qemu/op-i386.c
bellard a4a0ffdb2b added cmpxchg8b, cpuid, bound, eflags support, vm86 mode
git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@53 c046a42c-6fe2-441c-8c8c-71466251a162
2003-03-29 16:49:21 +00:00

2368 lines
45 KiB
C

/*
* i386 micro operations
*
* Copyright (c) 2003 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "exec-i386.h"
/* NOTE: data are not static to force relocation generation by GCC */
uint8_t parity_table[256] = {
CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
};
/* modulo 17 table */
const uint8_t rclw_table[32] = {
0, 1, 2, 3, 4, 5, 6, 7,
8, 9,10,11,12,13,14,15,
16, 0, 1, 2, 3, 4, 5, 6,
7, 8, 9,10,11,12,13,14,
};
/* modulo 9 table */
const uint8_t rclb_table[32] = {
0, 1, 2, 3, 4, 5, 6, 7,
8, 0, 1, 2, 3, 4, 5, 6,
7, 8, 0, 1, 2, 3, 4, 5,
6, 7, 8, 0, 1, 2, 3, 4,
};
#ifdef USE_X86LDOUBLE
/* an array of Intel 80-bit FP constants, to be loaded via integer ops */
typedef unsigned short f15ld[5];
const f15ld f15rk[] =
{
/*0*/ {0x0000,0x0000,0x0000,0x0000,0x0000},
/*1*/ {0x0000,0x0000,0x0000,0x8000,0x3fff},
/*pi*/ {0xc235,0x2168,0xdaa2,0xc90f,0x4000},
/*lg2*/ {0xf799,0xfbcf,0x9a84,0x9a20,0x3ffd},
/*ln2*/ {0x79ac,0xd1cf,0x17f7,0xb172,0x3ffe},
/*l2e*/ {0xf0bc,0x5c17,0x3b29,0xb8aa,0x3fff},
/*l2t*/ {0x8afe,0xcd1b,0x784b,0xd49a,0x4000}
};
#else
/* the same, 64-bit version */
typedef unsigned short f15ld[4];
const f15ld f15rk[] =
{
#ifndef WORDS_BIGENDIAN
/*0*/ {0x0000,0x0000,0x0000,0x0000},
/*1*/ {0x0000,0x0000,0x0000,0x3ff0},
/*pi*/ {0x2d18,0x5444,0x21fb,0x4009},
/*lg2*/ {0x79ff,0x509f,0x4413,0x3fd3},
/*ln2*/ {0x39ef,0xfefa,0x2e42,0x3fe6},
/*l2e*/ {0x82fe,0x652b,0x1547,0x3ff7},
/*l2t*/ {0xa371,0x0979,0x934f,0x400a}
#else
/*0*/ {0x0000,0x0000,0x0000,0x0000},
/*1*/ {0x3ff0,0x0000,0x0000,0x0000},
/*pi*/ {0x4009,0x21fb,0x5444,0x2d18},
/*lg2*/ {0x3fd3,0x4413,0x509f,0x79ff},
/*ln2*/ {0x3fe6,0x2e42,0xfefa,0x39ef},
/*l2e*/ {0x3ff7,0x1547,0x652b,0x82fe},
/*l2t*/ {0x400a,0x934f,0x0979,0xa371}
#endif
};
#endif
/* n must be a constant to be efficient */
static inline int lshift(int x, int n)
{
if (n >= 0)
return x << n;
else
return x >> (-n);
}
/* we define the various pieces of code used by the JIT */
#define REG EAX
#define REGNAME _EAX
#include "opreg_template.h"
#undef REG
#undef REGNAME
#define REG ECX
#define REGNAME _ECX
#include "opreg_template.h"
#undef REG
#undef REGNAME
#define REG EDX
#define REGNAME _EDX
#include "opreg_template.h"
#undef REG
#undef REGNAME
#define REG EBX
#define REGNAME _EBX
#include "opreg_template.h"
#undef REG
#undef REGNAME
#define REG ESP
#define REGNAME _ESP
#include "opreg_template.h"
#undef REG
#undef REGNAME
#define REG EBP
#define REGNAME _EBP
#include "opreg_template.h"
#undef REG
#undef REGNAME
#define REG ESI
#define REGNAME _ESI
#include "opreg_template.h"
#undef REG
#undef REGNAME
#define REG EDI
#define REGNAME _EDI
#include "opreg_template.h"
#undef REG
#undef REGNAME
/* operations with flags */
void OPPROTO op_addl_T0_T1_cc(void)
{
CC_SRC = T0;
T0 += T1;
CC_DST = T0;
}
void OPPROTO op_orl_T0_T1_cc(void)
{
T0 |= T1;
CC_DST = T0;
}
void OPPROTO op_andl_T0_T1_cc(void)
{
T0 &= T1;
CC_DST = T0;
}
void OPPROTO op_subl_T0_T1_cc(void)
{
CC_SRC = T0;
T0 -= T1;
CC_DST = T0;
}
void OPPROTO op_xorl_T0_T1_cc(void)
{
T0 ^= T1;
CC_DST = T0;
}
void OPPROTO op_cmpl_T0_T1_cc(void)
{
CC_SRC = T0;
CC_DST = T0 - T1;
}
void OPPROTO op_negl_T0_cc(void)
{
CC_SRC = 0;
T0 = -T0;
CC_DST = T0;
}
void OPPROTO op_incl_T0_cc(void)
{
CC_SRC = cc_table[CC_OP].compute_c();
T0++;
CC_DST = T0;
}
void OPPROTO op_decl_T0_cc(void)
{
CC_SRC = cc_table[CC_OP].compute_c();
T0--;
CC_DST = T0;
}
void OPPROTO op_testl_T0_T1_cc(void)
{
CC_DST = T0 & T1;
}
/* operations without flags */
void OPPROTO op_addl_T0_T1(void)
{
T0 += T1;
}
void OPPROTO op_orl_T0_T1(void)
{
T0 |= T1;
}
void OPPROTO op_andl_T0_T1(void)
{
T0 &= T1;
}
void OPPROTO op_subl_T0_T1(void)
{
T0 -= T1;
}
void OPPROTO op_xorl_T0_T1(void)
{
T0 ^= T1;
}
void OPPROTO op_negl_T0(void)
{
T0 = -T0;
}
void OPPROTO op_incl_T0(void)
{
T0++;
}
void OPPROTO op_decl_T0(void)
{
T0--;
}
void OPPROTO op_notl_T0(void)
{
T0 = ~T0;
}
void OPPROTO op_bswapl_T0(void)
{
T0 = bswap32(T0);
}
/* multiply/divide */
void OPPROTO op_mulb_AL_T0(void)
{
unsigned int res;
res = (uint8_t)EAX * (uint8_t)T0;
EAX = (EAX & 0xffff0000) | res;
CC_SRC = (res & 0xff00);
}
void OPPROTO op_imulb_AL_T0(void)
{
int res;
res = (int8_t)EAX * (int8_t)T0;
EAX = (EAX & 0xffff0000) | (res & 0xffff);
CC_SRC = (res != (int8_t)res);
}
void OPPROTO op_mulw_AX_T0(void)
{
unsigned int res;
res = (uint16_t)EAX * (uint16_t)T0;
EAX = (EAX & 0xffff0000) | (res & 0xffff);
EDX = (EDX & 0xffff0000) | ((res >> 16) & 0xffff);
CC_SRC = res >> 16;
}
void OPPROTO op_imulw_AX_T0(void)
{
int res;
res = (int16_t)EAX * (int16_t)T0;
EAX = (EAX & 0xffff0000) | (res & 0xffff);
EDX = (EDX & 0xffff0000) | ((res >> 16) & 0xffff);
CC_SRC = (res != (int16_t)res);
}
void OPPROTO op_mull_EAX_T0(void)
{
uint64_t res;
res = (uint64_t)((uint32_t)EAX) * (uint64_t)((uint32_t)T0);
EAX = res;
EDX = res >> 32;
CC_SRC = res >> 32;
}
