e9ebb2f767
The only guidance the AHCI specification gives on memory access is: "Register accesses shall have a maximum size of 64-bits; 64-bit access must not cross an 8-byte alignment boundary." I interpret this to mean that aligned or unaligned 1, 2 and 4 byte accesses should work, as well as aligned 8 byte accesses. In practice, a real Q35/ICH9 responds to 1, 2, 4 and 8 byte reads regardless of alignment. Windows 7 can be observed making 1 byte reads to the middle of 32 bit registers to fetch error codes. Introduce a wrapper to support unaligned accesses to AHCI. This wrapper will support aligned 8 byte reads, but will make no effort to support unaligned 8 byte reads, which although they will work on real hardware, are not guaranteed to work and do not appear to be used by either Windows or Linux. Signed-off-by: John Snow <jsnow@redhat.com> Reviewed-by: Eric Blake <eblake@redhat.com> Message-id: 1434470575-21625-2-git-send-email-jsnow@redhat.com
1593 lines
47 KiB
C
1593 lines
47 KiB
C
/*
|
|
* QEMU AHCI Emulation
|
|
*
|
|
* Copyright (c) 2010 qiaochong@loongson.cn
|
|
* Copyright (c) 2010 Roland Elek <elek.roland@gmail.com>
|
|
* Copyright (c) 2010 Sebastian Herbszt <herbszt@gmx.de>
|
|
* Copyright (c) 2010 Alexander Graf <agraf@suse.de>
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
*/
|
|
|
|
#include <hw/hw.h>
|
|
#include <hw/pci/msi.h>
|
|
#include <hw/i386/pc.h>
|
|
#include <hw/pci/pci.h>
|
|
#include <hw/sysbus.h>
|
|
|
|
#include "qemu/error-report.h"
|
|
#include "sysemu/block-backend.h"
|
|
#include "sysemu/dma.h"
|
|
#include "internal.h"
|
|
#include <hw/ide/pci.h>
|
|
#include <hw/ide/ahci.h>
|
|
|
|
#define DEBUG_AHCI 0
|
|
|
|
#define DPRINTF(port, fmt, ...) \
|
|
do { \
|
|
if (DEBUG_AHCI) { \
|
|
fprintf(stderr, "ahci: %s: [%d] ", __func__, port); \
|
|
fprintf(stderr, fmt, ## __VA_ARGS__); \
|
|
} \
|
|
} while (0)
|
|
|
|
static void check_cmd(AHCIState *s, int port);
|
|
static int handle_cmd(AHCIState *s,int port,int slot);
|
|
static void ahci_reset_port(AHCIState *s, int port);
|
|
static void ahci_write_fis_d2h(AHCIDevice *ad, uint8_t *cmd_fis);
|
|
static void ahci_init_d2h(AHCIDevice *ad);
|
|
static int ahci_dma_prepare_buf(IDEDMA *dma, int is_write);
|
|
static void ahci_commit_buf(IDEDMA *dma, uint32_t tx_bytes);
|
|
static bool ahci_map_clb_address(AHCIDevice *ad);
|
|
static bool ahci_map_fis_address(AHCIDevice *ad);
|
|
static void ahci_unmap_clb_address(AHCIDevice *ad);
|
|
static void ahci_unmap_fis_address(AHCIDevice *ad);
|
|
|
|
|
|
static uint32_t ahci_port_read(AHCIState *s, int port, int offset)
|
|
{
|
|
uint32_t val;
|
|
AHCIPortRegs *pr;
|
|
pr = &s->dev[port].port_regs;
|
|
|
|
switch (offset) {
|
|
case PORT_LST_ADDR:
|
|
val = pr->lst_addr;
|
|
break;
|
|
case PORT_LST_ADDR_HI:
|
|
val = pr->lst_addr_hi;
|
|
break;
|
|
case PORT_FIS_ADDR:
|
|
val = pr->fis_addr;
|
|
break;
|
|
case PORT_FIS_ADDR_HI:
|
|
val = pr->fis_addr_hi;
|
|
break;
|
|
case PORT_IRQ_STAT:
|
|
val = pr->irq_stat;
|
|
break;
|
|
case PORT_IRQ_MASK:
|
|
val = pr->irq_mask;
|
|
break;
|
|
case PORT_CMD:
|
|
val = pr->cmd;
|
|
break;
|
|
case PORT_TFDATA:
|
|
val = pr->tfdata;
|
|
break;
|
|
case PORT_SIG:
|
|
val = pr->sig;
|
|
break;
|
|
case PORT_SCR_STAT:
|
|
if (s->dev[port].port.ifs[0].blk) {
|
|
val = SATA_SCR_SSTATUS_DET_DEV_PRESENT_PHY_UP |
|
|
SATA_SCR_SSTATUS_SPD_GEN1 | SATA_SCR_SSTATUS_IPM_ACTIVE;
|
|
} else {
|
|
val = SATA_SCR_SSTATUS_DET_NODEV;
|
|
}
|
|
break;
|
|
case PORT_SCR_CTL:
|
|
val = pr->scr_ctl;
|
|
break;
|
|
case PORT_SCR_ERR:
|
|
val = pr->scr_err;
|
|
break;
|
|
case PORT_SCR_ACT:
|
|
pr->scr_act &= ~s->dev[port].finished;
|
|
s->dev[port].finished = 0;
|
|
val = pr->scr_act;
|
|
break;
|
|
case PORT_CMD_ISSUE:
|
|
val = pr->cmd_issue;
|
|
break;
|
|
case PORT_RESERVED:
|
|
default:
|
|
val = 0;
|
|
}
|
|
DPRINTF(port, "offset: 0x%x val: 0x%x\n", offset, val);
|
|
return val;
|
|
|
|
}
|
|
|
|
static void ahci_irq_raise(AHCIState *s, AHCIDevice *dev)
|
|
{
|
|
AHCIPCIState *d = container_of(s, AHCIPCIState, ahci);
|
|
PCIDevice *pci_dev =
|
|
(PCIDevice *)object_dynamic_cast(OBJECT(d), TYPE_PCI_DEVICE);
|
|
|
|
DPRINTF(0, "raise irq\n");
|
|
|
|
if (pci_dev && msi_enabled(pci_dev)) {
|
|
msi_notify(pci_dev, 0);
|
|
} else {
|
|
qemu_irq_raise(s->irq);
|
|
}
|
|
}
|
|
|
|
static void ahci_irq_lower(AHCIState *s, AHCIDevice *dev)
|
|
{
|
|
AHCIPCIState *d = container_of(s, AHCIPCIState, ahci);
|
|
PCIDevice *pci_dev =
|
|
(PCIDevice *)object_dynamic_cast(OBJECT(d), TYPE_PCI_DEVICE);
|
|
|
|
DPRINTF(0, "lower irq\n");
|
|
|
|
if (!pci_dev || !msi_enabled(pci_dev)) {
|
|
qemu_irq_lower(s->irq);
|
|
}
|
|
}
|
|
|
|
static void ahci_check_irq(AHCIState *s)
|
|
{
|
|
int i;
|
|
|
|
DPRINTF(-1, "check irq %#x\n", s->control_regs.irqstatus);
|
|
|
|
s->control_regs.irqstatus = 0;
|
|
for (i = 0; i < s->ports; i++) {
|
|
AHCIPortRegs *pr = &s->dev[i].port_regs;
|
|
if (pr->irq_stat & pr->irq_mask) {
|
|
s->control_regs.irqstatus |= (1 << i);
|
|
}
|
|
}
|
|
|
|
if (s->control_regs.irqstatus &&
|
|
(s->control_regs.ghc & HOST_CTL_IRQ_EN)) {
|
|
ahci_irq_raise(s, NULL);
|
|
} else {
|
|
ahci_irq_lower(s, NULL);
|
|
}
|
|
}
|
|
|
|
static void ahci_trigger_irq(AHCIState *s, AHCIDevice *d,
|
|
int irq_type)
|
|
{
|
|
DPRINTF(d->port_no, "trigger irq %#x -> %x\n",
|
|
irq_type, d->port_regs.irq_mask & irq_type);
|
|
|
|
d->port_regs.irq_stat |= irq_type;
|
|
ahci_check_irq(s);
|
|
}
|
|
|
|
static void map_page(AddressSpace *as, uint8_t **ptr, uint64_t addr,
|
|
uint32_t wanted)
|
|
{
|
|
hwaddr len = wanted;
|
|
|
|
if (*ptr) {
|
|
dma_memory_unmap(as, *ptr, len, DMA_DIRECTION_FROM_DEVICE, len);
|
|
}
|
|
|
|
*ptr = dma_memory_map(as, addr, &len, DMA_DIRECTION_FROM_DEVICE);
|
|
if (len < wanted) {
|
|
dma_memory_unmap(as, *ptr, len, DMA_DIRECTION_FROM_DEVICE, len);
|
|
*ptr = NULL;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Check the cmd register to see if we should start or stop
|
|
* the DMA or FIS RX engines.
