1,
|
|
target_ulong value2)
|
|
{
|
|
CPUState *cs;
|
|
|
|
if (value1) {
|
|
return H_P3;
|
|
}
|
|
if (value2) {
|
|
return H_P4;
|
|
}
|
|
|
|
switch (mflags) {
|
|
case H_SET_MODE_ENDIAN_BIG:
|
|
CPU_FOREACH(cs) {
|
|
set_spr(cs, SPR_LPCR, 0, LPCR_ILE);
|
|
}
|
|
spapr_pci_switch_vga(true);
|
|
return H_SUCCESS;
|
|
|
|
case H_SET_MODE_ENDIAN_LITTLE:
|
|
CPU_FOREACH(cs) {
|
|
set_spr(cs, SPR_LPCR, LPCR_ILE, LPCR_ILE);
|
|
}
|
|
spapr_pci_switch_vga(false);
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
return H_UNSUPPORTED_FLAG;
|
|
}
|
|
|
|
static target_ulong h_set_mode_resource_addr_trans_mode(PowerPCCPU *cpu,
|
|
target_ulong mflags,
|
|
target_ulong value1,
|
|
target_ulong value2)
|
|
{
|
|
CPUState *cs;
|
|
PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
|
|
|
|
if (!(pcc->insns_flags2 & PPC2_ISA207S)) {
|
|
return H_P2;
|
|
}
|
|
if (value1) {
|
|
return H_P3;
|
|
}
|
|
if (value2) {
|
|
return H_P4;
|
|
}
|
|
|
|
if (mflags == AIL_RESERVED) {
|
|
return H_UNSUPPORTED_FLAG;
|
|
}
|
|
|
|
CPU_FOREACH(cs) {
|
|
set_spr(cs, SPR_LPCR, mflags << LPCR_AIL_SHIFT, LPCR_AIL);
|
|
}
|
|
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
static target_ulong h_set_mode(PowerPCCPU *cpu, sPAPRMachineState *spapr,
|
|
target_ulong opcode, target_ulong *args)
|
|
{
|
|
target_ulong resource = args[1];
|
|
target_ulong ret = H_P2;
|
|
|
|
switch (resource) {
|
|
case H_SET_MODE_RESOURCE_LE:
|
|
ret = h_set_mode_resource_le(cpu, args[0], args[2], args[3]);
|
|
break;
|
|
case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
|
|
ret = h_set_mode_resource_addr_trans_mode(cpu, args[0],
|
|
args[2], args[3]);
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static target_ulong h_clean_slb(PowerPCCPU *cpu, sPAPRMachineState *spapr,
|
|
target_ulong opcode, target_ulong *args)
|
|
{
|
|
qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n",
|
|
opcode, " (H_CLEAN_SLB)");
|
|
return H_FUNCTION;
|
|
}
|
|
|
|
static target_ulong h_invalidate_pid(PowerPCCPU *cpu, sPAPRMachineState *spapr,
|
|
target_ulong opcode, target_ulong *args)
|
|
{
|
|
qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n",
|
|
opcode, " (H_INVALIDATE_PID)");
|
|
return H_FUNCTION;
|
|
}
|
|
|
|
static void spapr_check_setup_free_hpt(sPAPRMachineState *spapr,
|
|
uint64_t patbe_old, uint64_t patbe_new)
|
|
{
|
|
/*
|
|
* We have 4 Options:
|
|
* HASH->HASH || RADIX->RADIX || NOTHING->RADIX : Do Nothing
|
|
* HASH->RADIX : Free HPT
|
|
* RADIX->HASH : Allocate HPT
|
|
* NOTHING->HASH : Allocate HPT
|
|
* Note: NOTHING implies the case where we said the guest could choose
|
|
* later and so assumed radix and now it's called H_REG_PROC_TBL
|
|
*/
|
|
|
|
if ((patbe_old & PATBE1_GR) == (patbe_new & PATBE1_GR)) {
|
|
/* We assume RADIX, so this catches all the "Do Nothing" cases */
|
|