void OPPROTO op_imull_EAX_T0(void)
{
int64_t res;
res = (int64_t)((int32_t)EAX) * (int64_t)((int32_t)T0);
EAX = res;
EDX = res >> 32;
CC_SRC = (res != (int32_t)res);
}
void OPPROTO op_imulw_T0_T1(void)
{
int res;
res = (int16_t)T0 * (int16_t)T1;
T0 = res;
CC_SRC = (res != (int16_t)res);
}
void OPPROTO op_imull_T0_T1(void)
{
int64_t res;
res = (int64_t)((int32_t)T0) * (int64_t)((int32_t)T1);
T0 = res;
CC_SRC = (res != (int32_t)res);
}
/* division, flags are undefined */
/* XXX: add exceptions for overflow */
void OPPROTO op_divb_AL_T0(void)
{
unsigned int num, den, q, r;
num = (EAX & 0xffff);
den = (T0 & 0xff);
if (den == 0)
raise_exception(EXCP00_DIVZ);
q = (num / den) & 0xff;
r = (num % den) & 0xff;
EAX = (EAX & 0xffff0000) | (r << 8) | q;
}
void OPPROTO op_idivb_AL_T0(void)
{
int num, den, q, r;
num = (int16_t)EAX;
den = (int8_t)T0;
if (den == 0)
raise_exception(EXCP00_DIVZ);
q = (num / den) & 0xff;
r = (num % den) & 0xff;
EAX = (EAX & 0xffff0000) | (r << 8) | q;
}
void OPPROTO op_divw_AX_T0(void)
{
unsigned int num, den, q, r;
num = (EAX & 0xffff) | ((EDX & 0xffff) << 16);
den = (T0 & 0xffff);
if (den == 0)
raise_exception(EXCP00_DIVZ);
q = (num / den) & 0xffff;
r = (num % den) & 0xffff;
EAX = (EAX & 0xffff0000) | q;
EDX = (EDX & 0xffff0000) | r;
}
void OPPROTO op_idivw_AX_T0(void)
{
int num, den, q, r;
num = (EAX & 0xffff) | ((EDX & 0xffff) << 16);
den = (int16_t)T0;
if (den == 0)
raise_exception(EXCP00_DIVZ);
q = (num / den) & 0xffff;
r = (num % den) & 0xffff;
EAX = (EAX & 0xffff0000) | q;
EDX = (EDX & 0xffff0000) | r;
}
void OPPROTO op_divl_EAX_T0(void)
{
unsigned int den, q, r;
uint64_t num;
num = EAX | ((uint64_t)EDX << 32);
den = T0;
if (den == 0)
raise_exception(EXCP00_DIVZ);
q = (num / den);
r = (num % den);
EAX = q;
EDX = r;
}
void OPPROTO op_idivl_EAX_T0(void)
{
int den, q, r;
int64_t num;
num = EAX | ((uint64_t)EDX << 32);
den = T0;
if (den == 0)
raise_exception(EXCP00_DIVZ);
q = (num / den);
r = (num % den);
EAX = q;
EDX = r;
}
/* constant load & misc op */
void OPPROTO op_movl_T0_im(void)
{
T0 = PARAM1;
}
void OPPROTO op_addl_T0_im(void)
{
T0 += PARAM1;
}
void OPPROTO op_andl_T0_ffff(void)
{
T0 = T0 & 0xffff;
}
void OPPROTO op_movl_T0_T1(void)
{
T0 = T1;
}
void OPPROTO op_movl_T1_im(void)
{
T1 = PARAM1;
}
void OPPROTO op_addl_T1_im(void)
{
T1 += PARAM1;
}
void OPPROTO op_movl_T1_A0(void)
{
T1 = A0;
}
void OPPROTO op_movl_A0_im(void)
{
A0 = PARAM1;
}
void OPPROTO op_addl_A0_im(void)
{
A0 += PARAM1;
}
void OPPROTO op_addl_A0_AL(void)
{
A0 += (EAX & 0xff);
}
void OPPROTO op_andl_A0_ffff(void)
{
A0 = A0 & 0xffff;
}
/* memory access */
void OPPROTO op_ldub_T0_A0(void)
{
T0 = ldub((uint8_t *)A0);
}
void OPPROTO op_ldsb_T0_A0(void)
{
T0 = ldsb((int8_t *)A0);
}
void OPPROTO op_lduw_T0_A0(void)
{
T0 = lduw((uint8_t *)A0);
}
void OPPROTO op_ldsw_T0_A0(void)
{
T0 = ldsw((int8_t *)A0);
}
void OPPROTO op_ldl_T0_A0(void)
{
T0 = ldl((uint8_t *)A0);
}
void OPPROTO op_ldub_T1_A0(void)
{
T1 = ldub((uint8_t *)A0);
}
void OPPROTO op_ldsb_T1_A0(void)
{
T1 = ldsb((int8_t *)A0);
}
void OPPROTO op_lduw_T1_A0(void)
{
T1 = lduw((uint8_t *)A0);
}
void OPPROTO op_ldsw_T1_A0(void)
{
T1 = ldsw((int8_t *)A0);
}
void OPPROTO op_ldl_T1_A0(void)
{
T1 = ldl((uint8_t *)A0);
}
void OPPROTO op_stb_T0_A0(void)
{
stb((uint8_t *)A0, T0);
}
void OPPROTO op_stw_T0_A0(void)
{
stw((uint8_t *)A0, T0);
}
void OPPROTO op_stl_T0_A0(void)
{
stl((uint8_t *)A0, T0);
}
/* used for bit operations */
void OPPROTO op_add_bitw_A0_T1(void)
{
A0 += ((int32_t)T1 >> 4) << 1;
}
void OPPROTO op_add_bitl_A0_T1(void)
{
A0 += ((int32_t)T1 >> 5) << 2;
}
/* indirect jump */
void OPPROTO op_jmp_T0(void)
{
EIP = T0;
}
void OPPROTO op_jmp_im(void)
{
EIP = PARAM1;
}
void OPPROTO op_int_im(void)
{
EIP = PARAM1;
raise_exception(EXCP0D_GPF);
}
void OPPROTO op_int3(void)
{
EIP = PARAM1;
raise_exception(EXCP03_INT3);
}
void OPPROTO op_into(void)
{
int eflags;
eflags = cc_table[CC_OP].compute_all();
if (eflags & CC_O) {
raise_exception(EXCP04_INTO);
}
}
void OPPROTO op_boundw(void)
{
int low, high, v;
low = ldsw((uint8_t *)A0);
high = ldsw((uint8_t *)A0 + 2);
v = (int16_t)T0;
if (v < low || v > high)
raise_exception(EXCP05_BOUND);
FORCE_RET();
}
void OPPROTO op_boundl(void)
{
int low, high, v;
low = ldl((uint8_t *)A0);
high = ldl((uint8_t *)A0 + 4);
v = T0;
if (v < low || v > high)
raise_exception(EXCP05_BOUND);
FORCE_RET();
}
void OPPROTO op_cmpxchg8b(void)
{
uint64_t d;
int eflags;
eflags = cc_table[CC_OP].compute_all();
d = ldq((uint8_t *)A0);
if (d == (((uint64_t)EDX << 32) | EAX)) {
stq((uint8_t *)A0, ((uint64_t)ECX << 32) | EBX);
eflags |= CC_Z;
} else {
EDX = d >> 32;
EAX = d;
eflags &= ~CC_Z;
}
CC_SRC = eflags;
FORCE_RET();
}
/* string ops */
#define ldul ldl
#define SHIFT 0
#include "ops_template.h"
#undef SHIFT
#define SHIFT 1
#include "ops_template.h"
#undef SHIFT
#define SHIFT 2
#include "ops_template.h"
#undef SHIFT
/* sign extend */
void OPPROTO op_movsbl_T0_T0(void)
{
T0 = (int8_t)T0;
}
void OPPROTO op_movzbl_T0_T0(void)
{
T0 = (uint8_t)T0;
}
void OPPROTO op_movswl_T0_T0(void)
{
T0 = (int16_t)T0;
}
