qemu/hw/openrisc/openrisc_sim.c
Jason A. Donenfeld 777784bda4 hw/openrisc: support 4 serial ports in or1ksim
The 8250 serial controller supports 4 serial ports, so wire them all up,
so that we can have more than one basic I/O channel.

Cc: Stafford Horne <shorne@gmail.com>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
[smh:Fixup indentation and lines over 80 chars]
Signed-off-by: Stafford Horne <shorne@gmail.com>
2022-05-15 10:31:46 +09:00

466 lines
15 KiB
C

/*
* OpenRISC simulator for use as an IIS.
*
* Copyright (c) 2011-2012 Jia Liu <proljc@gmail.com>
* Feng Gao <gf91597@gmail.com>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/error-report.h"
#include "qapi/error.h"
#include "cpu.h"
#include "hw/irq.h"
#include "hw/boards.h"
#include "elf.h"
#include "hw/char/serial.h"
#include "net/net.h"
#include "hw/loader.h"
#include "hw/qdev-properties.h"
#include "exec/address-spaces.h"
#include "sysemu/device_tree.h"
#include "sysemu/sysemu.h"
#include "hw/sysbus.h"
#include "sysemu/qtest.h"
#include "sysemu/reset.h"
#include "hw/core/split-irq.h"
#include <libfdt.h>
#define KERNEL_LOAD_ADDR 0x100
#define OR1KSIM_CPUS_MAX 4
#define OR1KSIM_CLK_MHZ 20000000
#define TYPE_OR1KSIM_MACHINE MACHINE_TYPE_NAME("or1k-sim")
#define OR1KSIM_MACHINE(obj) \
OBJECT_CHECK(Or1ksimState, (obj), TYPE_OR1KSIM_MACHINE)
typedef struct Or1ksimState {
/*< private >*/
MachineState parent_obj;
/*< public >*/
void *fdt;
int fdt_size;
} Or1ksimState;
enum {
OR1KSIM_DRAM,
OR1KSIM_UART,
OR1KSIM_ETHOC,
OR1KSIM_OMPIC,
};
enum {
OR1KSIM_OMPIC_IRQ = 1,
OR1KSIM_UART_IRQ = 2,
OR1KSIM_ETHOC_IRQ = 4,
};
enum {
OR1KSIM_UART_COUNT = 4
};
static const struct MemmapEntry {
hwaddr base;
hwaddr size;
} or1ksim_memmap[] = {
[OR1KSIM_DRAM] = { 0x00000000, 0 },
[OR1KSIM_UART] = { 0x90000000, 0x100 },
[OR1KSIM_ETHOC] = { 0x92000000, 0x800 },
[OR1KSIM_OMPIC] = { 0x98000000, 16 },
};
static struct openrisc_boot_info {
uint32_t bootstrap_pc;
uint32_t fdt_addr;
} boot_info;
static void main_cpu_reset(void *opaque)
{
OpenRISCCPU *cpu = opaque;
CPUState *cs = CPU(cpu);
cpu_reset(CPU(cpu));
cpu_set_pc(cs, boot_info.bootstrap_pc);
cpu_set_gpr(&cpu->env, 3, boot_info.fdt_addr);
}
static qemu_irq get_cpu_irq(OpenRISCCPU *cpus[], int cpunum, int irq_pin)
{
return qdev_get_gpio_in_named(DEVICE(cpus[cpunum]), "IRQ", irq_pin);
}
static void openrisc_create_fdt(Or1ksimState *state,
const struct MemmapEntry *memmap,
int num_cpus, uint64_t mem_size,
const char *cmdline)
{
void *fdt;
int cpu;
char *nodename;
int pic_ph;
fdt = state->fdt = create_device_tree(&state->fdt_size);
if (!fdt) {
error_report("create_device_tree() failed");
exit(1);
}
qemu_fdt_setprop_string(fdt, "/", "compatible", "opencores,or1ksim");
qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x1);
qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x1);
nodename = g_strdup_printf("/memory@%" HWADDR_PRIx,
memmap[OR1KSIM_DRAM].base);
qemu_fdt_add_subnode(fdt, nodename);
qemu_fdt_setprop_cells(fdt, nodename, "reg",
memmap[OR1KSIM_DRAM].base, mem_size);
qemu_fdt_setprop_string(fdt, nodename, "device_type", "memory");
g_free(nodename);