} else if (!(patbe_old & PATBE1_GR)) {
|
|
/* HASH->RADIX : Free HPT */
|
|
spapr_free_hpt(spapr);
|
|
} else if (!(patbe_new & PATBE1_GR)) {
|
|
/* RADIX->HASH || NOTHING->HASH : Allocate HPT */
|
|
spapr_setup_hpt_and_vrma(spapr);
|
|
}
|
|
return;
|
|
}
|
|
|
|
#define FLAGS_MASK 0x01FULL
|
|
#define FLAG_MODIFY 0x10
|
|
#define FLAG_REGISTER 0x08
|
|
#define FLAG_RADIX 0x04
|
|
#define FLAG_HASH_PROC_TBL 0x02
|
|
#define FLAG_GTSE 0x01
|
|
|
|
static target_ulong h_register_process_table(PowerPCCPU *cpu,
|
|
sPAPRMachineState *spapr,
|
|
target_ulong opcode,
|
|
target_ulong *args)
|
|
{
|
|
CPUState *cs;
|
|
target_ulong flags = args[0];
|
|
target_ulong proc_tbl = args[1];
|
|
target_ulong page_size = args[2];
|
|
target_ulong table_size = args[3];
|
|
uint64_t cproc;
|
|
|
|
if (flags & ~FLAGS_MASK) { /* Check no reserved bits are set */
|
|
return H_PARAMETER;
|
|
}
|
|
if (flags & FLAG_MODIFY) {
|
|
if (flags & FLAG_REGISTER) {
|
|
if (flags & FLAG_RADIX) { /* Register new RADIX process table */
|
|
if (proc_tbl & 0xfff || proc_tbl >> 60) {
|
|
return H_P2;
|
|
} else if (page_size) {
|
|
return H_P3;
|
|
} else if (table_size > 24) {
|
|
return H_P4;
|
|
}
|
|
cproc = PATBE1_GR | proc_tbl | table_size;
|
|
} else { /* Register new HPT process table */
|
|
if (flags & FLAG_HASH_PROC_TBL) { /* Hash with Segment Tables */
|
|
/* TODO - Not Supported */
|
|
/* Technically caused by flag bits => H_PARAMETER */
|
|
return H_PARAMETER;
|
|
} else { /* Hash with SLB */
|
|
if (proc_tbl >> 38) {
|
|
return H_P2;
|
|
} else if (page_size & ~0x7) {
|
|
return H_P3;
|
|
} else if (table_size > 24) {
|
|
return H_P4;
|
|
}
|
|
}
|
|
cproc = (proc_tbl << 25) | page_size << 5 | table_size;
|
|
}
|
|
|
|
} else { /* Deregister current process table */
|
|
/* Set to benign value: (current GR) | 0. This allows
|
|
* deregistration in KVM to succeed even if the radix bit in flags
|
|
* doesn't match the radix bit in the old PATB. */
|
|
cproc = spapr->patb_entry & PATBE1_GR;
|
|
}
|
|
} else { /* Maintain current registration */
|
|
if (!(flags & FLAG_RADIX) != !(spapr->patb_entry & PATBE1_GR)) {
|
|
/* Technically caused by flag bits => H_PARAMETER */
|
|
return H_PARAMETER; /* Existing Process Table Mismatch */
|
|
}
|
|
cproc = spapr->patb_entry;
|
|
}
|
|
|
|
/* Check if we need to setup OR free the hpt */
|
|
spapr_check_setup_free_hpt(spapr, spapr->patb_entry, cproc);
|
|
|
|
spapr->patb_entry = cproc; /* Save new process table */
|
|
|
|
/* Update the UPRT and GTSE bits in the LPCR for all cpus */
|
|
CPU_FOREACH(cs) {
|
|
set_spr(cs, SPR_LPCR,
|
|
((flags & (FLAG_RADIX | FLAG_HASH_PROC_TBL)) ? LPCR_UPRT : 0) |
|
|
((flags & FLAG_GTSE) ? LPCR_GTSE : 0),
|
|
LPCR_UPRT | LPCR_GTSE);
|
|
}
|
|
|
|
if (kvm_enabled()) {
|
|
return kvmppc_configure_v3_mmu(cpu, flags & FLAG_RADIX,