void OPPROTO op_movzwl_T0_T0(void)
{
T0 = (uint16_t)T0;
}
void OPPROTO op_movswl_EAX_AX(void)
{
EAX = (int16_t)EAX;
}
void OPPROTO op_movsbw_AX_AL(void)
{
EAX = (EAX & 0xffff0000) | ((int8_t)EAX & 0xffff);
}
void OPPROTO op_movslq_EDX_EAX(void)
{
EDX = (int32_t)EAX >> 31;
}
void OPPROTO op_movswl_DX_AX(void)
{
EDX = (EDX & 0xffff0000) | (((int16_t)EAX >> 15) & 0xffff);
}
/* push/pop */
void op_pushl_T0(void)
{
uint32_t offset;
offset = ESP - 4;
stl((void *)offset, T0);
/* modify ESP after to handle exceptions correctly */
ESP = offset;
}
void op_pushw_T0(void)
{
uint32_t offset;
offset = ESP - 2;
stw((void *)offset, T0);
/* modify ESP after to handle exceptions correctly */
ESP = offset;
}
void op_pushl_ss32_T0(void)
{
uint32_t offset;
offset = ESP - 4;
stl(env->seg_cache[R_SS].base + offset, T0);
/* modify ESP after to handle exceptions correctly */
ESP = offset;
}
void op_pushw_ss32_T0(void)
{
uint32_t offset;
offset = ESP - 2;
stw(env->seg_cache[R_SS].base + offset, T0);
/* modify ESP after to handle exceptions correctly */
ESP = offset;
}
void op_pushl_ss16_T0(void)
{
uint32_t offset;
offset = (ESP - 4) & 0xffff;
stl(env->seg_cache[R_SS].base + offset, T0);
/* modify ESP after to handle exceptions correctly */
ESP = (ESP & ~0xffff) | offset;
}
void op_pushw_ss16_T0(void)
{
uint32_t offset;
offset = (ESP - 2) & 0xffff;
stw(env->seg_cache[R_SS].base + offset, T0);
/* modify ESP after to handle exceptions correctly */
ESP = (ESP & ~0xffff) | offset;
}
/* NOTE: ESP update is done after */
void op_popl_T0(void)
{
T0 = ldl((void *)ESP);
}
void op_popw_T0(void)
{
T0 = lduw((void *)ESP);
}
void op_popl_ss32_T0(void)
{
T0 = ldl(env->seg_cache[R_SS].base + ESP);
}
void op_popw_ss32_T0(void)
{
T0 = lduw(env->seg_cache[R_SS].base + ESP);
}
void op_popl_ss16_T0(void)
{
T0 = ldl(env->seg_cache[R_SS].base + (ESP & 0xffff));
}
void op_popw_ss16_T0(void)
{
T0 = lduw(env->seg_cache[R_SS].base + (ESP & 0xffff));
}
void op_addl_ESP_4(void)
{
ESP += 4;
}
void op_addl_ESP_2(void)
{
ESP += 2;
}
void op_addw_ESP_4(void)
{
ESP = (ESP & ~0xffff) | ((ESP + 4) & 0xffff);
}
void op_addw_ESP_2(void)
{
ESP = (ESP & ~0xffff) | ((ESP + 2) & 0xffff);
}
void op_addl_ESP_im(void)
{
ESP += PARAM1;
}
void op_addw_ESP_im(void)
{
ESP = (ESP & ~0xffff) | ((ESP + PARAM1) & 0xffff);
}
/* rdtsc */
#ifndef __i386__
uint64_t emu_time;
#endif
void OPPROTO op_rdtsc(void)
{
uint64_t val;
#ifdef __i386__
asm("rdtsc" : "=A" (val));
#else
/* better than nothing: the time increases */
val = emu_time++;
#endif
EAX = val;
EDX = val >> 32;
}
/* We simulate a pre-MMX pentium as in valgrind */
#define CPUID_FP87 (1 << 0)
#define CPUID_VME (1 << 1)
#define CPUID_DE (1 << 2)
#define CPUID_PSE (1 << 3)
#define CPUID_TSC (1 << 4)
#define CPUID_MSR (1 << 5)
#define CPUID_PAE (1 << 6)
#define CPUID_MCE (1 << 7)
#define CPUID_CX8 (1 << 8)
#define CPUID_APIC (1 << 9)
#define CPUID_SEP (1 << 11) /* sysenter/sysexit */
#define CPUID_MTRR (1 << 12)
#define CPUID_PGE (1 << 13)
#define CPUID_MCA (1 << 14)
#define CPUID_CMOV (1 << 15)
/* ... */
#define CPUID_MMX (1 << 23)
#define CPUID_FXSR (1 << 24)
#define CPUID_SSE (1 << 25)
#define CPUID_SSE2 (1 << 26)
void helper_cpuid(void)
{
if (EAX == 0) {
EAX = 1; /* max EAX index supported */
EBX = 0x756e6547;
ECX = 0x6c65746e;
EDX = 0x49656e69;
} else {
/* EAX = 1 info */
EAX = 0x52b;
EBX = 0;
ECX = 0;
EDX = CPUID_FP87 | CPUID_VME | CPUID_DE | CPUID_PSE |
CPUID_TSC | CPUID_MSR | CPUID_MCE |
CPUID_CX8;
}
}
void OPPROTO op_cpuid(void)
{
helper_cpuid();
}
/* bcd */
/* XXX: exception */
void OPPROTO op_aam(void)
{
int base = PARAM1;
int al, ah;
al = EAX & 0xff;
ah = al / base;
al = al % base;
EAX = (EAX & ~0xffff) | al | (ah << 8);
CC_DST = al;
}
void OPPROTO op_aad(void)
{
int base = PARAM1;
int al, ah;
al = EAX & 0xff;
ah = (EAX >> 8) & 0xff;
al = ((ah * base) + al) & 0xff;
EAX = (EAX & ~0xffff) | al;
CC_DST = al;
}
void OPPROTO op_aaa(void)
{
int icarry;
int al, ah, af;
int eflags;
eflags = cc_table[CC_OP].compute_all();
af = eflags & CC_A;
al = EAX & 0xff;
ah = (EAX >> 8) & 0xff;
icarry = (al > 0xf9);
if (((al & 0x0f) > 9 ) || af) {
al = (al + 6) & 0x0f;
ah = (ah + 1 + icarry) & 0xff;
eflags |= CC_C | CC_A;
} else {
eflags &= ~(CC_C | CC_A);
al &= 0x0f;
}
EAX = (EAX & ~0xffff) | al | (ah << 8);
CC_SRC = eflags;
}
void OPPROTO op_aas(void)
{
int icarry;
int al, ah, af;
int eflags;
eflags = cc_table[CC_OP].compute_all();
af = eflags & CC_A;
al = EAX & 0xff;
ah = (EAX >> 8) & 0xff;
icarry = (al < 6);
if (((al & 0x0f) > 9 ) || af) {
al = (al - 6) & 0x0f;
ah = (ah - 1 - icarry) & 0xff;
eflags |= CC_C | CC_A;
} else {
eflags &= ~(CC_C | CC_A);
al &= 0x0f;
}
EAX = (EAX & ~0xffff) | al | (ah << 8);
CC_SRC = eflags;
}
void OPPROTO op_daa(void)
{
int al, af, cf;
int eflags;
eflags = cc_table[CC_OP].compute_all();
cf = eflags & CC_C;
af = eflags & CC_A;
al = EAX & 0xff;
eflags = 0;
if (((al & 0x0f) > 9 ) || af) {
al = (al + 6) & 0xff;
eflags |= CC_A;
}
if ((al > 0x9f) || cf) {
al = (al + 0x60) & 0xff;
eflags |= CC_C;
}
EAX = (EAX & ~0xff) | al;