qemu_fdt_add_subnode(fdt, "/cpus");
qemu_fdt_setprop_cell(fdt, "/cpus", "#size-cells", 0x0);
qemu_fdt_setprop_cell(fdt, "/cpus", "#address-cells", 0x1);
for (cpu = 0; cpu < num_cpus; cpu++) {
nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
qemu_fdt_add_subnode(fdt, nodename);
qemu_fdt_setprop_string(fdt, nodename, "compatible",
"opencores,or1200-rtlsvn481");
qemu_fdt_setprop_cell(fdt, nodename, "reg", cpu);
qemu_fdt_setprop_cell(fdt, nodename, "clock-frequency",
OR1KSIM_CLK_MHZ);
g_free(nodename);
}
nodename = (char *)"/pic";
qemu_fdt_add_subnode(fdt, nodename);
pic_ph = qemu_fdt_alloc_phandle(fdt);
qemu_fdt_setprop_string(fdt, nodename, "compatible",
"opencores,or1k-pic-level");
qemu_fdt_setprop_cell(fdt, nodename, "#interrupt-cells", 1);
qemu_fdt_setprop(fdt, nodename, "interrupt-controller", NULL, 0);
qemu_fdt_setprop_cell(fdt, nodename, "phandle", pic_ph);
qemu_fdt_setprop_cell(fdt, "/", "interrupt-parent", pic_ph);
qemu_fdt_add_subnode(fdt, "/chosen");
if (cmdline) {
qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", cmdline);
}
/* Create aliases node for use by devices. */
qemu_fdt_add_subnode(fdt, "/aliases");
}
static void openrisc_sim_net_init(Or1ksimState *state, hwaddr base, hwaddr size,
int num_cpus, OpenRISCCPU *cpus[],
int irq_pin, NICInfo *nd)
{
void *fdt = state->fdt;
DeviceState *dev;
SysBusDevice *s;
char *nodename;
int i;
dev = qdev_new("open_eth");
qdev_set_nic_properties(dev, nd);
s = SYS_BUS_DEVICE(dev);
sysbus_realize_and_unref(s, &error_fatal);
if (num_cpus > 1) {
DeviceState *splitter = qdev_new(TYPE_SPLIT_IRQ);
qdev_prop_set_uint32(splitter, "num-lines", num_cpus);
qdev_realize_and_unref(splitter, NULL, &error_fatal);
for (i = 0; i < num_cpus; i++) {
qdev_connect_gpio_out(splitter, i, get_cpu_irq(cpus, i, irq_pin));
}
sysbus_connect_irq(s, 0, qdev_get_gpio_in(splitter, 0));
} else {
sysbus_connect_irq(s, 0, get_cpu_irq(cpus, 0, irq_pin));
}
sysbus_mmio_map(s, 0, base);
sysbus_mmio_map(s, 1, base + 0x400);
/* Init device tree node for ethoc. */
nodename = g_strdup_printf("/ethoc@%" HWADDR_PRIx, base);
qemu_fdt_add_subnode(fdt, nodename);
qemu_fdt_setprop_string(fdt, nodename, "compatible", "opencores,ethoc");
qemu_fdt_setprop_cells(fdt, nodename, "reg", base, size);
qemu_fdt_setprop_cell(fdt, nodename, "interrupts", irq_pin);
qemu_fdt_setprop(fdt, nodename, "big-endian", NULL, 0);
qemu_fdt_setprop_string(fdt, "/aliases", "enet0", nodename);
g_free(nodename);
}
static void openrisc_sim_ompic_init(Or1ksimState *state, hwaddr base,
hwaddr size, int num_cpus,
OpenRISCCPU *cpus[], int irq_pin)
{
void *fdt = state->fdt;
DeviceState *dev;
SysBusDevice *s;
char *nodename;
int i;
dev = qdev_new("or1k-ompic");
qdev_prop_set_uint32(dev, "num-cpus", num_cpus);
s = SYS_BUS_DEVICE(dev);
sysbus_realize_and_unref(s, &error_fatal);
for (i = 0; i < num_cpus; i++) {
sysbus_connect_irq(s, i, get_cpu_irq(cpus, i, irq_pin));
}
sysbus_mmio_map(s, 0, base);
/* Add device tree node for ompic. */
nodename = g_strdup_printf("/ompic@%" HWADDR_PRIx, base);
qemu_fdt_add_subnode(fdt, nodename);
qemu_fdt_setprop_string(fdt, nodename, "compatible", "openrisc,ompic");