|
|
*
|
|
* @ad: Device to engage.
|
|
* @allow_stop: Allow device to transition from started to stopped?
|
|
* 'no' is useful for migration post_load, which does not expect a transition.
|
|
*
|
|
* @return 0 on success, -1 on error.
|
|
*/
|
|
static int ahci_cond_start_engines(AHCIDevice *ad, bool allow_stop)
|
|
{
|
|
AHCIPortRegs *pr = &ad->port_regs;
|
|
|
|
if (pr->cmd & PORT_CMD_START) {
|
|
if (ahci_map_clb_address(ad)) {
|
|
pr->cmd |= PORT_CMD_LIST_ON;
|
|
} else {
|
|
error_report("AHCI: Failed to start DMA engine: "
|
|
"bad command list buffer address");
|
|
return -1;
|
|
}
|
|
} else if (pr->cmd & PORT_CMD_LIST_ON) {
|
|
if (allow_stop) {
|
|
ahci_unmap_clb_address(ad);
|
|
pr->cmd = pr->cmd & ~(PORT_CMD_LIST_ON);
|
|
} else {
|
|
error_report("AHCI: DMA engine should be off, "
|
|
"but appears to still be running");
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
if (pr->cmd & PORT_CMD_FIS_RX) {
|
|
if (ahci_map_fis_address(ad)) {
|
|
pr->cmd |= PORT_CMD_FIS_ON;
|
|
} else {
|
|
error_report("AHCI: Failed to start FIS receive engine: "
|
|
"bad FIS receive buffer address");
|
|
return -1;
|
|
}
|
|
} else if (pr->cmd & PORT_CMD_FIS_ON) {
|
|
if (allow_stop) {
|
|
ahci_unmap_fis_address(ad);
|
|
pr->cmd = pr->cmd & ~(PORT_CMD_FIS_ON);
|
|
} else {
|
|
error_report("AHCI: FIS receive engine should be off, "
|
|
"but appears to still be running");
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void ahci_port_write(AHCIState *s, int port, int offset, uint32_t val)
|
|
{
|
|
AHCIPortRegs *pr = &s->dev[port].port_regs;
|
|
|
|
DPRINTF(port, "offset: 0x%x val: 0x%x\n", offset, val);
|
|
switch (offset) {
|
|
case PORT_LST_ADDR:
|
|
pr->lst_addr = val;
|
|
break;
|
|
case PORT_LST_ADDR_HI:
|
|
pr->lst_addr_hi = val;
|
|
break;
|
|
case PORT_FIS_ADDR:
|
|
pr->fis_addr = val;
|
|
break;
|
|
case PORT_FIS_ADDR_HI:
|
|
pr->fis_addr_hi = val;
|
|
break;
|
|
case PORT_IRQ_STAT:
|
|
pr->irq_stat &= ~val;
|
|
ahci_check_irq(s);
|
|
break;
|
|
case PORT_IRQ_MASK:
|
|
pr->irq_mask = val & 0xfdc000ff;
|
|
ahci_check_irq(s);
|
|
break;
|
|
case PORT_CMD:
|
|
/* Block any Read-only fields from being set;
|
|
* including LIST_ON and FIS_ON. */
|
|
pr->cmd = (pr->cmd & PORT_CMD_RO_MASK) | (val & ~PORT_CMD_RO_MASK);
|
|
|
|
/* Check FIS RX and CLB engines, allow transition to false: */
|
|
ahci_cond_start_engines(&s->dev[port], true);
|
|
|
|
/* XXX usually the FIS would be pending on the bus here and
|
|
issuing deferred until the OS enables FIS receival.
|
|
Instead, we only submit it once - which works in most
|
|
cases, but is a hack. */
|
|
if ((pr->cmd & PORT_CMD_FIS_ON) &&
|
|
!s->dev[port].init_d2h_sent) {
|
|
ahci_init_d2h(&s->dev[port]);
|
|
s->dev[port].init_d2h_sent = true;
|
|
}
|
|
|
|
check_cmd(s, port);
|
|
break;
|
|
case PORT_TFDATA:
|
|
/* Read Only. */
|
|
break;
|
|
case PORT_SIG:
|
|
/* Read Only */
|
|
break;
|
|
case PORT_SCR_STAT:
|
|
/* Read Only */
|
|
break;
|
|
case PORT_SCR_CTL:
|
|
if (((pr->scr_ctl & AHCI_SCR_SCTL_DET) == 1) &&
|
|
((val & AHCI_SCR_SCTL_DET) == 0)) {
|
|
ahci_reset_port(s, port);
|
|
}
|
|
pr->scr_ctl = val;
|
|
break;
|
|
case PORT_SCR_ERR:
|
|
pr->scr_err &= ~val;
|
|
break;
|
|
case PORT_SCR_ACT:
|
|
/* RW1 */
|
|
pr->scr_act |= val;
|
|
break;
|
|
case PORT_CMD_ISSUE:
|
|
pr->cmd_issue |= val;
|
|
check_cmd(s, port);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
static uint64_t ahci_mem_read_32(void *opaque, hwaddr addr)
|
|
{
|
|
AHCIState *s = opaque;
|
|
uint32_t val = 0;
|
|
|
|
if (addr < AHCI_GENERIC_HOST_CONTROL_REGS_MAX_ADDR) {
|
|
switch (addr) {
|
|
case HOST_CAP:
|
|
val = s->control_regs.cap;
|
|
break;
|
|
case HOST_CTL:
|
|
val = s->control_regs.ghc;
|
|
break;
|
|
case HOST_IRQ_STAT:
|
|
val = s->control_regs.irqstatus;
|
|
break;
|
|
case HOST_PORTS_IMPL:
|
|
val = s->control_regs.impl;
|
|
break;
|
|
case HOST_VERSION:
|
|
val = s->control_regs.version;
|
|
break;
|
|
}
|
|
|
|
DPRINTF(-1, "(addr 0x%08X), val 0x%08X\n", (unsigned) addr, val);
|
|
} else if ((addr >= AHCI_PORT_REGS_START_ADDR) &&
|
|
(addr < (AHCI_PORT_REGS_START_ADDR +
|
|
(s->ports * AHCI_PORT_ADDR_OFFSET_LEN)))) {
|
|
val = ahci_port_read(s, (addr - AHCI_PORT_REGS_START_ADDR) >> 7,
|
|
addr & AHCI_PORT_ADDR_OFFSET_MASK);
|
|
}
|
|
|
|
return val;
|
|
}
|
|
|
|
|
|
/**
|
|
* AHCI 1.3 section 3 ("HBA Memory Registers")
|
|
* Support unaligned 8/16/32 bit reads, and 64 bit aligned reads.