|
|
flags & FLAG_GTSE, cproc);
|
|
}
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
#define H_SIGNAL_SYS_RESET_ALL -1
|
|
#define H_SIGNAL_SYS_RESET_ALLBUTSELF -2
|
|
|
|
static target_ulong h_signal_sys_reset(PowerPCCPU *cpu,
|
|
sPAPRMachineState *spapr,
|
|
target_ulong opcode, target_ulong *args)
|
|
{
|
|
target_long target = args[0];
|
|
CPUState *cs;
|
|
|
|
if (target < 0) {
|
|
/* Broadcast */
|
|
if (target < H_SIGNAL_SYS_RESET_ALLBUTSELF) {
|
|
return H_PARAMETER;
|
|
}
|
|
|
|
CPU_FOREACH(cs) {
|
|
PowerPCCPU *c = POWERPC_CPU(cs);
|
|
|
|
if (target == H_SIGNAL_SYS_RESET_ALLBUTSELF) {
|
|
if (c == cpu) {
|
|
continue;
|
|
}
|
|
}
|
|
run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
|
|
}
|
|
return H_SUCCESS;
|
|
|
|
} else {
|
|
/* Unicast */
|
|
cs = CPU(ppc_get_vcpu_by_dt_id(target));
|
|
if (cs) {
|
|
run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
|
|
return H_SUCCESS;
|
|
}
|
|
return H_PARAMETER;
|
|
}
|
|
}
|
|
|
|
static uint32_t cas_check_pvr(sPAPRMachineState *spapr, PowerPCCPU *cpu,
|
|
target_ulong *addr, Error **errp)
|
|
{
|
|
bool explicit_match = false; /* Matched the CPU's real PVR */
|
|
uint32_t max_compat = spapr->max_compat_pvr;
|
|
uint32_t best_compat = 0;
|
|
int i;
|
|
|
|
/*
|
|
* We scan the supplied table of PVRs looking for two things
|
|
* 1. Is our real CPU PVR in the list?
|
|
* 2. What's the "best" listed logical PVR
|
|
*/
|
|
for (i = 0; i < 512; ++i) {
|
|
uint32_t pvr, pvr_mask;
|
|
|
|
pvr_mask = ldl_be_phys(&address_space_memory, *addr);
|
|
pvr = ldl_be_phys(&address_space_memory, *addr + 4);
|
|
*addr += 8;
|
|
|
|
if (~pvr_mask & pvr) {
|
|
break; /* Terminator record */
|
|
}
|
|
|
|
if ((cpu->env.spr[SPR_PVR] & pvr_mask) == (pvr & pvr_mask)) {
|
|
explicit_match = true;
|
|
} else {
|
|
if (ppc_check_compat(cpu, pvr, best_compat, max_compat)) {
|
|
best_compat = pvr;
|
|
}
|
|
}
|
|
}
|
|
|
|
if ((best_compat == 0) && (!explicit_match || max_compat)) {
|
|
/* We couldn't find a suitable compatibility mode, and either
|
|
* the guest doesn't support "raw" mode for this CPU, or raw
|
|
* mode is disabled because a maximum compat mode is set */
|
|
error_setg(errp, "Couldn't negotiate a suitable PVR during CAS");
|
|
return 0;
|
|
}
|
|
|
|
/* Parsing finished */
|
|
trace_spapr_cas_pvr(cpu->compat_pvr, explicit_match, best_compat);
|
|
|
|
return best_compat;
|
|
}
|
|
|
|
static target_ulong h_client_architecture_support(PowerPCCPU *cpu,
|
|
sPAPRMachineState *spapr,
|
|
target_ulong opcode,
|
|
target_ulong *args)
|
|
{
|
|
/* Working address in data buffer */
|
|
target_ulong addr = ppc64_phys_to_real(args[0]);
|
|
target_ulong ov_table;
|
|
uint32_t cas_pvr;
|
|
sPAPROptionVector *ov1_guest, *ov5_guest, *ov5_cas_old, *ov5_updates;
|
|
bool guest_radix;
|
|
Error *local_err = NULL;
|
|
|
|