qemu_fdt_setprop_cells(fdt, nodename, "reg", base, size);
qemu_fdt_setprop(fdt, nodename, "interrupt-controller", NULL, 0);
qemu_fdt_setprop_cell(fdt, nodename, "#interrupt-cells", 0);
qemu_fdt_setprop_cell(fdt, nodename, "interrupts", irq_pin);
g_free(nodename);
}
static void openrisc_sim_serial_init(Or1ksimState *state, hwaddr base,
hwaddr size, int num_cpus,
OpenRISCCPU *cpus[], int irq_pin,
int uart_idx)
{
void *fdt = state->fdt;
char *nodename;
qemu_irq serial_irq;
char alias[sizeof("uart0")];
int i;
if (num_cpus > 1) {
DeviceState *splitter = qdev_new(TYPE_SPLIT_IRQ);
qdev_prop_set_uint32(splitter, "num-lines", num_cpus);
qdev_realize_and_unref(splitter, NULL, &error_fatal);
for (i = 0; i < num_cpus; i++) {
qdev_connect_gpio_out(splitter, i, get_cpu_irq(cpus, i, irq_pin));
}
serial_irq = qdev_get_gpio_in(splitter, 0);
} else {
serial_irq = get_cpu_irq(cpus, 0, irq_pin);
}
serial_mm_init(get_system_memory(), base, 0, serial_irq, 115200,
serial_hd(OR1KSIM_UART_COUNT - uart_idx - 1),
DEVICE_NATIVE_ENDIAN);
/* Add device tree node for serial. */
nodename = g_strdup_printf("/serial@%" HWADDR_PRIx, base);
qemu_fdt_add_subnode(fdt, nodename);
qemu_fdt_setprop_string(fdt, nodename, "compatible", "ns16550a");
qemu_fdt_setprop_cells(fdt, nodename, "reg", base, size);
qemu_fdt_setprop_cell(fdt, nodename, "interrupts", irq_pin);
qemu_fdt_setprop_cell(fdt, nodename, "clock-frequency", OR1KSIM_CLK_MHZ);
qemu_fdt_setprop(fdt, nodename, "big-endian", NULL, 0);
/* The /chosen node is created during fdt creation. */
qemu_fdt_setprop_string(fdt, "/chosen", "stdout-path", nodename);
snprintf(alias, sizeof(alias), "uart%d", uart_idx);
qemu_fdt_setprop_string(fdt, "/aliases", alias, nodename);
g_free(nodename);
}
static hwaddr openrisc_load_kernel(ram_addr_t ram_size,
const char *kernel_filename)
{
long kernel_size;
uint64_t elf_entry;
uint64_t high_addr;
hwaddr entry;
if (kernel_filename && !qtest_enabled()) {
kernel_size = load_elf(kernel_filename, NULL, NULL, NULL,
&elf_entry, NULL, &high_addr, NULL, 1,
EM_OPENRISC, 1, 0);
entry = elf_entry;
if (kernel_size < 0) {
kernel_size = load_uimage(kernel_filename,
&entry, NULL, NULL, NULL, NULL);
high_addr = entry + kernel_size;
}
if (kernel_size < 0) {
kernel_size = load_image_targphys(kernel_filename,
KERNEL_LOAD_ADDR,
ram_size - KERNEL_LOAD_ADDR);
high_addr = KERNEL_LOAD_ADDR + kernel_size;
}
if (entry <= 0) {
entry = KERNEL_LOAD_ADDR;
}
if (kernel_size < 0) {
error_report("couldn't load the kernel '%s'", kernel_filename);
exit(1);
}
boot_info.bootstrap_pc = entry;
return high_addr;
}
return 0;
}
static hwaddr openrisc_load_initrd(Or1ksimState *state, const char *filename,
hwaddr load_start, uint64_t mem_size)
{
void *fdt = state->fdt;
int size;
hwaddr start;
/* We put the initrd right after the kernel; page aligned. */
start = TARGET_PAGE_ALIGN(load_start);
size = load_ramdisk(filename, start, mem_size - start);
if (size < 0) {
size = load_image_targphys(filename, start, mem_size - start);
if (size < 0) {
error_report("could not load ramdisk '%s'", filename);
exit(1);
}
}
