qemu/hw/pci/msix.c
Richard Henderson 8e5e0890b7 hw/pci: Constify VMState
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20231221031652.119827-45-richard.henderson@linaro.org>
2023-12-30 07:38:06 +11:00

709 lines
20 KiB
C

/*
* MSI-X device support
*
* This module includes support for MSI-X in pci devices.
*
* Author: Michael S. Tsirkin <mst@redhat.com>
*
* Copyright (c) 2009, Red Hat Inc, Michael S. Tsirkin (mst@redhat.com)
*
* This work is licensed under the terms of the GNU GPL, version 2. See
* the COPYING file in the top-level directory.
*
* Contributions after 2012-01-13 are licensed under the terms of the
* GNU GPL, version 2 or (at your option) any later version.
*/
#include "qemu/osdep.h"
#include "hw/pci/msi.h"
#include "hw/pci/msix.h"
#include "hw/pci/pci.h"
#include "hw/xen/xen.h"
#include "sysemu/xen.h"
#include "migration/qemu-file-types.h"
#include "migration/vmstate.h"
#include "qemu/range.h"
#include "qapi/error.h"
#include "trace.h"
#include "hw/i386/kvm/xen_evtchn.h"
/* MSI enable bit and maskall bit are in byte 1 in FLAGS register */
#define MSIX_CONTROL_OFFSET (PCI_MSIX_FLAGS + 1)
#define MSIX_ENABLE_MASK (PCI_MSIX_FLAGS_ENABLE >> 8)
#define MSIX_MASKALL_MASK (PCI_MSIX_FLAGS_MASKALL >> 8)
static MSIMessage msix_prepare_message(PCIDevice *dev, unsigned vector)
{
uint8_t *table_entry = dev->msix_table + vector * PCI_MSIX_ENTRY_SIZE;
MSIMessage msg;
msg.address = pci_get_quad(table_entry + PCI_MSIX_ENTRY_LOWER_ADDR);
msg.data = pci_get_long(table_entry + PCI_MSIX_ENTRY_DATA);
return msg;
}
MSIMessage msix_get_message(PCIDevice *dev, unsigned vector)
{
return dev->msix_prepare_message(dev, vector);
}
/*
* Special API for POWER to configure the vectors through
* a side channel. Should never be used by devices.
*/
void msix_set_message(PCIDevice *dev, int vector, struct MSIMessage msg)
{
uint8_t *table_entry = dev->msix_table + vector * PCI_MSIX_ENTRY_SIZE;
pci_set_quad(table_entry + PCI_MSIX_ENTRY_LOWER_ADDR, msg.address);
pci_set_long(table_entry + PCI_MSIX_ENTRY_DATA, msg.data);
table_entry[PCI_MSIX_ENTRY_VECTOR_CTRL] &= ~PCI_MSIX_ENTRY_CTRL_MASKBIT;
}
static uint8_t msix_pending_mask(int vector)
{
return 1 << (vector % 8);
}
static uint8_t *msix_pending_byte(PCIDevice *dev, int vector)
{
return dev->msix_pba + vector / 8;
}
static int msix_is_pending(PCIDevice *dev, int vector)
{
return *msix_pending_byte(dev, vector) & msix_pending_mask(vector);
}
void msix_set_pending(PCIDevice *dev, unsigned int vector)
{
*msix_pending_byte(dev, vector) |= msix_pending_mask(vector);
}
void msix_clr_pending(PCIDevice *dev, int vector)
{
*msix_pending_byte(dev, vector) &= ~msix_pending_mask(vector);
}
static bool msix_vector_masked(PCIDevice *dev, unsigned int vector, bool fmask)
{
unsigned offset = vector * PCI_MSIX_ENTRY_SIZE;
uint8_t *data = &dev->msix_table[offset + PCI_MSIX_ENTRY_DATA];
/* MSIs on Xen can be remapped into pirqs. In those cases, masking
* and unmasking go through the PV evtchn path. */