|
|
* Caller is responsible for masking unwanted higher order bytes.
|
|
*/
|
|
static uint64_t ahci_mem_read(void *opaque, hwaddr addr, unsigned size)
|
|
{
|
|
hwaddr aligned = addr & ~0x3;
|
|
int ofst = addr - aligned;
|
|
uint64_t lo = ahci_mem_read_32(opaque, aligned);
|
|
uint64_t hi;
|
|
|
|
/* if < 8 byte read does not cross 4 byte boundary */
|
|
if (ofst + size <= 4) {
|
|
return lo >> (ofst * 8);
|
|
}
|
|
g_assert_cmpint(size, >, 1);
|
|
|
|
/* If the 64bit read is unaligned, we will produce undefined
|
|
* results. AHCI does not support unaligned 64bit reads. */
|
|
hi = ahci_mem_read_32(opaque, aligned + 4);
|
|
return (hi << 32 | lo) >> (ofst * 8);
|
|
}
|
|
|
|
|
|
static void ahci_mem_write(void *opaque, hwaddr addr,
|
|
uint64_t val, unsigned size)
|
|
{
|
|
AHCIState *s = opaque;
|
|
|
|
/* Only aligned reads are allowed on AHCI */
|
|
if (addr & 3) {
|
|
fprintf(stderr, "ahci: Mis-aligned write to addr 0x"
|
|
TARGET_FMT_plx "\n", addr);
|
|
return;
|
|
}
|
|
|
|
if (addr < AHCI_GENERIC_HOST_CONTROL_REGS_MAX_ADDR) {
|
|
DPRINTF(-1, "(addr 0x%08X), val 0x%08"PRIX64"\n", (unsigned) addr, val);
|
|
|
|
switch (addr) {
|
|
case HOST_CAP: /* R/WO, RO */
|
|
/* FIXME handle R/WO */
|
|
break;
|
|
case HOST_CTL: /* R/W */
|
|
if (val & HOST_CTL_RESET) {
|
|
DPRINTF(-1, "HBA Reset\n");
|
|
ahci_reset(s);
|
|
} else {
|
|
s->control_regs.ghc = (val & 0x3) | HOST_CTL_AHCI_EN;
|
|
ahci_check_irq(s);
|
|
}
|
|
break;
|
|
case HOST_IRQ_STAT: /* R/WC, RO */
|
|
s->control_regs.irqstatus &= ~val;
|
|
ahci_check_irq(s);
|
|
break;
|
|
case HOST_PORTS_IMPL: /* R/WO, RO */
|
|
/* FIXME handle R/WO */
|
|
break;
|
|
case HOST_VERSION: /* RO */
|
|
/* FIXME report write? */
|
|
break;
|
|
default:
|
|
DPRINTF(-1, "write to unknown register 0x%x\n", (unsigned)addr);
|
|
}
|
|
} else if ((addr >= AHCI_PORT_REGS_START_ADDR) &&
|
|
(addr < (AHCI_PORT_REGS_START_ADDR +
|
|
(s->ports * AHCI_PORT_ADDR_OFFSET_LEN)))) {
|
|
ahci_port_write(s, (addr - AHCI_PORT_REGS_START_ADDR) >> 7,
|
|
addr & AHCI_PORT_ADDR_OFFSET_MASK, val);
|
|
}
|
|
|
|
}
|
|
|
|
static const MemoryRegionOps ahci_mem_ops = {
|
|
.read = ahci_mem_read,
|
|
.write = ahci_mem_write,
|
|
.endianness = DEVICE_LITTLE_ENDIAN,
|
|
};
|
|
|
|
static uint64_t ahci_idp_read(void *opaque, hwaddr addr,
|
|
unsigned size)
|
|
{
|
|
AHCIState *s = opaque;
|
|
|
|
if (addr == s->idp_offset) {
|
|
/* index register */
|
|
return s->idp_index;
|
|
} else if (addr == s->idp_offset + 4) {
|
|
/* data register - do memory read at location selected by index */
|
|
return ahci_mem_read(opaque, s->idp_index, size);
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static void ahci_idp_write(void *opaque, hwaddr addr,
|
|
uint64_t val, unsigned size)
|
|
{
|
|
AHCIState *s = opaque;
|
|
|
|
if (addr == s->idp_offset) {
|
|
/* index register - mask off reserved bits */
|
|
s->idp_index = (uint32_t)val & ((AHCI_MEM_BAR_SIZE - 1) & ~3);
|
|
} else if (addr == s->idp_offset + 4) {
|
|
/* data register - do memory write at location selected by index */
|
|
ahci_mem_write(opaque, s->idp_index, val, size);
|
|
}
|
|
}
|
|
|
|
static const MemoryRegionOps ahci_idp_ops = {
|
|
.read = ahci_idp_read,
|
|
.write = ahci_idp_write,
|
|
.endianness = DEVICE_LITTLE_ENDIAN,
|
|
};
|
|
|
|
|
|
static void ahci_reg_init(AHCIState *s)
|
|
{
|
|
int i;
|
|
|
|
s->control_regs.cap = (s->ports - 1) |
|
|
(AHCI_NUM_COMMAND_SLOTS << 8) |
|
|
(AHCI_SUPPORTED_SPEED_GEN1 << AHCI_SUPPORTED_SPEED) |
|
|
HOST_CAP_NCQ | HOST_CAP_AHCI;
|
|
|
|
s->control_regs.impl = (1 << s->ports) - 1;
|
|
|
|
s->control_regs.version = AHCI_VERSION_1_0;
|
|
|
|
for (i = 0; i < s->ports; i++) {
|
|
s->dev[i].port_state = STATE_RUN;
|
|
}
|
|
}
|
|
|
|
static void check_cmd(AHCIState *s, int port)
|
|
{
|
|
AHCIPortRegs *pr = &s->dev[port].port_regs;
|
|
int slot;
|
|
|
|
if ((pr->cmd & PORT_CMD_START) && pr->cmd_issue) {
|
|
for (slot = 0; (slot < 32) && pr->cmd_issue; slot++) {
|
|
if ((pr->cmd_issue & (1U << slot)) &&
|
|
!handle_cmd(s, port, slot)) {
|
|
pr->cmd_issue &= ~(1U << slot);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void ahci_check_cmd_bh(void *opaque)
|
|
{
|
|
AHCIDevice *ad = opaque;
|
|
|
|
qemu_bh_delete(ad->check_bh);
|
|
ad->check_bh = NULL;
|
|
|
|
if ((ad->busy_slot != -1) &&
|
|
!(ad->port.ifs[0].status & (BUSY_STAT|DRQ_STAT))) {
|
|
/* no longer busy */
|
|
ad->port_regs.cmd_issue &= ~(1 << ad->busy_slot);