/* well, speed is not an issue here, so we compute the flags by hand */
eflags |= (al == 0) << 6; /* zf */
eflags |= parity_table[al]; /* pf */
eflags |= (al & 0x80); /* sf */
CC_SRC = eflags;
}
void OPPROTO op_das(void)
{
int al, al1, af, cf;
int eflags;
eflags = cc_table[CC_OP].compute_all();
cf = eflags & CC_C;
af = eflags & CC_A;
al = EAX & 0xff;
eflags = 0;
al1 = al;
if (((al & 0x0f) > 9 ) || af) {
eflags |= CC_A;
if (al < 6 || cf)
eflags |= CC_C;
al = (al - 6) & 0xff;
}
if ((al1 > 0x99) || cf) {
al = (al - 0x60) & 0xff;
eflags |= CC_C;
}
EAX = (EAX & ~0xff) | al;
/* well, speed is not an issue here, so we compute the flags by hand */
eflags |= (al == 0) << 6; /* zf */
eflags |= parity_table[al]; /* pf */
eflags |= (al & 0x80); /* sf */
CC_SRC = eflags;
}
/* segment handling */
/* XXX: use static VM86 information */
void load_seg(int seg_reg, int selector)
{
SegmentCache *sc;
SegmentDescriptorTable *dt;
int index;
uint32_t e1, e2;
uint8_t *ptr;
env->segs[seg_reg] = selector;
sc = &env->seg_cache[seg_reg];
if (env->eflags & VM_MASK) {
sc->base = (void *)(selector << 4);
sc->limit = 0xffff;
sc->seg_32bit = 0;
} else {
if (selector & 0x4)
dt = &env->ldt;
else
dt = &env->gdt;
index = selector & ~7;
if ((index + 7) > dt->limit)
raise_exception(EXCP0D_GPF);
ptr = dt->base + index;
e1 = ldl(ptr);
e2 = ldl(ptr + 4);
sc->base = (void *)((e1 >> 16) | ((e2 & 0xff) << 16) | (e2 & 0xff000000));
sc->limit = (e1 & 0xffff) | (e2 & 0x000f0000);
if (e2 & (1 << 23))
sc->limit = (sc->limit << 12) | 0xfff;
sc->seg_32bit = (e2 >> 22) & 1;
#if 0
fprintf(logfile, "load_seg: sel=0x%04x base=0x%08lx limit=0x%08lx seg_32bit=%d\n",
selector, (unsigned long)sc->base, sc->limit, sc->seg_32bit);
#endif
}
}
void OPPROTO op_movl_seg_T0(void)
{
load_seg(PARAM1, T0 & 0xffff);
}
void OPPROTO op_movl_T0_seg(void)
{
T0 = env->segs[PARAM1];
}
void OPPROTO op_movl_A0_seg(void)
{
A0 = *(unsigned long *)((char *)env + PARAM1);
}
void OPPROTO op_addl_A0_seg(void)
{
A0 += *(unsigned long *)((char *)env + PARAM1);
}
/* flags handling */
/* slow jumps cases (compute x86 flags) */
void OPPROTO op_jo_cc(void)
{
int eflags;
eflags = cc_table[CC_OP].compute_all();
if (eflags & CC_O)
EIP = PARAM1;
else
EIP = PARAM2;
FORCE_RET();
}
void OPPROTO op_jb_cc(void)
{
if (cc_table[CC_OP].compute_c())
EIP = PARAM1;
else
EIP = PARAM2;
FORCE_RET();
}
void OPPROTO op_jz_cc(void)
{
int eflags;
eflags = cc_table[CC_OP].compute_all();
if (eflags & CC_Z)
EIP = PARAM1;
else
EIP = PARAM2;
FORCE_RET();
}
void OPPROTO op_jbe_cc(void)
{
int eflags;
eflags = cc_table[CC_OP].compute_all();
if (eflags & (CC_Z | CC_C))
EIP = PARAM1;
else
EIP = PARAM2;
FORCE_RET();
}
void OPPROTO op_js_cc(void)
{
int eflags;
eflags = cc_table[CC_OP].compute_all();
if (eflags & CC_S)
EIP = PARAM1;
else
EIP = PARAM2;
FORCE_RET();
}
void OPPROTO op_jp_cc(void)
{
int eflags;
eflags = cc_table[CC_OP].compute_all();
if (eflags & CC_P)
EIP = PARAM1;
else
EIP = PARAM2;
FORCE_RET();
}
void OPPROTO op_jl_cc(void)
{
int eflags;
eflags = cc_table[CC_OP].compute_all();
if ((eflags ^ (eflags >> 4)) & 0x80)
EIP = PARAM1;
else
EIP = PARAM2;
FORCE_RET();
}
void OPPROTO op_jle_cc(void)
{
int eflags;
eflags = cc_table[CC_OP].compute_all();
if (((eflags ^ (eflags >> 4)) & 0x80) || (eflags & CC_Z))
EIP = PARAM1;
else
EIP = PARAM2;
FORCE_RET();
}
/* slow set cases (compute x86 flags) */
void OPPROTO op_seto_T0_cc(void)
{
int eflags;
eflags = cc_table[CC_OP].compute_all();
T0 = (eflags >> 11) & 1;
}
void OPPROTO op_setb_T0_cc(void)
{
T0 = cc_table[CC_OP].compute_c();
}
void OPPROTO op_setz_T0_cc(void)
{
int eflags;
eflags = cc_table[CC_OP].compute_all();
T0 = (eflags >> 6) & 1;
}
void OPPROTO op_setbe_T0_cc(void)
{
int eflags;
eflags = cc_table[CC_OP].compute_all();
T0 = (eflags & (CC_Z | CC_C)) != 0;
}
void OPPROTO op_sets_T0_cc(void)
{
int eflags;
eflags = cc_table[CC_OP].compute_all();
T0 = (eflags >> 7) & 1;
}
void OPPROTO op_setp_T0_cc(void)
{
int eflags;
eflags = cc_table[CC_OP].compute_all();
T0 = (eflags >> 2) & 1;
}
void OPPROTO op_setl_T0_cc(void)
{
int eflags;
eflags = cc_table[CC_OP].compute_all();
T0 = ((eflags ^ (eflags >> 4)) >> 7) & 1;
}
void OPPROTO op_setle_T0_cc(void)
{
int eflags;
eflags = cc_table[CC_OP].compute_all();
T0 = (((eflags ^ (eflags >> 4)) & 0x80) || (eflags & CC_Z)) != 0;
}
void OPPROTO op_xor_T0_1(void)
{
T0 ^= 1;
}
void OPPROTO op_set_cc_op(void)
{
CC_OP = PARAM1;
}
#define FL_UPDATE_MASK (TF_MASK | AC_MASK | ID_MASK)
void OPPROTO op_movl_eflags_T0(void)
{
int eflags;
eflags = T0;
CC_SRC = eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
DF = 1 - (2 * ((eflags >> 10) & 1));
/* we also update some system flags as in user mode */
env->eflags = (env->eflags & ~FL_UPDATE_MASK) | (eflags & FL_UPDATE_MASK);
}
/* XXX: compute only O flag */
void OPPROTO op_movb_eflags_T0(void)
{
int of;
of = cc_table[CC_OP].compute_all() & CC_O;
CC_SRC = (T0 & (CC_S | CC_Z | CC_A | CC_P | CC_C)) | of;
}
void OPPROTO op_movl_T0_eflags(void)
{
int eflags;
eflags = cc_table[CC_OP].compute_all();
eflags |= (DF & DF_MASK);
eflags |= env->eflags & ~(VM_MASK | RF_MASK);