if (xen_enabled() && xen_is_pirq_msi(pci_get_long(data))) {
return false;
}
return fmask || dev->msix_table[offset + PCI_MSIX_ENTRY_VECTOR_CTRL] &
PCI_MSIX_ENTRY_CTRL_MASKBIT;
}
bool msix_is_masked(PCIDevice *dev, unsigned int vector)
{
return msix_vector_masked(dev, vector, dev->msix_function_masked);
}
static void msix_fire_vector_notifier(PCIDevice *dev,
unsigned int vector, bool is_masked)
{
MSIMessage msg;
int ret;
if (!dev->msix_vector_use_notifier) {
return;
}
if (is_masked) {
dev->msix_vector_release_notifier(dev, vector);
} else {
msg = msix_get_message(dev, vector);
ret = dev->msix_vector_use_notifier(dev, vector, msg);
assert(ret >= 0);
}
}
static void msix_handle_mask_update(PCIDevice *dev, int vector, bool was_masked)
{
bool is_masked = msix_is_masked(dev, vector);
if (xen_mode == XEN_EMULATE) {
MSIMessage msg = msix_prepare_message(dev, vector);
xen_evtchn_snoop_msi(dev, true, vector, msg.address, msg.data,
is_masked);
}
if (is_masked == was_masked) {
return;
}
msix_fire_vector_notifier(dev, vector, is_masked);
if (!is_masked && msix_is_pending(dev, vector)) {
msix_clr_pending(dev, vector);
msix_notify(dev, vector);
}
}
void msix_set_mask(PCIDevice *dev, int vector, bool mask)
{
unsigned offset;
bool was_masked;
assert(vector < dev->msix_entries_nr);
offset = vector * PCI_MSIX_ENTRY_SIZE + PCI_MSIX_ENTRY_VECTOR_CTRL;
was_masked = msix_is_masked(dev, vector);
if (mask) {
dev->msix_table[offset] |= PCI_MSIX_ENTRY_CTRL_MASKBIT;
} else {
dev->msix_table[offset] &= ~PCI_MSIX_ENTRY_CTRL_MASKBIT;
}
msix_handle_mask_update(dev, vector, was_masked);
}
static bool msix_masked(PCIDevice *dev)
{
return dev->config[dev->msix_cap + MSIX_CONTROL_OFFSET] & MSIX_MASKALL_MASK;
}
static void msix_update_function_masked(PCIDevice *dev)
{
dev->msix_function_masked = !msix_enabled(dev) || msix_masked(dev);
}
/* Handle MSI-X capability config write. */
void msix_write_config(PCIDevice *dev, uint32_t addr,
uint32_t val, int len)
{
unsigned enable_pos = dev->msix_cap + MSIX_CONTROL_OFFSET;
int vector;
bool was_masked;
if (!msix_present(dev) || !range_covers_byte(addr, len, enable_pos)) {
return;
}
trace_msix_write_config(dev->name, msix_enabled(dev), msix_masked(dev));
was_masked = dev->msix_function_masked;
msix_update_function_masked(dev);
if (!msix_enabled(dev)) {
return;
}
pci_device_deassert_intx(dev);
if (dev->msix_function_masked == was_masked) {
return;
}
for (vector = 0; vector < dev->msix_entries_nr; ++vector) {
msix_handle_mask_update(dev, vector,
msix_vector_masked(dev, vector, was_masked));
}
}
static uint64_t msix_table_mmio_read(void *opaque, hwaddr addr,
unsigned size)
{
PCIDevice *dev = opaque;
assert(addr + size <= dev->msix_entries_nr * PCI_MSIX_ENTRY_SIZE);
return pci_get_long(dev->msix_table + addr);
}
static void msix_table_mmio_write(void *opaque, hwaddr addr,
uint64_t val, unsigned size)
{
PCIDevice *dev = opaque;
int vector = addr / PCI_MSIX_ENTRY_SIZE;
bool was_masked;
assert(addr + size <= dev->msix_entries_nr * PCI_MSIX_ENTRY_SIZE);