|
|
ad->busy_slot = -1;
|
|
}
|
|
|
|
check_cmd(ad->hba, ad->port_no);
|
|
}
|
|
|
|
static void ahci_init_d2h(AHCIDevice *ad)
|
|
{
|
|
uint8_t init_fis[20];
|
|
IDEState *ide_state = &ad->port.ifs[0];
|
|
|
|
memset(init_fis, 0, sizeof(init_fis));
|
|
|
|
init_fis[4] = 1;
|
|
init_fis[12] = 1;
|
|
|
|
if (ide_state->drive_kind == IDE_CD) {
|
|
init_fis[5] = ide_state->lcyl;
|
|
init_fis[6] = ide_state->hcyl;
|
|
}
|
|
|
|
ahci_write_fis_d2h(ad, init_fis);
|
|
}
|
|
|
|
static void ahci_reset_port(AHCIState *s, int port)
|
|
{
|
|
AHCIDevice *d = &s->dev[port];
|
|
AHCIPortRegs *pr = &d->port_regs;
|
|
IDEState *ide_state = &d->port.ifs[0];
|
|
int i;
|
|
|
|
DPRINTF(port, "reset port\n");
|
|
|
|
ide_bus_reset(&d->port);
|
|
ide_state->ncq_queues = AHCI_MAX_CMDS;
|
|
|
|
pr->scr_stat = 0;
|
|
pr->scr_err = 0;
|
|
pr->scr_act = 0;
|
|
pr->tfdata = 0x7F;
|
|
pr->sig = 0xFFFFFFFF;
|
|
d->busy_slot = -1;
|
|
d->init_d2h_sent = false;
|
|
|
|
ide_state = &s->dev[port].port.ifs[0];
|
|
if (!ide_state->blk) {
|
|
return;
|
|
}
|
|
|
|
/* reset ncq queue */
|
|
for (i = 0; i < AHCI_MAX_CMDS; i++) {
|
|
NCQTransferState *ncq_tfs = &s->dev[port].ncq_tfs[i];
|
|
if (!ncq_tfs->used) {
|
|
continue;
|
|
}
|
|
|
|
if (ncq_tfs->aiocb) {
|
|
blk_aio_cancel(ncq_tfs->aiocb);
|
|
ncq_tfs->aiocb = NULL;
|
|
}
|
|
|
|
/* Maybe we just finished the request thanks to blk_aio_cancel() */
|
|
if (!ncq_tfs->used) {
|
|
continue;
|
|
}
|
|
|
|
qemu_sglist_destroy(&ncq_tfs->sglist);
|
|
ncq_tfs->used = 0;
|
|
}
|
|
|
|
s->dev[port].port_state = STATE_RUN;
|
|
if (!ide_state->blk) {
|
|
pr->sig = 0;
|
|
ide_state->status = SEEK_STAT | WRERR_STAT;
|
|
} else if (ide_state->drive_kind == IDE_CD) {
|
|
pr->sig = SATA_SIGNATURE_CDROM;
|
|
ide_state->lcyl = 0x14;
|
|
ide_state->hcyl = 0xeb;
|
|
DPRINTF(port, "set lcyl = %d\n", ide_state->lcyl);
|
|
ide_state->status = SEEK_STAT | WRERR_STAT | READY_STAT;
|
|
} else {
|
|
pr->sig = SATA_SIGNATURE_DISK;
|
|
ide_state->status = SEEK_STAT | WRERR_STAT;
|
|
}
|
|
|
|
ide_state->error = 1;
|
|
ahci_init_d2h(d);
|
|
}
|
|
|
|
static void debug_print_fis(uint8_t *fis, int cmd_len)
|
|
{
|
|
#if DEBUG_AHCI
|
|
int i;
|
|
|
|
fprintf(stderr, "fis:");
|
|
for (i = 0; i < cmd_len; i++) {
|
|
if ((i & 0xf) == 0) {
|
|
fprintf(stderr, "\n%02x:",i);
|
|
}
|
|
fprintf(stderr, "%02x ",fis[i]);
|
|
}
|
|
fprintf(stderr, "\n");
|
|
#endif
|
|
}
|
|
|
|
static bool ahci_map_fis_address(AHCIDevice *ad)
|
|
{
|
|
AHCIPortRegs *pr = &ad->port_regs;
|
|
map_page(ad->hba->as, &ad->res_fis,
|
|
((uint64_t)pr->fis_addr_hi << 32) | pr->fis_addr, 256);
|
|
return ad->res_fis != NULL;
|
|
}
|
|
|
|
static void ahci_unmap_fis_address(AHCIDevice *ad)
|
|
{
|
|
dma_memory_unmap(ad->hba->as, ad->res_fis, 256,
|
|
DMA_DIRECTION_FROM_DEVICE, 256);
|
|
ad->res_fis = NULL;
|
|
}
|
|
|
|
static bool ahci_map_clb_address(AHCIDevice *ad)
|
|
{
|
|
AHCIPortRegs *pr = &ad->port_regs;
|
|
ad->cur_cmd = NULL;
|
|
map_page(ad->hba->as, &ad->lst,
|
|
((uint64_t)pr->lst_addr_hi << 32) | pr->lst_addr, 1024);
|
|
return ad->lst != NULL;
|
|
}
|
|
|
|
static void ahci_unmap_clb_address(AHCIDevice *ad)
|
|
{
|
|
dma_memory_unmap(ad->hba->as, ad->lst, 1024,
|
|
DMA_DIRECTION_FROM_DEVICE, 1024);
|
|
ad->lst = NULL;
|
|
}
|
|
|
|
static void ahci_write_fis_sdb(AHCIState *s, int port, uint32_t finished)
|
|
{
|
|
AHCIDevice *ad = &s->dev[port];
|
|
AHCIPortRegs *pr = &ad->port_regs;
|
|
IDEState *ide_state;
|
|
SDBFIS *sdb_fis;
|
|
|
|
if (!s->dev[port].res_fis ||
|
|
!(pr->cmd & PORT_CMD_FIS_RX)) {
|
|
return;
|
|
}
|
|
|
|
sdb_fis = (SDBFIS *)&ad->res_fis[RES_FIS_SDBFIS];
|
|
ide_state = &ad->port.ifs[0];
|
|
|
|
sdb_fis->type = SATA_FIS_TYPE_SDB;
|
|
/* Interrupt pending & Notification bit */
|
|
sdb_fis->flags = (ad->hba->control_regs.irqstatus ? (1 << 6) : 0);
|
|
sdb_fis->status = ide_state->status & 0x77;
|
|
sdb_fis->error = ide_state->error;
|
|
/* update SAct field in SDB_FIS */
|
|
s->dev[port].finished |= finished;
|
|
sdb_fis->payload = cpu_to_le32(ad->finished);
|
|
|
|
/* Update shadow registers (except BSY 0x80 and DRQ 0x08) */
|
|
pr->tfdata = (ad->port.ifs[0].error << 8) |
|
|
(ad->port.ifs[0].status & 0x77) |
|
|
(pr->tfdata & 0x88);
|
|
|
|
ahci_trigger_irq(s, ad, PORT_IRQ_SDB_FIS);
|
|
}
|
|
|
|
static void ahci_write_fis_pio(AHCIDevice *ad, uint16_t len)
|
|
{
|
|
AHCIPortRegs *pr = &ad->port_regs;
|
|
uint8_t *pio_fis, *cmd_fis;
|