T0 = eflags;
}
void OPPROTO op_cld(void)
{
DF = 1;
}
void OPPROTO op_std(void)
{
DF = -1;
}
void OPPROTO op_clc(void)
{
int eflags;
eflags = cc_table[CC_OP].compute_all();
eflags &= ~CC_C;
CC_SRC = eflags;
}
void OPPROTO op_stc(void)
{
int eflags;
eflags = cc_table[CC_OP].compute_all();
eflags |= CC_C;
CC_SRC = eflags;
}
void OPPROTO op_cmc(void)
{
int eflags;
eflags = cc_table[CC_OP].compute_all();
eflags ^= CC_C;
CC_SRC = eflags;
}
void OPPROTO op_salc(void)
{
int cf;
cf = cc_table[CC_OP].compute_c();
EAX = (EAX & ~0xff) | ((-cf) & 0xff);
}
static int compute_all_eflags(void)
{
return CC_SRC;
}
static int compute_c_eflags(void)
{
return CC_SRC & CC_C;
}
static int compute_c_mul(void)
{
int cf;
cf = (CC_SRC != 0);
return cf;
}
static int compute_all_mul(void)
{
int cf, pf, af, zf, sf, of;
cf = (CC_SRC != 0);
pf = 0; /* undefined */
af = 0; /* undefined */
zf = 0; /* undefined */
sf = 0; /* undefined */
of = cf << 11;
return cf | pf | af | zf | sf | of;
}
CCTable cc_table[CC_OP_NB] = {
[CC_OP_DYNAMIC] = { /* should never happen */ },
[CC_OP_EFLAGS] = { compute_all_eflags, compute_c_eflags },
[CC_OP_MUL] = { compute_all_mul, compute_c_mul },
[CC_OP_ADDB] = { compute_all_addb, compute_c_addb },
[CC_OP_ADDW] = { compute_all_addw, compute_c_addw },
[CC_OP_ADDL] = { compute_all_addl, compute_c_addl },
[CC_OP_ADCB] = { compute_all_adcb, compute_c_adcb },
[CC_OP_ADCW] = { compute_all_adcw, compute_c_adcw },
[CC_OP_ADCL] = { compute_all_adcl, compute_c_adcl },
[CC_OP_SUBB] = { compute_all_subb, compute_c_subb },
[CC_OP_SUBW] = { compute_all_subw, compute_c_subw },
[CC_OP_SUBL] = { compute_all_subl, compute_c_subl },
[CC_OP_SBBB] = { compute_all_sbbb, compute_c_sbbb },
[CC_OP_SBBW] = { compute_all_sbbw, compute_c_sbbw },
[CC_OP_SBBL] = { compute_all_sbbl, compute_c_sbbl },
[CC_OP_LOGICB] = { compute_all_logicb, compute_c_logicb },
[CC_OP_LOGICW] = { compute_all_logicw, compute_c_logicw },
[CC_OP_LOGICL] = { compute_all_logicl, compute_c_logicl },
[CC_OP_INCB] = { compute_all_incb, compute_c_incl },
[CC_OP_INCW] = { compute_all_incw, compute_c_incl },
[CC_OP_INCL] = { compute_all_incl, compute_c_incl },
[CC_OP_DECB] = { compute_all_decb, compute_c_incl },
[CC_OP_DECW] = { compute_all_decw, compute_c_incl },
[CC_OP_DECL] = { compute_all_decl, compute_c_incl },
[CC_OP_SHLB] = { compute_all_shlb, compute_c_shll },
[CC_OP_SHLW] = { compute_all_shlw, compute_c_shll },
[CC_OP_SHLL] = { compute_all_shll, compute_c_shll },
[CC_OP_SARB] = { compute_all_sarb, compute_c_shll },
[CC_OP_SARW] = { compute_all_sarw, compute_c_shll },
[CC_OP_SARL] = { compute_all_sarl, compute_c_shll },
};
/* floating point support */
#ifdef USE_X86LDOUBLE
/* use long double functions */
#define lrint lrintl
#define llrint llrintl
#define fabs fabsl
#define sin sinl
#define cos cosl
#define sqrt sqrtl
#define pow powl
#define log logl
#define tan tanl
#define atan2 atan2l
#define floor floorl
#define ceil ceill
#define rint rintl
#endif
extern int lrint(CPU86_LDouble x);
extern int64_t llrint(CPU86_LDouble x);
extern CPU86_LDouble fabs(CPU86_LDouble x);
extern CPU86_LDouble sin(CPU86_LDouble x);
extern CPU86_LDouble cos(CPU86_LDouble x);
extern CPU86_LDouble sqrt(CPU86_LDouble x);
extern CPU86_LDouble pow(CPU86_LDouble, CPU86_LDouble);
extern CPU86_LDouble log(CPU86_LDouble x);
extern CPU86_LDouble tan(CPU86_LDouble x);
extern CPU86_LDouble atan2(CPU86_LDouble, CPU86_LDouble);
extern CPU86_LDouble floor(CPU86_LDouble x);
extern CPU86_LDouble ceil(CPU86_LDouble x);
extern CPU86_LDouble rint(CPU86_LDouble x);
#define RC_MASK 0xc00
#define RC_NEAR 0x000
#define RC_DOWN 0x400
#define RC_UP 0x800
#define RC_CHOP 0xc00
#define MAXTAN 9223372036854775808.0
#ifdef USE_X86LDOUBLE
/* only for x86 */
typedef union {
long double d;
struct {
unsigned long long lower;
unsigned short upper;
} l;
} CPU86_LDoubleU;
/* the following deal with x86 long double-precision numbers */
#define MAXEXPD 0x7fff
#define EXPBIAS 16383
#define EXPD(fp) (fp.l.upper & 0x7fff)
#define SIGND(fp) ((fp.l.upper) & 0x8000)
#define MANTD(fp) (fp.l.lower)
#define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7fff)) | EXPBIAS
#else
typedef union {
double d;
#ifndef WORDS_BIGENDIAN
struct {
unsigned long lower;
long upper;
} l;
#else
struct {
long upper;
unsigned long lower;
} l;
#endif
long long ll;
} CPU86_LDoubleU;
/* the following deal with IEEE double-precision numbers */
#define MAXEXPD 0x7ff
#define EXPBIAS 1023
#define EXPD(fp) (((fp.l.upper) >> 20) & 0x7FF)
#define SIGND(fp) ((fp.l.upper) & 0x80000000)
#define MANTD(fp) (fp.ll & ((1LL << 52) - 1))
#define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7ff << 20)) | (EXPBIAS << 20)
#endif
/* fp load FT0 */
void OPPROTO op_flds_FT0_A0(void)
{
FT0 = ldfl((void *)A0);
}
void OPPROTO op_fldl_FT0_A0(void)
{
FT0 = ldfq((void *)A0);
}
/* helpers are needed to avoid static constant reference. XXX: find a better way */
#ifdef USE_INT_TO_FLOAT_HELPERS
void helper_fild_FT0_A0(void)
{
FT0 = (CPU86_LDouble)ldsw((void *)A0);
}
void helper_fildl_FT0_A0(void)
{