was_masked = msix_is_masked(dev, vector);
pci_set_long(dev->msix_table + addr, val);
msix_handle_mask_update(dev, vector, was_masked);
}
static const MemoryRegionOps msix_table_mmio_ops = {
.read = msix_table_mmio_read,
.write = msix_table_mmio_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.valid = {
.min_access_size = 4,
.max_access_size = 8,
},
.impl = {
.max_access_size = 4,
},
};
static uint64_t msix_pba_mmio_read(void *opaque, hwaddr addr,
unsigned size)
{
PCIDevice *dev = opaque;
if (dev->msix_vector_poll_notifier) {
unsigned vector_start = addr * 8;
unsigned vector_end = MIN(addr + size * 8, dev->msix_entries_nr);
dev->msix_vector_poll_notifier(dev, vector_start, vector_end);
}
return pci_get_long(dev->msix_pba + addr);
}
static void msix_pba_mmio_write(void *opaque, hwaddr addr,
uint64_t val, unsigned size)
{
}
static const MemoryRegionOps msix_pba_mmio_ops = {
.read = msix_pba_mmio_read,
.write = msix_pba_mmio_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.valid = {
.min_access_size = 4,
.max_access_size = 8,
},
.impl = {
.max_access_size = 4,
},
};
static void msix_mask_all(struct PCIDevice *dev, unsigned nentries)
{
int vector;
for (vector = 0; vector < nentries; ++vector) {
unsigned offset =
vector * PCI_MSIX_ENTRY_SIZE + PCI_MSIX_ENTRY_VECTOR_CTRL;
bool was_masked = msix_is_masked(dev, vector);
dev->msix_table[offset] |= PCI_MSIX_ENTRY_CTRL_MASKBIT;
msix_handle_mask_update(dev, vector, was_masked);
}
}
/*
* Make PCI device @dev MSI-X capable
* @nentries is the max number of MSI-X vectors that the device support.
* @table_bar is the MemoryRegion that MSI-X table structure resides.
* @table_bar_nr is number of base address register corresponding to @table_bar.
* @table_offset indicates the offset that the MSI-X table structure starts with
* in @table_bar.
* @pba_bar is the MemoryRegion that the Pending Bit Array structure resides.
* @pba_bar_nr is number of base address register corresponding to @pba_bar.
* @pba_offset indicates the offset that the Pending Bit Array structure
* starts with in @pba_bar.
* Non-zero @cap_pos puts capability MSI-X at that offset in PCI config space.
* @errp is for returning errors.
*
* Return 0 on success; set @errp and return -errno on error:
* -ENOTSUP means lacking msi support for a msi-capable platform.
* -EINVAL means capability overlap, happens when @cap_pos is non-zero,
* also means a programming error, except device assignment, which can check
* if a real HW is broken.
*/
int msix_init(struct PCIDevice *dev, unsigned short nentries,
MemoryRegion *table_bar, uint8_t table_bar_nr,
unsigned table_offset, MemoryRegion *pba_bar,
uint8_t pba_bar_nr, unsigned pba_offset, uint8_t cap_pos,
Error **errp)
{
int cap;
unsigned table_size, pba_size;
uint8_t *config;
/* Nothing to do if MSI is not supported by interrupt controller */
if (!msi_nonbroken) {
error_setg(errp, "MSI-X is not supported by interrupt controller");
return -ENOTSUP;
}
if (nentries < 1 || nentries > PCI_MSIX_FLAGS_QSIZE + 1) {