|
uint64_t tbl_addr;
|
|
dma_addr_t cmd_len = 0x80;
|
|
IDEState *s = &ad->port.ifs[0];
|
|
|
|
if (!ad->res_fis || !(pr->cmd & PORT_CMD_FIS_RX)) {
|
|
return;
|
|
}
|
|
|
|
/* map cmd_fis */
|
|
tbl_addr = le64_to_cpu(ad->cur_cmd->tbl_addr);
|
|
cmd_fis = dma_memory_map(ad->hba->as, tbl_addr, &cmd_len,
|
|
DMA_DIRECTION_TO_DEVICE);
|
|
|
|
if (cmd_fis == NULL) {
|
|
DPRINTF(ad->port_no, "dma_memory_map failed in ahci_write_fis_pio");
|
|
ahci_trigger_irq(ad->hba, ad, PORT_IRQ_HBUS_ERR);
|
|
return;
|
|
}
|
|
|
|
if (cmd_len != 0x80) {
|
|
DPRINTF(ad->port_no,
|
|
"dma_memory_map mapped too few bytes in ahci_write_fis_pio");
|
|
dma_memory_unmap(ad->hba->as, cmd_fis, cmd_len,
|
|
DMA_DIRECTION_TO_DEVICE, cmd_len);
|
|
ahci_trigger_irq(ad->hba, ad, PORT_IRQ_HBUS_ERR);
|
|
return;
|
|
}
|
|
|
|
pio_fis = &ad->res_fis[RES_FIS_PSFIS];
|
|
|
|
pio_fis[0] = SATA_FIS_TYPE_PIO_SETUP;
|
|
pio_fis[1] = (ad->hba->control_regs.irqstatus ? (1 << 6) : 0);
|
|
pio_fis[2] = s->status;
|
|
pio_fis[3] = s->error;
|
|
|
|
pio_fis[4] = s->sector;
|
|
pio_fis[5] = s->lcyl;
|
|
pio_fis[6] = s->hcyl;
|
|
pio_fis[7] = s->select;
|
|
pio_fis[8] = s->hob_sector;
|
|
pio_fis[9] = s->hob_lcyl;
|
|
pio_fis[10] = s->hob_hcyl;
|
|
pio_fis[11] = 0;
|
|
pio_fis[12] = cmd_fis[12];
|
|
pio_fis[13] = cmd_fis[13];
|
|
pio_fis[14] = 0;
|
|
pio_fis[15] = s->status;
|
|
pio_fis[16] = len & 255;
|
|
pio_fis[17] = len >> 8;
|
|
pio_fis[18] = 0;
|
|
pio_fis[19] = 0;
|
|
|
|
/* Update shadow registers: */
|
|
pr->tfdata = (ad->port.ifs[0].error << 8) |
|
|
ad->port.ifs[0].status;
|
|
|
|
if (pio_fis[2] & ERR_STAT) {
|
|
ahci_trigger_irq(ad->hba, ad, PORT_IRQ_TF_ERR);
|
|
}
|
|
|
|
ahci_trigger_irq(ad->hba, ad, PORT_IRQ_PIOS_FIS);
|
|
|
|
dma_memory_unmap(ad->hba->as, cmd_fis, cmd_len,
|
|
DMA_DIRECTION_TO_DEVICE, cmd_len);
|
|
}
|
|
|
|
static void ahci_write_fis_d2h(AHCIDevice *ad, uint8_t *cmd_fis)
|
|
{
|
|
AHCIPortRegs *pr = &ad->port_regs;
|
|
uint8_t *d2h_fis;
|
|
int i;
|
|
dma_addr_t cmd_len = 0x80;
|
|
int cmd_mapped = 0;
|
|
IDEState *s = &ad->port.ifs[0];
|
|
|
|
if (!ad->res_fis || !(pr->cmd & PORT_CMD_FIS_RX)) {
|
|
return;
|
|
}
|
|
|
|
if (!cmd_fis) {
|
|
/* map cmd_fis */
|
|
uint64_t tbl_addr = le64_to_cpu(ad->cur_cmd->tbl_addr);
|
|
cmd_fis = dma_memory_map(ad->hba->as, tbl_addr, &cmd_len,
|
|
DMA_DIRECTION_TO_DEVICE);
|
|
cmd_mapped = 1;
|
|
}
|
|
|
|
d2h_fis = &ad->res_fis[RES_FIS_RFIS];
|
|
|
|
d2h_fis[0] = SATA_FIS_TYPE_REGISTER_D2H;
|
|
d2h_fis[1] = (ad->hba->control_regs.irqstatus ? (1 << 6) : 0);
|
|
d2h_fis[2] = s->status;
|
|
d2h_fis[3] = s->error;
|
|
|
|
d2h_fis[4] = s->sector;
|
|
d2h_fis[5] = s->lcyl;
|
|
d2h_fis[6] = s->hcyl;
|
|
d2h_fis[7] = s->select;
|
|
d2h_fis[8] = s->hob_sector;
|
|
d2h_fis[9] = s->hob_lcyl;
|
|
d2h_fis[10] = s->hob_hcyl;
|
|
d2h_fis[11] = 0;
|
|
d2h_fis[12] = cmd_fis[12];
|
|
d2h_fis[13] = cmd_fis[13];
|
|
for (i = 14; i < 20; i++) {
|
|
d2h_fis[i] = 0;
|
|
}
|
|
|
|
/* Update shadow registers: */
|
|
pr->tfdata = (ad->port.ifs[0].error << 8) |
|
|
ad->port.ifs[0].status;
|
|
|
|
if (d2h_fis[2] & ERR_STAT) {
|
|
ahci_trigger_irq(ad->hba, ad, PORT_IRQ_TF_ERR);
|
|
}
|
|
|
|
ahci_trigger_irq(ad->hba, ad, PORT_IRQ_D2H_REG_FIS);
|
|
|
|
if (cmd_mapped) {
|
|
dma_memory_unmap(ad->hba->as, cmd_fis, cmd_len,
|
|
DMA_DIRECTION_TO_DEVICE, cmd_len);
|
|
}
|
|
}
|
|
|
|
static int prdt_tbl_entry_size(const AHCI_SG *tbl)
|
|
{
|
|
return (le32_to_cpu(tbl->flags_size) & AHCI_PRDT_SIZE_MASK) + 1;
|
|
}
|
|
|
|
static int ahci_populate_sglist(AHCIDevice *ad, QEMUSGList *sglist,
|
|
int32_t offset)
|
|
{
|
|
AHCICmdHdr *cmd = ad->cur_cmd;
|
|
uint32_t opts = le32_to_cpu(cmd->opts);
|
|
uint64_t prdt_addr = le64_to_cpu(cmd->tbl_addr) + 0x80;
|
|
int sglist_alloc_hint = opts >> AHCI_CMD_HDR_PRDT_LEN;
|
|
dma_addr_t prdt_len = (sglist_alloc_hint * sizeof(AHCI_SG));
|
|
dma_addr_t real_prdt_len = prdt_len;
|
|
uint8_t *prdt;
|
|
int i;
|
|
int r = 0;
|
|
uint64_t sum = 0;
|
|
int off_idx = -1;
|
|
int64_t off_pos = -1;
|
|
int tbl_entry_size;
|
|
IDEBus *bus = &ad->port;
|
|
BusState *qbus = BUS(bus);
|
|
|
|
/*
|
|
* Note: AHCI PRDT can describe up to 256GiB. SATA/ATA only support
|
|
* transactions of up to 32MiB as of ATA8-ACS3 rev 1b, assuming a
|
|
* 512 byte sector size. We limit the PRDT in this implementation to
|
|
* a reasonably large 2GiB, which can accommodate the maximum transfer
|
|
* request for sector sizes up to 32K.