cas_pvr = cas_check_pvr(spapr, cpu, &addr, &local_err);
|
|
if (local_err) {
|
|
error_report_err(local_err);
|
|
return H_HARDWARE;
|
|
}
|
|
|
|
/* Update CPUs */
|
|
if (cpu->compat_pvr != cas_pvr) {
|
|
ppc_set_compat_all(cas_pvr, &local_err);
|
|
if (local_err) {
|
|
error_report_err(local_err);
|
|
return H_HARDWARE;
|
|
}
|
|
}
|
|
|
|
/* For the future use: here @ov_table points to the first option vector */
|
|
ov_table = addr;
|
|
|
|
ov1_guest = spapr_ovec_parse_vector(ov_table, 1);
|
|
ov5_guest = spapr_ovec_parse_vector(ov_table, 5);
|
|
if (spapr_ovec_test(ov5_guest, OV5_MMU_BOTH)) {
|
|
error_report("guest requested hash and radix MMU, which is invalid.");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
/* The radix/hash bit in byte 24 requires special handling: */
|
|
guest_radix = spapr_ovec_test(ov5_guest, OV5_MMU_RADIX_300);
|
|
spapr_ovec_clear(ov5_guest, OV5_MMU_RADIX_300);
|
|
|
|
/*
|
|
* HPT resizing is a bit of a special case, because when enabled
|
|
* we assume an HPT guest will support it until it says it
|
|
* doesn't, instead of assuming it won't support it until it says
|
|
* it does. Strictly speaking that approach could break for
|
|
* guests which don't make a CAS call, but those are so old we
|
|
* don't care about them. Without that assumption we'd have to
|
|
* make at least a temporary allocation of an HPT sized for max
|
|
* memory, which could be impossibly difficult under KVM HV if
|
|
* maxram is large.
|
|
*/
|
|
if (!guest_radix && !spapr_ovec_test(ov5_guest, OV5_HPT_RESIZE)) {
|
|
int maxshift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
|
|
|
|
if (spapr->resize_hpt == SPAPR_RESIZE_HPT_REQUIRED) {
|
|
error_report(
|
|
"h_client_architecture_support: Guest doesn't support HPT resizing, but resize-hpt=required");
|
|
exit(1);
|
|
}
|
|
|
|
if (spapr->htab_shift < maxshift) {
|
|
CPUState *cs;
|
|
|
|
/* Guest doesn't know about HPT resizing, so we
|
|
* pre-emptively resize for the maximum permitted RAM. At
|
|
* the point this is called, nothing should have been
|
|
* entered into the existing HPT */
|
|
spapr_reallocate_hpt(spapr, maxshift, &error_fatal);
|
|
CPU_FOREACH(cs) {
|
|
if (kvm_enabled()) {
|
|
/* For KVM PR, update the HPT pointer */
|
|
target_ulong sdr1 = (target_ulong)(uintptr_t)spapr->htab
|
|
| (spapr->htab_shift - 18);
|
|
kvmppc_update_sdr1(sdr1);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* NOTE: there are actually a number of ov5 bits where input from the
|
|
* guest is always zero, and the platform/QEMU enables them independently
|
|
* of guest input. To model these properly we'd want some sort of mask,
|
|
* but since they only currently apply to memory migration as defined
|
|
* by LoPAPR 1.1, 14.5.4.8, which QEMU doesn't implement, we don't need
|
|
* to worry about this for now.