error_setg(errp, "The number of MSI-X vectors is invalid");
return -EINVAL;
}
table_size = nentries * PCI_MSIX_ENTRY_SIZE;
pba_size = QEMU_ALIGN_UP(nentries, 64) / 8;
/* Sanity test: table & pba don't overlap, fit within BARs, min aligned */
if ((table_bar_nr == pba_bar_nr &&
ranges_overlap(table_offset, table_size, pba_offset, pba_size)) ||
table_offset + table_size > memory_region_size(table_bar) ||
pba_offset + pba_size > memory_region_size(pba_bar) ||
(table_offset | pba_offset) & PCI_MSIX_FLAGS_BIRMASK) {
error_setg(errp, "table & pba overlap, or they don't fit in BARs,"
" or don't align");
return -EINVAL;
}
cap = pci_add_capability(dev, PCI_CAP_ID_MSIX,
cap_pos, MSIX_CAP_LENGTH, errp);
if (cap < 0) {
return cap;
}
dev->msix_cap = cap;
dev->cap_present |= QEMU_PCI_CAP_MSIX;
config = dev->config + cap;
pci_set_word(config + PCI_MSIX_FLAGS, nentries - 1);
dev->msix_entries_nr = nentries;
dev->msix_function_masked = true;
pci_set_long(config + PCI_MSIX_TABLE, table_offset | table_bar_nr);
pci_set_long(config + PCI_MSIX_PBA, pba_offset | pba_bar_nr);
/* Make flags bit writable. */
dev->wmask[cap + MSIX_CONTROL_OFFSET] |= MSIX_ENABLE_MASK |
MSIX_MASKALL_MASK;
dev->msix_table = g_malloc0(table_size);
dev->msix_pba = g_malloc0(pba_size);
dev->msix_entry_used = g_malloc0(nentries * sizeof *dev->msix_entry_used);
msix_mask_all(dev, nentries);
memory_region_init_io(&dev->msix_table_mmio, OBJECT(dev), &msix_table_mmio_ops, dev,
"msix-table", table_size);
memory_region_add_subregion(table_bar, table_offset, &dev->msix_table_mmio);
memory_region_init_io(&dev->msix_pba_mmio, OBJECT(dev), &msix_pba_mmio_ops, dev,
"msix-pba", pba_size);
memory_region_add_subregion(pba_bar, pba_offset, &dev->msix_pba_mmio);
dev->msix_prepare_message = msix_prepare_message;
return 0;
}
int msix_init_exclusive_bar(PCIDevice *dev, unsigned short nentries,
uint8_t bar_nr, Error **errp)
{
int ret;
char *name;
uint32_t bar_size = 4096;
uint32_t bar_pba_offset = bar_size / 2;
uint32_t bar_pba_size = QEMU_ALIGN_UP(nentries, 64) / 8;
/*
* Migration compatibility dictates that this remains a 4k
* BAR with the vector table in the lower half and PBA in
* the upper half for nentries which is lower or equal to 128.
* No need to care about using more than 65 entries for legacy
* machine types who has at most 64 queues.
*/
if (nentries * PCI_MSIX_ENTRY_SIZE > bar_pba_offset) {
bar_pba_offset = nentries * PCI_MSIX_ENTRY_SIZE;
}
if (bar_pba_offset + bar_pba_size > 4096) {
bar_size = bar_pba_offset + bar_pba_size;
}
bar_size = pow2ceil(bar_size);
name = g_strdup_printf("%s-msix", dev->name);
memory_region_init(&dev->msix_exclusive_bar, OBJECT(dev), name, bar_size);
g_free(name);
ret = msix_init(dev, nentries, &dev->msix_exclusive_bar, bar_nr,
0, &dev->msix_exclusive_bar,
bar_nr, bar_pba_offset,
0, errp);
if (ret) {
return ret;
}
pci_register_bar(dev, bar_nr, PCI_BASE_ADDRESS_SPACE_MEMORY,
&dev->msix_exclusive_bar);
return 0;
}
static void msix_free_irq_entries(PCIDevice *dev)
{