FT0 = (CPU86_LDouble)((int32_t)ldl((void *)A0));
}
void helper_fildll_FT0_A0(void)
{
FT0 = (CPU86_LDouble)((int64_t)ldq((void *)A0));
}
void OPPROTO op_fild_FT0_A0(void)
{
helper_fild_FT0_A0();
}
void OPPROTO op_fildl_FT0_A0(void)
{
helper_fildl_FT0_A0();
}
void OPPROTO op_fildll_FT0_A0(void)
{
helper_fildll_FT0_A0();
}
#else
void OPPROTO op_fild_FT0_A0(void)
{
FT0 = (CPU86_LDouble)ldsw((void *)A0);
}
void OPPROTO op_fildl_FT0_A0(void)
{
FT0 = (CPU86_LDouble)((int32_t)ldl((void *)A0));
}
void OPPROTO op_fildll_FT0_A0(void)
{
FT0 = (CPU86_LDouble)((int64_t)ldq((void *)A0));
}
#endif
/* fp load ST0 */
void OPPROTO op_flds_ST0_A0(void)
{
ST0 = ldfl((void *)A0);
}
void OPPROTO op_fldl_ST0_A0(void)
{
ST0 = ldfq((void *)A0);
}
#ifdef USE_X86LDOUBLE
void OPPROTO op_fldt_ST0_A0(void)
{
ST0 = *(long double *)A0;
}
#else
void helper_fldt_ST0_A0(void)
{
CPU86_LDoubleU temp;
int upper, e;
/* mantissa */
upper = lduw((uint8_t *)A0 + 8);
/* XXX: handle overflow ? */
e = (upper & 0x7fff) - 16383 + EXPBIAS; /* exponent */
e |= (upper >> 4) & 0x800; /* sign */
temp.ll = ((ldq((void *)A0) >> 11) & ((1LL << 52) - 1)) | ((uint64_t)e << 52);
ST0 = temp.d;
}
void OPPROTO op_fldt_ST0_A0(void)
{
helper_fldt_ST0_A0();
}
#endif
/* helpers are needed to avoid static constant reference. XXX: find a better way */
#ifdef USE_INT_TO_FLOAT_HELPERS
void helper_fild_ST0_A0(void)
{
ST0 = (CPU86_LDouble)ldsw((void *)A0);
}
void helper_fildl_ST0_A0(void)
{
ST0 = (CPU86_LDouble)((int32_t)ldl((void *)A0));
}
void helper_fildll_ST0_A0(void)
{
ST0 = (CPU86_LDouble)((int64_t)ldq((void *)A0));
}
void OPPROTO op_fild_ST0_A0(void)
{
helper_fild_ST0_A0();
}
void OPPROTO op_fildl_ST0_A0(void)
{
helper_fildl_ST0_A0();
}
void OPPROTO op_fildll_ST0_A0(void)
{
helper_fildll_ST0_A0();
}
#else
void OPPROTO op_fild_ST0_A0(void)
{
ST0 = (CPU86_LDouble)ldsw((void *)A0);
}
void OPPROTO op_fildl_ST0_A0(void)
{
ST0 = (CPU86_LDouble)((int32_t)ldl((void *)A0));
}
void OPPROTO op_fildll_ST0_A0(void)
{
ST0 = (CPU86_LDouble)((int64_t)ldq((void *)A0));
}
#endif
/* fp store */
void OPPROTO op_fsts_ST0_A0(void)
{
stfl((void *)A0, (float)ST0);
}
void OPPROTO op_fstl_ST0_A0(void)
{
stfq((void *)A0, (double)ST0);
}
#ifdef USE_X86LDOUBLE
void OPPROTO op_fstt_ST0_A0(void)
{
*(long double *)A0 = ST0;
}
#else
void helper_fstt_ST0_A0(void)
{
CPU86_LDoubleU temp;
int e;
temp.d = ST0;
/* mantissa */
stq((void *)A0, (MANTD(temp) << 11) | (1LL << 63));
/* exponent + sign */
e = EXPD(temp) - EXPBIAS + 16383;
e |= SIGND(temp) >> 16;
stw((uint8_t *)A0 + 8, e);
}
void OPPROTO op_fstt_ST0_A0(void)
{
helper_fstt_ST0_A0();
}
#endif
void OPPROTO op_fist_ST0_A0(void)
{
int val;
val = lrint(ST0);
stw((void *)A0, val);
}
void OPPROTO op_fistl_ST0_A0(void)
{
int val;
val = lrint(ST0);
stl((void *)A0, val);
}
void OPPROTO op_fistll_ST0_A0(void)
{
int64_t val;
val = llrint(ST0);
stq((void *)A0, val);
}
/* BCD ops */
#define MUL10(iv) ( iv + iv + (iv << 3) )
void helper_fbld_ST0_A0(void)
{
uint8_t *seg;
CPU86_LDouble fpsrcop;
int m32i;
unsigned int v;
/* in this code, seg/m32i will be used as temporary ptr/int */
seg = (uint8_t *)A0 + 8;
v = ldub(seg--);
/* XXX: raise exception */
if (v != 0)
return;
v = ldub(seg--);
/* XXX: raise exception */
if ((v & 0xf0) != 0)
return;
m32i = v; /* <-- d14 */
v = ldub(seg--);
m32i = MUL10(m32i) + (v >> 4); /* <-- val * 10 + d13 */
m32i = MUL10(m32i) + (v & 0xf); /* <-- val * 10 + d12 */
v = ldub(seg--);
m32i = MUL10(m32i) + (v >> 4); /* <-- val * 10 + d11 */
m32i = MUL10(m32i) + (v & 0xf); /* <-- val * 10 + d10 */
v = ldub(seg--);
m32i = MUL10(m32i) + (v >> 4); /* <-- val * 10 + d9 */
m32i = MUL10(m32i) + (v & 0xf); /* <-- val * 10 + d8 */
fpsrcop = ((CPU86_LDouble)m32i) * 100000000.0;
v = ldub(seg--);
m32i = (v >> 4); /* <-- d7 */
m32i = MUL10(m32i) + (v & 0xf); /* <-- val * 10 + d6 */
v = ldub(seg--);
m32i = MUL10(m32i) + (v >> 4); /* <-- val * 10 + d5 */
m32i = MUL10(m32i) + (v & 0xf); /* <-- val * 10 + d4 */
v = ldub(seg--);
m32i = MUL10(m32i) + (v >> 4); /* <-- val * 10 + d3 */
m32i = MUL10(m32i) + (v & 0xf); /* <-- val * 10 + d2 */
v = ldub(seg);
m32i = MUL10(m32i) + (v >> 4); /* <-- val * 10 + d1 */
m32i = MUL10(m32i) + (v & 0xf); /* <-- val * 10 + d0 */
fpsrcop += ((CPU86_LDouble)m32i);
if ( ldub(seg+9) & 0x80 )
fpsrcop = -fpsrcop;
ST0 = fpsrcop;
}
void OPPROTO op_fbld_ST0_A0(void)
{
helper_fbld_ST0_A0();
}
void helper_fbst_ST0_A0(void)
{
CPU86_LDouble fptemp;
CPU86_LDouble fpsrcop;
int v;
uint8_t *mem_ref, *mem_end;
fpsrcop = rint(ST0);
mem_ref = (uint8_t *)A0;
mem_end = mem_ref + 8;
if ( fpsrcop < 0.0 ) {
stw(mem_end, 0x8000);
fpsrcop = -fpsrcop;
} else {
stw(mem_end, 0x0000);
}
while (mem_ref < mem_end) {
if (fpsrcop == 0.0)
break;
fptemp = floor(fpsrcop/10.0);
v = ((int)(fpsrcop - fptemp*10.0));
if (fptemp == 0.0) {
stb(mem_ref++, v);
break;
}
fpsrcop = fptemp;
fptemp = floor(fpsrcop/10.0);
v |= (((int)(fpsrcop - fptemp*10.0)) << 4);
stb(mem_ref++, v);
fpsrcop = fptemp;
}
while (mem_ref < mem_end) {
stb(mem_ref++, 0);
}
}
void OPPROTO op_fbst_ST0_A0(void)
{
helper_fbst_ST0_A0();
}
/* FPU move */