|
|
*/
|
|
ov5_cas_old = spapr_ovec_clone(spapr->ov5_cas);
|
|
/* full range of negotiated ov5 capabilities */
|
|
spapr_ovec_intersect(spapr->ov5_cas, spapr->ov5, ov5_guest);
|
|
spapr_ovec_cleanup(ov5_guest);
|
|
/* capabilities that have been added since CAS-generated guest reset.
|
|
* if capabilities have since been removed, generate another reset
|
|
*/
|
|
ov5_updates = spapr_ovec_new();
|
|
spapr->cas_reboot = spapr_ovec_diff(ov5_updates,
|
|
ov5_cas_old, spapr->ov5_cas);
|
|
/* Now that processing is finished, set the radix/hash bit for the
|
|
* guest if it requested a valid mode; otherwise terminate the boot. */
|
|
if (guest_radix) {
|
|
if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) {
|
|
error_report("Guest requested unavailable MMU mode (radix).");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
spapr_ovec_set(spapr->ov5_cas, OV5_MMU_RADIX_300);
|
|
} else {
|
|
if (kvm_enabled() && kvmppc_has_cap_mmu_radix()
|
|
&& !kvmppc_has_cap_mmu_hash_v3()) {
|
|
error_report("Guest requested unavailable MMU mode (hash).");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
}
|
|
spapr->cas_legacy_guest_workaround = !spapr_ovec_test(ov1_guest,
|
|
OV1_PPC_3_00);
|
|
if (!spapr->cas_reboot) {
|
|
spapr->cas_reboot =
|
|
(spapr_h_cas_compose_response(spapr, args[1], args[2],
|
|
ov5_updates) != 0);
|
|
}
|
|
spapr_ovec_cleanup(ov5_updates);
|
|
|
|
if (spapr->cas_reboot) {
|
|
qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
|
|
} else {
|
|
/* If ppc_spapr_reset() did not set up a HPT but one is necessary
|
|
* (because the guest isn't going to use radix) then set it up here. */
|
|
if ((spapr->patb_entry & PATBE1_GR) && !guest_radix) {
|
|
/* legacy hash or new hash: */
|
|
spapr_setup_hpt_and_vrma(spapr);
|
|
}
|
|
}
|
|
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
static spapr_hcall_fn papr_hypercall_table[(MAX_HCALL_OPCODE / 4) + 1];
|
|
static spapr_hcall_fn kvmppc_hypercall_table[KVMPPC_HCALL_MAX - KVMPPC_HCALL_BASE + 1];
|
|
|
|
void spapr_register_hypercall(target_ulong opcode, spapr_hcall_fn fn)
|
|
{
|
|
spapr_hcall_fn *slot;
|
|
|
|
if (opcode <= MAX_HCALL_OPCODE) {
|
|
assert((opcode & 0x3) == 0);
|
|
|
|
slot = &papr_hypercall_table[opcode / 4];
|
|
} else {
|
|
assert((opcode >= KVMPPC_HCALL_BASE) && (opcode <= KVMPPC_HCALL_MAX));
|
|
|
|
slot = &kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
|
|
}
|
|
|
|
assert(!(*slot));
|
|
*slot = fn;
|
|
}
|
|
|
|
target_ulong spapr_hypercall(PowerPCCPU *cpu, target_ulong opcode,
|
|
target_ulong *args)
|
|
{
|
|
sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
|
|
|
|
if ((opcode <= MAX_HCALL_OPCODE)
|
|
&& ((opcode & 0x3) == 0)) {
|
|
spapr_hcall_fn fn = papr_hypercall_table[opcode / 4];
|
|
|
|