int vector;
for (vector = 0; vector < dev->msix_entries_nr; ++vector) {
dev->msix_entry_used[vector] = 0;
msix_clr_pending(dev, vector);
}
}
static void msix_clear_all_vectors(PCIDevice *dev)
{
int vector;
for (vector = 0; vector < dev->msix_entries_nr; ++vector) {
msix_clr_pending(dev, vector);
}
}
/* Clean up resources for the device. */
void msix_uninit(PCIDevice *dev, MemoryRegion *table_bar, MemoryRegion *pba_bar)
{
if (!msix_present(dev)) {
return;
}
pci_del_capability(dev, PCI_CAP_ID_MSIX, MSIX_CAP_LENGTH);
dev->msix_cap = 0;
msix_free_irq_entries(dev);
dev->msix_entries_nr = 0;
memory_region_del_subregion(pba_bar, &dev->msix_pba_mmio);
g_free(dev->msix_pba);
dev->msix_pba = NULL;
memory_region_del_subregion(table_bar, &dev->msix_table_mmio);
g_free(dev->msix_table);
dev->msix_table = NULL;
g_free(dev->msix_entry_used);
dev->msix_entry_used = NULL;
dev->cap_present &= ~QEMU_PCI_CAP_MSIX;
dev->msix_prepare_message = NULL;
}
void msix_uninit_exclusive_bar(PCIDevice *dev)
{
if (msix_present(dev)) {
msix_uninit(dev, &dev->msix_exclusive_bar, &dev->msix_exclusive_bar);
}
}
void msix_save(PCIDevice *dev, QEMUFile *f)
{
unsigned n = dev->msix_entries_nr;
if (!msix_present(dev)) {
return;
}
qemu_put_buffer(f, dev->msix_table, n * PCI_MSIX_ENTRY_SIZE);
qemu_put_buffer(f, dev->msix_pba, DIV_ROUND_UP(n, 8));
}
/* Should be called after restoring the config space. */
void msix_load(PCIDevice *dev, QEMUFile *f)
{
unsigned n = dev->msix_entries_nr;
unsigned int vector;
if (!msix_present(dev)) {
return;
}
msix_clear_all_vectors(dev);
qemu_get_buffer(f, dev->msix_table, n * PCI_MSIX_ENTRY_SIZE);
qemu_get_buffer(f, dev->msix_pba, DIV_ROUND_UP(n, 8));
msix_update_function_masked(dev);
for (vector = 0; vector < n; vector++) {
msix_handle_mask_update(dev, vector, true);
}
}
/* Does device support MSI-X? */
int msix_present(PCIDevice *dev)
{
return dev->cap_present & QEMU_PCI_CAP_MSIX;
}
/* Is MSI-X enabled? */
int msix_enabled(PCIDevice *dev)
{
return (dev->cap_present & QEMU_PCI_CAP_MSIX) &&
(dev->config[dev->msix_cap + MSIX_CONTROL_OFFSET] &
MSIX_ENABLE_MASK);
}
/* Send an MSI-X message */
void msix_notify(PCIDevice *dev, unsigned vector)
{
MSIMessage msg;
assert(vector < dev->msix_entries_nr);
if (!dev->msix_entry_used[vector]) {
return;
}
if (msix_is_masked(dev, vector)) {
msix_set_pending(dev, vector);
return;
}
msg = msix_get_message(dev, vector);
msi_send_message(dev, msg);
}
void msix_reset(PCIDevice *dev)
{
if (!msix_present(dev)) {
return;
}
msix_clear_all_vectors(dev);
dev->config[dev->msix_cap + MSIX_CONTROL_OFFSET] &=
~dev->wmask[dev->msix_cap + MSIX_CONTROL_OFFSET];
memset(dev->msix_table, 0, dev->msix_entries_nr * PCI_MSIX_ENTRY_SIZE);
memset(dev->msix_pba, 0, QEMU_ALIGN_UP(dev->msix_entries_nr, 64) / 8);
msix_mask_all(dev, dev->msix_entries_nr);
}
/* PCI spec suggests that devices make it possible for software to configure
* less vectors than supported by the device, but does not specify a standard
* mechanism for devices to do so.