static inline void fpush(void)
{
env->fpstt = (env->fpstt - 1) & 7;
env->fptags[env->fpstt] = 0; /* validate stack entry */
}
static inline void fpop(void)
{
env->fptags[env->fpstt] = 1; /* invvalidate stack entry */
env->fpstt = (env->fpstt + 1) & 7;
}
void OPPROTO op_fpush(void)
{
fpush();
}
void OPPROTO op_fpop(void)
{
fpop();
}
void OPPROTO op_fdecstp(void)
{
env->fpstt = (env->fpstt - 1) & 7;
env->fpus &= (~0x4700);
}
void OPPROTO op_fincstp(void)
{
env->fpstt = (env->fpstt + 1) & 7;
env->fpus &= (~0x4700);
}
void OPPROTO op_fmov_ST0_FT0(void)
{
ST0 = FT0;
}
void OPPROTO op_fmov_FT0_STN(void)
{
FT0 = ST(PARAM1);
}
void OPPROTO op_fmov_ST0_STN(void)
{
ST0 = ST(PARAM1);
}
void OPPROTO op_fmov_STN_ST0(void)
{
ST(PARAM1) = ST0;
}
void OPPROTO op_fxchg_ST0_STN(void)
{
CPU86_LDouble tmp;
tmp = ST(PARAM1);
ST(PARAM1) = ST0;
ST0 = tmp;
}
/* FPU operations */
/* XXX: handle nans */
void OPPROTO op_fcom_ST0_FT0(void)
{
env->fpus &= (~0x4500); /* (C3,C2,C0) <-- 000 */
if (ST0 < FT0)
env->fpus |= 0x100; /* (C3,C2,C0) <-- 001 */
else if (ST0 == FT0)
env->fpus |= 0x4000; /* (C3,C2,C0) <-- 100 */
FORCE_RET();
}
/* XXX: handle nans */
void OPPROTO op_fucom_ST0_FT0(void)
{
env->fpus &= (~0x4500); /* (C3,C2,C0) <-- 000 */
if (ST0 < FT0)
env->fpus |= 0x100; /* (C3,C2,C0) <-- 001 */
else if (ST0 == FT0)
env->fpus |= 0x4000; /* (C3,C2,C0) <-- 100 */
FORCE_RET();
}
void OPPROTO op_fadd_ST0_FT0(void)
{
ST0 += FT0;
}
void OPPROTO op_fmul_ST0_FT0(void)
{
ST0 *= FT0;
}
void OPPROTO op_fsub_ST0_FT0(void)
{
ST0 -= FT0;
}
void OPPROTO op_fsubr_ST0_FT0(void)
{
ST0 = FT0 - ST0;
}
void OPPROTO op_fdiv_ST0_FT0(void)
{
ST0 /= FT0;
}
void OPPROTO op_fdivr_ST0_FT0(void)
{
ST0 = FT0 / ST0;
}
/* fp operations between STN and ST0 */
void OPPROTO op_fadd_STN_ST0(void)
{
ST(PARAM1) += ST0;
}
void OPPROTO op_fmul_STN_ST0(void)
{
ST(PARAM1) *= ST0;
}
void OPPROTO op_fsub_STN_ST0(void)
{
ST(PARAM1) -= ST0;
}
void OPPROTO op_fsubr_STN_ST0(void)
{
CPU86_LDouble *p;
p = &ST(PARAM1);
*p = ST0 - *p;
}
void OPPROTO op_fdiv_STN_ST0(void)
{
ST(PARAM1) /= ST0;
}
void OPPROTO op_fdivr_STN_ST0(void)
{
CPU86_LDouble *p;
p = &ST(PARAM1);
*p = ST0 / *p;
}
/* misc FPU operations */
void OPPROTO op_fchs_ST0(void)
{
ST0 = -ST0;
}
void OPPROTO op_fabs_ST0(void)
{
ST0 = fabs(ST0);
}
void helper_fxam_ST0(void)
{
CPU86_LDoubleU temp;
int expdif;
temp.d = ST0;
env->fpus &= (~0x4700); /* (C3,C2,C1,C0) <-- 0000 */
if (SIGND(temp))
env->fpus |= 0x200; /* C1 <-- 1 */
expdif = EXPD(temp);
if (expdif == MAXEXPD) {
if (MANTD(temp) == 0)
env->fpus |= 0x500 /*Infinity*/;
else
env->fpus |= 0x100 /*NaN*/;
} else if (expdif == 0) {
if (MANTD(temp) == 0)
env->fpus |= 0x4000 /*Zero*/;
else
env->fpus |= 0x4400 /*Denormal*/;
} else {
env->fpus |= 0x400;
}
}
void OPPROTO op_fxam_ST0(void)
{
helper_fxam_ST0();
}
void OPPROTO op_fld1_ST0(void)
{
ST0 = *(CPU86_LDouble *)&f15rk[1];
}
void OPPROTO op_fldl2t_ST0(void)
{
ST0 = *(CPU86_LDouble *)&f15rk[6];
}
void OPPROTO op_fldl2e_ST0(void)
{
ST0 = *(CPU86_LDouble *)&f15rk[5];
}
void OPPROTO op_fldpi_ST0(void)
{
ST0 = *(CPU86_LDouble *)&f15rk[2];
}
void OPPROTO op_fldlg2_ST0(void)
{
ST0 = *(CPU86_LDouble *)&f15rk[3];
}
void OPPROTO op_fldln2_ST0(void)
{
ST0 = *(CPU86_LDouble *)&f15rk[4];
}
void OPPROTO op_fldz_ST0(void)
{
ST0 = *(CPU86_LDouble *)&f15rk[0];
}
void OPPROTO op_fldz_FT0(void)
{
ST0 = *(CPU86_LDouble *)&f15rk[0];
}
void helper_f2xm1(void)
{
ST0 = pow(2.0,ST0) - 1.0;
}
void helper_fyl2x(void)
{
CPU86_LDouble fptemp;
fptemp = ST0;
if (fptemp>0.0){
fptemp = log(fptemp)/log(2.0); /* log2(ST) */
ST1 *= fptemp;
fpop();
} else {
env->fpus &= (~0x4700);
env->fpus |= 0x400;
}
}
void helper_fptan(void)
{
CPU86_LDouble fptemp;
fptemp = ST0;
if((fptemp > MAXTAN)||(fptemp < -MAXTAN)) {
env->fpus |= 0x400;
} else {
ST0 = tan(fptemp);
fpush();
ST0 = 1.0;
env->fpus &= (~0x400); /* C2 <-- 0 */
/* the above code is for |arg| < 2**52 only */
}
}
void helper_fpatan(void)
{
CPU86_LDouble fptemp, fpsrcop;
fpsrcop = ST1;
fptemp = ST0;
ST1 = atan2(fpsrcop,fptemp);
fpop();
}
void helper_fxtract(void)
{
CPU86_LDoubleU temp;
unsigned int expdif;
temp.d = ST0;
expdif = EXPD(temp) - EXPBIAS;
/*DP exponent bias*/
ST0 = expdif;
fpush();
BIASEXPONENT(temp);
ST0 = temp.d;
}
void helper_fprem1(void)
{
CPU86_LDouble dblq, fpsrcop, fptemp;
CPU86_LDoubleU fpsrcop1, fptemp1;
int expdif;
int q;
fpsrcop = ST0;
fptemp = ST1;
fpsrcop1.d = fpsrcop;
fptemp1.d = fptemp;
expdif = EXPD(fpsrcop1) - EXPD(fptemp1);
if (expdif < 53) {
dblq = fpsrcop / fptemp;
dblq = (dblq < 0.0)? ceil(dblq): floor(dblq);
ST0 = fpsrcop - fptemp*dblq;
q = (int)dblq; /* cutting off top bits is assumed here */
env->fpus &= (~0x4700); /* (C3,C2,C1,C0) <-- 0000 */
/* (C0,C1,C3) <-- (q2,q1,q0) */
env->fpus |= (q&0x4) << 6; /* (C0) <-- q2 */
env->fpus |= (q&0x2) << 8; /* (C1) <-- q1 */
env->fpus |= (q&0x1) << 14; /* (C3) <-- q0 */
} else {
env->fpus |= 0x400; /* C2 <-- 1 */
fptemp = pow(2.0, expdif-50);
fpsrcop = (ST0 / ST1) / fptemp;
/* fpsrcop = integer obtained by rounding to the nearest */
fpsrcop = (fpsrcop-floor(fpsrcop) < ceil(fpsrcop)-fpsrcop)?