qemu_fdt_setprop_cell(fdt, "/chosen",
"linux,initrd-start", start);
qemu_fdt_setprop_cell(fdt, "/chosen",
"linux,initrd-end", start + size);
return start + size;
}
static uint32_t openrisc_load_fdt(Or1ksimState *state, hwaddr load_start,
uint64_t mem_size)
{
void *fdt = state->fdt;
uint32_t fdt_addr;
int ret;
int fdtsize = fdt_totalsize(fdt);
if (fdtsize <= 0) {
error_report("invalid device-tree");
exit(1);
}
/* We put fdt right after the kernel and/or initrd. */
fdt_addr = TARGET_PAGE_ALIGN(load_start);
ret = fdt_pack(fdt);
/* Should only fail if we've built a corrupted tree */
g_assert(ret == 0);
/* copy in the device tree */
qemu_fdt_dumpdtb(fdt, fdtsize);
rom_add_blob_fixed_as("fdt", fdt, fdtsize, fdt_addr,
&address_space_memory);
return fdt_addr;
}
static void openrisc_sim_init(MachineState *machine)
{
ram_addr_t ram_size = machine->ram_size;
const char *kernel_filename = machine->kernel_filename;
OpenRISCCPU *cpus[OR1KSIM_CPUS_MAX] = {};
Or1ksimState *state = OR1KSIM_MACHINE(machine);
MemoryRegion *ram;
hwaddr load_addr;
int n;
unsigned int smp_cpus = machine->smp.cpus;
assert(smp_cpus >= 1 && smp_cpus <= OR1KSIM_CPUS_MAX);
for (n = 0; n < smp_cpus; n++) {
cpus[n] = OPENRISC_CPU(cpu_create(machine->cpu_type));
if (cpus[n] == NULL) {
fprintf(stderr, "Unable to find CPU definition!\n");
exit(1);
}
cpu_openrisc_clock_init(cpus[n]);
qemu_register_reset(main_cpu_reset, cpus[n]);
}
ram = g_malloc(sizeof(*ram));
memory_region_init_ram(ram, NULL, "openrisc.ram", ram_size, &error_fatal);
memory_region_add_subregion(get_system_memory(), 0, ram);
openrisc_create_fdt(state, or1ksim_memmap, smp_cpus, machine->ram_size,
machine->kernel_cmdline);
if (nd_table[0].used) {
openrisc_sim_net_init(state, or1ksim_memmap[OR1KSIM_ETHOC].base,
or1ksim_memmap[OR1KSIM_ETHOC].size,
smp_cpus, cpus,
OR1KSIM_ETHOC_IRQ, nd_table);
}
if (smp_cpus > 1) {
openrisc_sim_ompic_init(state, or1ksim_memmap[OR1KSIM_OMPIC].base,
or1ksim_memmap[OR1KSIM_UART].size,
smp_cpus, cpus, OR1KSIM_OMPIC_IRQ);
}
for (n = 0; n < OR1KSIM_UART_COUNT; ++n)
openrisc_sim_serial_init(state, or1ksim_memmap[OR1KSIM_UART].base +
or1ksim_memmap[OR1KSIM_UART].size * n,
or1ksim_memmap[OR1KSIM_UART].size,
smp_cpus, cpus, OR1KSIM_UART_IRQ, n);
load_addr = openrisc_load_kernel(ram_size, kernel_filename);
if (load_addr > 0) {
if (machine->initrd_filename) {
load_addr = openrisc_load_initrd(state, machine->initrd_filename,
load_addr, machine->ram_size);
}
boot_info.fdt_addr = openrisc_load_fdt(state, load_addr,
machine->ram_size);
}
}
static void openrisc_sim_machine_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
mc->desc = "or1k simulation";
mc->init = openrisc_sim_init;
mc->max_cpus = OR1KSIM_CPUS_MAX;
mc->is_default = true;
mc->default_cpu_type = OPENRISC_CPU_TYPE_NAME("or1200");
}
static const TypeInfo or1ksim_machine_typeinfo = {
.name = TYPE_OR1KSIM_MACHINE,
.parent = TYPE_MACHINE,
.class_init = openrisc_sim_machine_init,
.instance_size = sizeof(Or1ksimState),
};
static void or1ksim_machine_init_register_types(void)
{
type_register_static(&or1ksim_machine_typeinfo);
}
type_init(or1ksim_machine_init_register_types)