|
|
*/
|
|
|
|
if (!sglist_alloc_hint) {
|
|
DPRINTF(ad->port_no, "no sg list given by guest: 0x%08x\n", opts);
|
|
return -1;
|
|
}
|
|
|
|
/* map PRDT */
|
|
if (!(prdt = dma_memory_map(ad->hba->as, prdt_addr, &prdt_len,
|
|
DMA_DIRECTION_TO_DEVICE))){
|
|
DPRINTF(ad->port_no, "map failed\n");
|
|
return -1;
|
|
}
|
|
|
|
if (prdt_len < real_prdt_len) {
|
|
DPRINTF(ad->port_no, "mapped less than expected\n");
|
|
r = -1;
|
|
goto out;
|
|
}
|
|
|
|
/* Get entries in the PRDT, init a qemu sglist accordingly */
|
|
if (sglist_alloc_hint > 0) {
|
|
AHCI_SG *tbl = (AHCI_SG *)prdt;
|
|
sum = 0;
|
|
for (i = 0; i < sglist_alloc_hint; i++) {
|
|
/* flags_size is zero-based */
|
|
tbl_entry_size = prdt_tbl_entry_size(&tbl[i]);
|
|
if (offset <= (sum + tbl_entry_size)) {
|
|
off_idx = i;
|
|
off_pos = offset - sum;
|
|
break;
|
|
}
|
|
sum += tbl_entry_size;
|
|
}
|
|
if ((off_idx == -1) || (off_pos < 0) || (off_pos > tbl_entry_size)) {
|
|
DPRINTF(ad->port_no, "%s: Incorrect offset! "
|
|
"off_idx: %d, off_pos: %"PRId64"\n",
|
|
__func__, off_idx, off_pos);
|
|
r = -1;
|
|
goto out;
|
|
}
|
|
|
|
qemu_sglist_init(sglist, qbus->parent, (sglist_alloc_hint - off_idx),
|
|
ad->hba->as);
|
|
qemu_sglist_add(sglist, le64_to_cpu(tbl[off_idx].addr) + off_pos,
|
|
prdt_tbl_entry_size(&tbl[off_idx]) - off_pos);
|
|
|
|
for (i = off_idx + 1; i < sglist_alloc_hint; i++) {
|
|
/* flags_size is zero-based */
|
|
qemu_sglist_add(sglist, le64_to_cpu(tbl[i].addr),
|
|
prdt_tbl_entry_size(&tbl[i]));
|
|
if (sglist->size > INT32_MAX) {
|
|
error_report("AHCI Physical Region Descriptor Table describes "
|
|
"more than 2 GiB.\n");
|
|
qemu_sglist_destroy(sglist);
|
|
r = -1;
|
|
goto out;
|
|
}
|
|
}
|
|
}
|
|
|
|
out:
|
|
dma_memory_unmap(ad->hba->as, prdt, prdt_len,
|
|
DMA_DIRECTION_TO_DEVICE, prdt_len);
|
|
return r;
|
|
}
|
|
|
|
static void ncq_cb(void *opaque, int ret)
|
|
{
|
|
NCQTransferState *ncq_tfs = (NCQTransferState *)opaque;
|
|
IDEState *ide_state = &ncq_tfs->drive->port.ifs[0];
|
|
|
|
if (ret == -ECANCELED) {
|
|
return;
|
|
}
|
|
/* Clear bit for this tag in SActive */
|
|
ncq_tfs->drive->port_regs.scr_act &= ~(1 << ncq_tfs->tag);
|
|
|
|
if (ret < 0) {
|
|
/* error */
|
|
ide_state->error = ABRT_ERR;
|
|
ide_state->status = READY_STAT | ERR_STAT;
|
|
ncq_tfs->drive->port_regs.scr_err |= (1 << ncq_tfs->tag);
|
|
} else {
|
|
ide_state->status = READY_STAT | SEEK_STAT;
|
|
}
|
|
|
|
ahci_write_fis_sdb(ncq_tfs->drive->hba, ncq_tfs->drive->port_no,
|
|
(1 << ncq_tfs->tag));
|
|
|
|
DPRINTF(ncq_tfs->drive->port_no, "NCQ transfer tag %d finished\n",
|
|
ncq_tfs->tag);
|
|
|
|
block_acct_done(blk_get_stats(ncq_tfs->drive->port.ifs[0].blk),
|
|
&ncq_tfs->acct);
|
|
qemu_sglist_destroy(&ncq_tfs->sglist);
|
|
ncq_tfs->used = 0;
|
|
}
|
|
|
|
static int is_ncq(uint8_t ata_cmd)
|
|
{
|
|
/* Based on SATA 3.2 section 13.6.3.2 */
|
|
switch (ata_cmd) {
|
|
case READ_FPDMA_QUEUED:
|
|
case WRITE_FPDMA_QUEUED:
|
|
case NCQ_NON_DATA:
|
|
case RECEIVE_FPDMA_QUEUED:
|
|
case SEND_FPDMA_QUEUED:
|
|
return 1;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static void process_ncq_command(AHCIState *s, int port, uint8_t *cmd_fis,
|
|
int slot)
|
|
{
|
|
NCQFrame *ncq_fis = (NCQFrame*)cmd_fis;
|
|
uint8_t tag = ncq_fis->tag >> 3;
|
|
NCQTransferState *ncq_tfs = &s->dev[port].ncq_tfs[tag];
|
|
|
|
if (ncq_tfs->used) {
|
|
/* error - already in use */
|
|
fprintf(stderr, "%s: tag %d already used\n", __FUNCTION__, tag);
|
|
return;
|
|
}
|
|
|
|
ncq_tfs->used = 1;
|
|
ncq_tfs->drive = &s->dev[port];
|
|
ncq_tfs->slot = slot;
|
|
ncq_tfs->lba = ((uint64_t)ncq_fis->lba5 << 40) |
|
|
((uint64_t)ncq_fis->lba4 << 32) |
|
|
((uint64_t)ncq_fis->lba3 << 24) |
|
|
((uint64_t)ncq_fis->lba2 << 16) |
|
|
((uint64_t)ncq_fis->lba1 << 8) |
|
|
(uint64_t)ncq_fis->lba0;
|
|
|
|
/* Note: We calculate the sector count, but don't currently rely on it.
|
|
* The total size of the DMA buffer tells us the transfer size instead. */
|
|
ncq_tfs->sector_count = ((uint16_t)ncq_fis->sector_count_high << 8) |
|
|
ncq_fis->sector_count_low;
|
|
|
|
DPRINTF(port, "NCQ transfer LBA from %"PRId64" to %"PRId64", "
|
|
"drive max %"PRId64"\n",
|
|
ncq_tfs->lba, ncq_tfs->lba + ncq_tfs->sector_count - 2,
|
|
s->dev[port].port.ifs[0].nb_sectors - 1);
|
|
|
|
ahci_populate_sglist(&s->dev[port], &ncq_tfs->sglist, 0);
|
|
ncq_tfs->tag = tag;
|
|
|
|
switch(ncq_fis->command) {
|
|
case READ_FPDMA_QUEUED:
|
|
DPRINTF(port, "NCQ reading %d sectors from LBA %"PRId64", "
|
|
"tag %d\n",
|
|
ncq_tfs->sector_count-1, ncq_tfs->lba, ncq_tfs->tag);
|
|
|
|
DPRINTF(port, "tag %d aio read %"PRId64"\n",
|
|
ncq_tfs->tag, ncq_tfs->lba);
|
|
|
|
dma_acct_start(ncq_tfs->drive->port.ifs[0].blk, &ncq_tfs->acct,
|
|
&ncq_tfs->sglist, BLOCK_ACCT_READ);
|
|
ncq_tfs->aiocb = dma_blk_read(ncq_tfs->drive->port.ifs[0].blk,
|
|
&ncq_tfs->sglist, ncq_tfs->lba,
|
|
ncq_cb, ncq_tfs);
|
|
break;
|
|
case WRITE_FPDMA_QUEUED:
|
|
DPRINTF(port, "NCQ writing %d sectors to LBA %"PRId64", tag %d\n",
|
|
ncq_tfs->sector_count-1, ncq_tfs->lba, ncq_tfs->tag);
|
|
|
|
DPRINTF(port, "tag %d aio write %"PRId64"\n",
|
|
ncq_tfs->tag, ncq_tfs->lba);
|
|
|
|
dma_acct_start(ncq_tfs->drive->port.ifs[0].blk, &ncq_tfs->acct,
|
|
&ncq_tfs->sglist, BLOCK_ACCT_WRITE);
|
|
ncq_tfs->aiocb = dma_blk_write(ncq_tfs->drive->port.ifs[0].blk,
|
|
&ncq_tfs->sglist, ncq_tfs->lba,
|
|
ncq_cb, ncq_tfs);
|
|
break;
|
|
default:
|
|
if (is_ncq(cmd_fis[2])) {
|
|
DPRINTF(port,
|
|
"error: unsupported NCQ command (0x%02x) received\n",
|
|
cmd_fis[2]);
|
|
} else {
|
|
DPRINTF(port,
|
|
"error: tried to process non-NCQ command as NCQ\n");
|
|
}
|
|
qemu_sglist_destroy(&ncq_tfs->sglist);
|
|
}
|
|
}
|
|
|
|
static void handle_reg_h2d_fis(AHCIState *s, int port,
|
|
int slot, uint8_t *cmd_fis)
|
|
{
|
|
IDEState *ide_state = &s->dev[port].port.ifs[0];
|
|
AHCICmdHdr *cmd = s->dev[port].cur_cmd;
|
|
uint32_t opts = le32_to_cpu(cmd->opts);
|
|
|
|
if (cmd_fis[1] & 0x0F) {
|
|
DPRINTF(port, "Port Multiplier not supported."