if (fn) {
|
|
return fn(cpu, spapr, opcode, args);
|
|
}
|
|
} else if ((opcode >= KVMPPC_HCALL_BASE) &&
|
|
(opcode <= KVMPPC_HCALL_MAX)) {
|
|
spapr_hcall_fn fn = kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
|
|
|
|
if (fn) {
|
|
return fn(cpu, spapr, opcode, args);
|
|
}
|
|
}
|
|
|
|
qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x" TARGET_FMT_lx "\n",
|
|
opcode);
|
|
return H_FUNCTION;
|
|
}
|
|
|
|
static void hypercall_register_types(void)
|
|
{
|
|
/* hcall-pft */
|
|
spapr_register_hypercall(H_ENTER, h_enter);
|
|
spapr_register_hypercall(H_REMOVE, h_remove);
|
|
spapr_register_hypercall(H_PROTECT, h_protect);
|
|
spapr_register_hypercall(H_READ, h_read);
|
|
|
|
/* hcall-bulk */
|
|
spapr_register_hypercall(H_BULK_REMOVE, h_bulk_remove);
|
|
|
|
/* hcall-hpt-resize */
|
|
spapr_register_hypercall(H_RESIZE_HPT_PREPARE, h_resize_hpt_prepare);
|
|
spapr_register_hypercall(H_RESIZE_HPT_COMMIT, h_resize_hpt_commit);
|
|
|
|
/* hcall-splpar */
|
|
spapr_register_hypercall(H_REGISTER_VPA, h_register_vpa);
|
|
spapr_register_hypercall(H_CEDE, h_cede);
|
|
spapr_register_hypercall(H_SIGNAL_SYS_RESET, h_signal_sys_reset);
|
|
|
|
/* processor register resource access h-calls */
|
|
spapr_register_hypercall(H_SET_SPRG0, h_set_sprg0);
|
|
spapr_register_hypercall(H_SET_DABR, h_set_dabr);
|
|
spapr_register_hypercall(H_SET_XDABR, h_set_xdabr);
|
|
spapr_register_hypercall(H_PAGE_INIT, h_page_init);
|
|
spapr_register_hypercall(H_SET_MODE, h_set_mode);
|
|
|
|
/* In Memory Table MMU h-calls */
|
|
spapr_register_hypercall(H_CLEAN_SLB, h_clean_slb);
|
|
spapr_register_hypercall(H_INVALIDATE_PID, h_invalidate_pid);
|
|
spapr_register_hypercall(H_REGISTER_PROC_TBL, h_register_process_table);
|
|
|
|
/* "debugger" hcalls (also used by SLOF). Note: We do -not- differenciate
|
|
* here between the "CI" and the "CACHE" variants, they will use whatever
|
|
* mapping attributes qemu is using. When using KVM, the kernel will
|
|
* enforce the attributes more strongly
|
|
*/
|
|
spapr_register_hypercall(H_LOGICAL_CI_LOAD, h_logical_load);
|
|
spapr_register_hypercall(H_LOGICAL_CI_STORE, h_logical_store);
|
|
spapr_register_hypercall(H_LOGICAL_CACHE_LOAD, h_logical_load);
|
|
spapr_register_hypercall(H_LOGICAL_CACHE_STORE, h_logical_store);
|
|
spapr_register_hypercall(H_LOGICAL_ICBI, h_logical_icbi);
|
|
spapr_register_hypercall(H_LOGICAL_DCBF, h_logical_dcbf);
|
|
spapr_register_hypercall(KVMPPC_H_LOGICAL_MEMOP, h_logical_memop);
|
|
|
|
/* qemu/KVM-PPC specific hcalls */
|
|
spapr_register_hypercall(KVMPPC_H_RTAS, h_rtas);
|
|
|
|
/* ibm,client-architecture-support support */
|
|
spapr_register_hypercall(KVMPPC_H_CAS, h_client_architecture_support);
|
|
}
|
|
|
|
type_init(hypercall_register_types)
|