floor(fpsrcop): ceil(fpsrcop);
ST0 -= (ST1 * fpsrcop * fptemp);
}
}
void helper_fprem(void)
{
CPU86_LDouble dblq, fpsrcop, fptemp;
CPU86_LDoubleU fpsrcop1, fptemp1;
int expdif;
int q;
fpsrcop = ST0;
fptemp = ST1;
fpsrcop1.d = fpsrcop;
fptemp1.d = fptemp;
expdif = EXPD(fpsrcop1) - EXPD(fptemp1);
if ( expdif < 53 ) {
dblq = fpsrcop / fptemp;
dblq = (dblq < 0.0)? ceil(dblq): floor(dblq);
ST0 = fpsrcop - fptemp*dblq;
q = (int)dblq; /* cutting off top bits is assumed here */
env->fpus &= (~0x4700); /* (C3,C2,C1,C0) <-- 0000 */
/* (C0,C1,C3) <-- (q2,q1,q0) */
env->fpus |= (q&0x4) << 6; /* (C0) <-- q2 */
env->fpus |= (q&0x2) << 8; /* (C1) <-- q1 */
env->fpus |= (q&0x1) << 14; /* (C3) <-- q0 */
} else {
env->fpus |= 0x400; /* C2 <-- 1 */
fptemp = pow(2.0, expdif-50);
fpsrcop = (ST0 / ST1) / fptemp;
/* fpsrcop = integer obtained by chopping */
fpsrcop = (fpsrcop < 0.0)?
-(floor(fabs(fpsrcop))): floor(fpsrcop);
ST0 -= (ST1 * fpsrcop * fptemp);
}
}
void helper_fyl2xp1(void)
{
CPU86_LDouble fptemp;
fptemp = ST0;
if ((fptemp+1.0)>0.0) {
fptemp = log(fptemp+1.0) / log(2.0); /* log2(ST+1.0) */
ST1 *= fptemp;
fpop();
} else {
env->fpus &= (~0x4700);
env->fpus |= 0x400;
}
}
void helper_fsqrt(void)
{
CPU86_LDouble fptemp;
fptemp = ST0;
if (fptemp<0.0) {
env->fpus &= (~0x4700); /* (C3,C2,C1,C0) <-- 0000 */
env->fpus |= 0x400;
}
ST0 = sqrt(fptemp);
}
void helper_fsincos(void)
{
CPU86_LDouble fptemp;
fptemp = ST0;
if ((fptemp > MAXTAN)||(fptemp < -MAXTAN)) {
env->fpus |= 0x400;
} else {
ST0 = sin(fptemp);
fpush();
ST0 = cos(fptemp);
env->fpus &= (~0x400); /* C2 <-- 0 */
/* the above code is for |arg| < 2**63 only */
}
}
void helper_frndint(void)
{
ST0 = rint(ST0);
}
void helper_fscale(void)
{
CPU86_LDouble fpsrcop, fptemp;
fpsrcop = 2.0;
fptemp = pow(fpsrcop,ST1);
ST0 *= fptemp;
}
void helper_fsin(void)
{
CPU86_LDouble fptemp;
fptemp = ST0;
if ((fptemp > MAXTAN)||(fptemp < -MAXTAN)) {
env->fpus |= 0x400;
} else {
ST0 = sin(fptemp);
env->fpus &= (~0x400); /* C2 <-- 0 */
/* the above code is for |arg| < 2**53 only */
}
}
void helper_fcos(void)
{
CPU86_LDouble fptemp;
fptemp = ST0;
if((fptemp > MAXTAN)||(fptemp < -MAXTAN)) {
env->fpus |= 0x400;
} else {
ST0 = cos(fptemp);
env->fpus &= (~0x400); /* C2 <-- 0 */
/* the above code is for |arg5 < 2**63 only */
}
}
/* associated heplers to reduce generated code length and to simplify
relocation (FP constants are usually stored in .rodata section) */
void OPPROTO op_f2xm1(void)
{
helper_f2xm1();
}
void OPPROTO op_fyl2x(void)
{
helper_fyl2x();
}
void OPPROTO op_fptan(void)
{
helper_fptan();
}
void OPPROTO op_fpatan(void)
{
helper_fpatan();
}
void OPPROTO op_fxtract(void)
{
helper_fxtract();
}
void OPPROTO op_fprem1(void)
{
helper_fprem1();
}
void OPPROTO op_fprem(void)
{
helper_fprem();
}
void OPPROTO op_fyl2xp1(void)
{
helper_fyl2xp1();
}
void OPPROTO op_fsqrt(void)
{
helper_fsqrt();
}
void OPPROTO op_fsincos(void)
{
helper_fsincos();
}
void OPPROTO op_frndint(void)
{
helper_frndint();
}
void OPPROTO op_fscale(void)
{
helper_fscale();
}
void OPPROTO op_fsin(void)
{
helper_fsin();
}
void OPPROTO op_fcos(void)
{
helper_fcos();
}
void OPPROTO op_fnstsw_A0(void)
{
int fpus;
fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
stw((void *)A0, fpus);
}
void OPPROTO op_fnstsw_EAX(void)
{
int fpus;
fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
EAX = (EAX & 0xffff0000) | fpus;
}
void OPPROTO op_fnstcw_A0(void)
{
stw((void *)A0, env->fpuc);
}
void OPPROTO op_fldcw_A0(void)
{
int rnd_type;
env->fpuc = lduw((void *)A0);
/* set rounding mode */
switch(env->fpuc & RC_MASK) {
default:
case RC_NEAR:
rnd_type = FE_TONEAREST;
break;
case RC_DOWN:
rnd_type = FE_DOWNWARD;
break;
case RC_UP:
rnd_type = FE_UPWARD;
break;
case RC_CHOP:
rnd_type = FE_TOWARDZERO;
break;
}
fesetround(rnd_type);
}
void OPPROTO op_fclex(void)
{
env->fpus &= 0x7f00;
}
void OPPROTO op_fninit(void)
{
env->fpus = 0;
env->fpstt = 0;
env->fpuc = 0x37f;
env->fptags[0] = 1;
env->fptags[1] = 1;
env->fptags[2] = 1;
env->fptags[3] = 1;
env->fptags[4] = 1;
env->fptags[5] = 1;
env->fptags[6] = 1;
env->fptags[7] = 1;
}
/* threading support */
void OPPROTO op_lock(void)
{
cpu_lock();
}
void OPPROTO op_unlock(void)
{
cpu_unlock();
}