|
|
" cmd_fis[0]=%02x cmd_fis[1]=%02x cmd_fis[2]=%02x\n",
|
|
cmd_fis[0], cmd_fis[1], cmd_fis[2]);
|
|
return;
|
|
}
|
|
|
|
if (cmd_fis[1] & 0x70) {
|
|
DPRINTF(port, "Reserved flags set in H2D Register FIS."
|
|
" cmd_fis[0]=%02x cmd_fis[1]=%02x cmd_fis[2]=%02x\n",
|
|
cmd_fis[0], cmd_fis[1], cmd_fis[2]);
|
|
return;
|
|
}
|
|
|
|
if (!(cmd_fis[1] & SATA_FIS_REG_H2D_UPDATE_COMMAND_REGISTER)) {
|
|
switch (s->dev[port].port_state) {
|
|
case STATE_RUN:
|
|
if (cmd_fis[15] & ATA_SRST) {
|
|
s->dev[port].port_state = STATE_RESET;
|
|
}
|
|
break;
|
|
case STATE_RESET:
|
|
if (!(cmd_fis[15] & ATA_SRST)) {
|
|
ahci_reset_port(s, port);
|
|
}
|
|
break;
|
|
}
|
|
return;
|
|
}
|
|
|
|
/* Check for NCQ command */
|
|
if (is_ncq(cmd_fis[2])) {
|
|
process_ncq_command(s, port, cmd_fis, slot);
|
|
return;
|
|
}
|
|
|
|
/* Decompose the FIS:
|
|
* AHCI does not interpret FIS packets, it only forwards them.
|
|
* SATA 1.0 describes how to decode LBA28 and CHS FIS packets.
|
|
* Later specifications, e.g, SATA 3.2, describe LBA48 FIS packets.
|
|
*
|
|
* ATA4 describes sector number for LBA28/CHS commands.
|
|
* ATA6 describes sector number for LBA48 commands.
|
|
* ATA8 deprecates CHS fully, describing only LBA28/48.
|
|
*
|
|
* We dutifully convert the FIS into IDE registers, and allow the
|
|
* core layer to interpret them as needed. */
|
|
ide_state->feature = cmd_fis[3];
|
|
ide_state->sector = cmd_fis[4]; /* LBA 7:0 */
|
|
ide_state->lcyl = cmd_fis[5]; /* LBA 15:8 */
|
|
ide_state->hcyl = cmd_fis[6]; /* LBA 23:16 */
|
|
ide_state->select = cmd_fis[7]; /* LBA 27:24 (LBA28) */
|
|
ide_state->hob_sector = cmd_fis[8]; /* LBA 31:24 */
|
|
ide_state->hob_lcyl = cmd_fis[9]; /* LBA 39:32 */
|
|
ide_state->hob_hcyl = cmd_fis[10]; /* LBA 47:40 */
|
|
ide_state->hob_feature = cmd_fis[11];
|
|
ide_state->nsector = (int64_t)((cmd_fis[13] << 8) | cmd_fis[12]);
|
|
/* 14, 16, 17, 18, 19: Reserved (SATA 1.0) */
|
|
/* 15: Only valid when UPDATE_COMMAND not set. */
|
|
|
|
/* Copy the ACMD field (ATAPI packet, if any) from the AHCI command
|
|
* table to ide_state->io_buffer */
|
|
if (opts & AHCI_CMD_ATAPI) {
|
|
memcpy(ide_state->io_buffer, &cmd_fis[AHCI_COMMAND_TABLE_ACMD], 0x10);
|
|
debug_print_fis(ide_state->io_buffer, 0x10);
|
|
s->dev[port].done_atapi_packet = false;
|
|
/* XXX send PIO setup FIS */
|
|
}
|
|
|
|
ide_state->error = 0;
|
|
|
|
/* Reset transferred byte counter */
|
|
cmd->status = 0;
|
|
|
|
/* We're ready to process the command in FIS byte 2. */
|
|
ide_exec_cmd(&s->dev[port].port, cmd_fis[2]);
|
|
}
|
|
|
|
static int handle_cmd(AHCIState *s, int port, int slot)
|
|
{
|
|
IDEState *ide_state;
|
|
uint64_t tbl_addr;
|
|
AHCICmdHdr *cmd;
|
|
uint8_t *cmd_fis;
|
|
dma_addr_t cmd_len;
|
|
|
|
if (s->dev[port].port.ifs[0].status & (BUSY_STAT|DRQ_STAT)) {
|
|
/* Engine currently busy, try again later */
|
|
DPRINTF(port, "engine busy\n");
|
|
return -1;
|
|
}
|
|
|
|
if (!s->dev[port].lst) {
|
|
DPRINTF(port, "error: lst not given but cmd handled");
|
|
return -1;
|
|
}
|
|
cmd = &((AHCICmdHdr *)s->dev[port].lst)[slot];
|
|
/* remember current slot handle for later */
|
|
s->dev[port].cur_cmd = cmd;
|
|
|
|
/* The device we are working for */
|
|
ide_state = &s->dev[port].port.ifs[0];
|
|
if (!ide_state->blk) {
|
|
DPRINTF(port, "error: guest accessed unused port");
|
|
return -1;
|
|
}
|
|
|
|
tbl_addr = le64_to_cpu(cmd->tbl_addr);
|
|
cmd_len = 0x80;
|
|
cmd_fis = dma_memory_map(s->as, tbl_addr, &cmd_len,
|
|
DMA_DIRECTION_FROM_DEVICE);
|
|
if (!cmd_fis) {
|
|
DPRINTF(port, "error: guest passed us an invalid cmd fis\n");
|
|
return -1;
|
|
} else if (cmd_len != 0x80) {
|
|
ahci_trigger_irq(s, &s->dev[port], PORT_IRQ_HBUS_ERR);
|
|
DPRINTF(port, "error: dma_memory_map failed: "
|
|
"(len(%02"PRIx64") != 0x80)\n",
|
|
cmd_len);
|
|
goto out;
|
|
}
|
|
debug_print_fis(cmd_fis, 0x80);
|
|
|
|
switch (cmd_fis[0]) {
|
|
case SATA_FIS_TYPE_REGISTER_H2D:
|
|
handle_reg_h2d_fis(s, port, slot, cmd_fis);
|
|
break;
|
|
default:
|
|
DPRINTF(port, "unknown command cmd_fis[0]=%02x cmd_fis[1]=%02x "
|
|
"cmd_fis[2]=%02x\n", cmd_fis[0], cmd_fis[1],
|
|
cmd_fis[2]);
|
|
break;
|
|
}
|
|
|
|
out:
|
|
dma_memory_unmap(s->as, cmd_fis, cmd_len, DMA_DIRECTION_FROM_DEVICE,
|
|
cmd_len);
|
|
|
|
if (s->dev[port].port.ifs[0].status & (BUSY_STAT|DRQ_STAT)) {
|
|
/* async command, complete later */
|
|
s->dev[port].busy_slot = slot;
|
|
return -1;
|
|
}
|
|
|
|
/* done handling the command */
|
|
return 0;
|
|
}
|
|
|
|
/* DMA dev <-> ram */
|
|
static void ahci_start_transfer(IDEDMA *dma)
|
|
{
|
|
AHCIDevice *ad = DO_UPCAST(AHCIDevice, dma, dma);
|
|
IDEState *s = &ad->port.ifs[0];
|
|