*
* We support this by asking devices to declare vectors software is going to
* actually use, and checking this on the notification path. Devices that
* don't want to follow the spec suggestion can declare all vectors as used. */
/* Mark vector as used. */
void msix_vector_use(PCIDevice *dev, unsigned vector)
{
assert(vector < dev->msix_entries_nr);
dev->msix_entry_used[vector]++;
}
/* Mark vector as unused. */
void msix_vector_unuse(PCIDevice *dev, unsigned vector)
{
assert(vector < dev->msix_entries_nr);
if (!dev->msix_entry_used[vector]) {
return;
}
if (--dev->msix_entry_used[vector]) {
return;
}
msix_clr_pending(dev, vector);
}
void msix_unuse_all_vectors(PCIDevice *dev)
{
if (!msix_present(dev)) {
return;
}
msix_free_irq_entries(dev);
}
unsigned int msix_nr_vectors_allocated(const PCIDevice *dev)
{
return dev->msix_entries_nr;
}
static int msix_set_notifier_for_vector(PCIDevice *dev, unsigned int vector)
{
MSIMessage msg;
if (msix_is_masked(dev, vector)) {
return 0;
}
msg = msix_get_message(dev, vector);
return dev->msix_vector_use_notifier(dev, vector, msg);
}
static void msix_unset_notifier_for_vector(PCIDevice *dev, unsigned int vector)
{
if (msix_is_masked(dev, vector)) {
return;
}
dev->msix_vector_release_notifier(dev, vector);
}
int msix_set_vector_notifiers(PCIDevice *dev,
MSIVectorUseNotifier use_notifier,
MSIVectorReleaseNotifier release_notifier,
MSIVectorPollNotifier poll_notifier)
{
int vector, ret;
assert(use_notifier && release_notifier);
dev->msix_vector_use_notifier = use_notifier;
dev->msix_vector_release_notifier = release_notifier;
dev->msix_vector_poll_notifier = poll_notifier;
if ((dev->config[dev->msix_cap + MSIX_CONTROL_OFFSET] &
(MSIX_ENABLE_MASK | MSIX_MASKALL_MASK)) == MSIX_ENABLE_MASK) {
for (vector = 0; vector < dev->msix_entries_nr; vector++) {
ret = msix_set_notifier_for_vector(dev, vector);
if (ret < 0) {
goto undo;
}
}
}
if (dev->msix_vector_poll_notifier) {
dev->msix_vector_poll_notifier(dev, 0, dev->msix_entries_nr);
}
return 0;
undo:
while (--vector >= 0) {
msix_unset_notifier_for_vector(dev, vector);
}
dev->msix_vector_use_notifier = NULL;
dev->msix_vector_release_notifier = NULL;
dev->msix_vector_poll_notifier = NULL;
return ret;
}
void msix_unset_vector_notifiers(PCIDevice *dev)
{
int vector;
assert(dev->msix_vector_use_notifier &&
dev->msix_vector_release_notifier);
if ((dev->config[dev->msix_cap + MSIX_CONTROL_OFFSET] &
(MSIX_ENABLE_MASK | MSIX_MASKALL_MASK)) == MSIX_ENABLE_MASK) {
for (vector = 0; vector < dev->msix_entries_nr; vector++) {
msix_unset_notifier_for_vector(dev, vector);
}
}
dev->msix_vector_use_notifier = NULL;
dev->msix_vector_release_notifier = NULL;
dev->msix_vector_poll_notifier = NULL;
}
static int put_msix_state(QEMUFile *f, void *pv, size_t size,
const VMStateField *field, JSONWriter *vmdesc)
{
msix_save(pv, f);
return 0;
}
static int get_msix_state(QEMUFile *f, void *pv, size_t size,
const VMStateField *field)
{
msix_load(pv, f);
return 0;
}
static const VMStateInfo vmstate_info_msix = {
.name = "msix state",
.get = get_msix_state,
.put = put_msix_state,
};
const VMStateDescription vmstate_msix = {
.name = "msix",
.fields = (const VMStateField[]) {
{
.name = "msix",
.version_id = 0,
.field_exists = NULL,
.size = 0, /* ouch */
.info = &vmstate_info_msix,
.flags = VMS_SINGLE,
.offset = 0,
},
VMSTATE_END_OF_LIST()
}
};