uint32_t size = (uint32_t)(s->data_end - s->data_ptr);
|
|
/* write == ram -> device */
|
|
uint32_t opts = le32_to_cpu(ad->cur_cmd->opts);
|
|
int is_write = opts & AHCI_CMD_WRITE;
|
|
int is_atapi = opts & AHCI_CMD_ATAPI;
|
|
int has_sglist = 0;
|
|
|
|
if (is_atapi && !ad->done_atapi_packet) {
|
|
/* already prepopulated iobuffer */
|
|
ad->done_atapi_packet = true;
|
|
size = 0;
|
|
goto out;
|
|
}
|
|
|
|
if (ahci_dma_prepare_buf(dma, is_write)) {
|
|
has_sglist = 1;
|
|
}
|
|
|
|
DPRINTF(ad->port_no, "%sing %d bytes on %s w/%s sglist\n",
|
|
is_write ? "writ" : "read", size, is_atapi ? "atapi" : "ata",
|
|
has_sglist ? "" : "o");
|
|
|
|
if (has_sglist && size) {
|
|
if (is_write) {
|
|
dma_buf_write(s->data_ptr, size, &s->sg);
|
|
} else {
|
|
dma_buf_read(s->data_ptr, size, &s->sg);
|
|
}
|
|
}
|
|
|
|
out:
|
|
/* declare that we processed everything */
|
|
s->data_ptr = s->data_end;
|
|
|
|
/* Update number of transferred bytes, destroy sglist */
|
|
ahci_commit_buf(dma, size);
|
|
|
|
s->end_transfer_func(s);
|
|
|
|
if (!(s->status & DRQ_STAT)) {
|
|
/* done with PIO send/receive */
|
|
ahci_write_fis_pio(ad, le32_to_cpu(ad->cur_cmd->status));
|
|
}
|
|
}
|
|
|
|
static void ahci_start_dma(IDEDMA *dma, IDEState *s,
|
|
BlockCompletionFunc *dma_cb)
|
|
{
|
|
AHCIDevice *ad = DO_UPCAST(AHCIDevice, dma, dma);
|
|
DPRINTF(ad->port_no, "\n");
|
|
s->io_buffer_offset = 0;
|
|
dma_cb(s, 0);
|
|
}
|
|
|
|
static void ahci_restart_dma(IDEDMA *dma)
|
|
{
|
|
/* Nothing to do, ahci_start_dma already resets s->io_buffer_offset. */
|
|
}
|
|
|
|
/**
|
|
* Called in DMA R/W chains to read the PRDT, utilizing ahci_populate_sglist.
|
|
* Not currently invoked by PIO R/W chains,
|
|
* which invoke ahci_populate_sglist via ahci_start_transfer.
|
|
*/
|
|
static int32_t ahci_dma_prepare_buf(IDEDMA *dma, int is_write)
|
|
{
|
|
AHCIDevice *ad = DO_UPCAST(AHCIDevice, dma, dma);
|
|
IDEState *s = &ad->port.ifs[0];
|
|
|
|
if (ahci_populate_sglist(ad, &s->sg, s->io_buffer_offset) == -1) {
|
|
DPRINTF(ad->port_no, "ahci_dma_prepare_buf failed.\n");
|
|
return -1;
|
|
}
|
|
s->io_buffer_size = s->sg.size;
|
|
|
|
DPRINTF(ad->port_no, "len=%#x\n", s->io_buffer_size);
|
|
return s->io_buffer_size;
|
|
}
|
|
|
|
/**
|
|
* Destroys the scatter-gather list,
|
|
* and updates the command header with a bytes-read value.
|
|
* called explicitly via ahci_dma_rw_buf (ATAPI DMA),
|
|
* and ahci_start_transfer (PIO R/W),
|
|
* and called via callback from ide_dma_cb for DMA R/W paths.
|
|
*/
|
|
static void ahci_commit_buf(IDEDMA *dma, uint32_t tx_bytes)
|
|
{
|
|
AHCIDevice *ad = DO_UPCAST(AHCIDevice, dma, dma);
|
|
IDEState *s = &ad->port.ifs[0];
|
|
|
|
tx_bytes += le32_to_cpu(ad->cur_cmd->status);
|
|
ad->cur_cmd->status = cpu_to_le32(tx_bytes);
|
|
|
|
qemu_sglist_destroy(&s->sg);
|
|
}
|
|
|
|
static int ahci_dma_rw_buf(IDEDMA *dma, int is_write)
|
|
{
|
|
AHCIDevice *ad = DO_UPCAST(AHCIDevice, dma, dma);
|
|
IDEState *s = &ad->port.ifs[0];
|
|
uint8_t *p = s->io_buffer + s->io_buffer_index;
|
|
int l = s->io_buffer_size - s->io_buffer_index;
|
|
|
|
if (ahci_populate_sglist(ad, &s->sg, s->io_buffer_offset)) {
|
|
return 0;
|
|
}
|
|
|
|
if (is_write) {
|
|
dma_buf_read(p, l, &s->sg);
|
|
} else {
|
|
dma_buf_write(p, l, &s->sg);
|
|
}
|
|
|
|
/* free sglist, update byte count */
|
|
ahci_commit_buf(dma, l);
|
|
|
|
s->io_buffer_index += l;
|
|
s->io_buffer_offset += l;
|
|
|
|
DPRINTF(ad->port_no, "len=%#x\n", l);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static void ahci_cmd_done(IDEDMA *dma)
|
|
{
|
|
AHCIDevice *ad = DO_UPCAST(AHCIDevice, dma, dma);
|
|
|
|
DPRINTF(ad->port_no, "cmd done\n");
|
|
|
|
/* update d2h status */
|
|
ahci_write_fis_d2h(ad, NULL);
|
|
|
|
if (!ad->check_bh) {
|
|
/* maybe we still have something to process, check later */
|
|
ad->check_bh = qemu_bh_new(ahci_check_cmd_bh, ad);
|
|
qemu_bh_schedule(ad->check_bh);
|
|
}
|
|
}
|
|
|
|
static void ahci_irq_set(void *opaque, int n, int level)
|
|
{
|
|
}
|
|
|
|
static const IDEDMAOps ahci_dma_ops = {
|
|
.start_dma = ahci_start_dma,
|
|
.restart_dma = ahci_restart_dma,
|
|
.start_transfer = ahci_start_transfer,
|
|
.prepare_buf = ahci_dma_prepare_buf,
|
|
.commit_buf = ahci_commit_buf,
|
|
.rw_buf = ahci_dma_rw_buf,
|
|
.cmd_done = ahci_cmd_done,
|
|
};
|
|
|
|
void ahci_init(AHCIState *s, DeviceState *qdev, AddressSpace *as, int ports)
|
|
{
|
|
qemu_irq *irqs;
|
|
int i;
|
|
|
|
s->as = as;
|
|
s->ports = ports;
|
|
s->dev = g_new0(AHCIDevice, ports);
|
|
ahci_reg_init(s);
|
|
/* XXX BAR size should be 1k, but that breaks, so bump it to 4k for now */
|
|
memory_region_init_io(&s->mem, OBJECT(qdev), &ahci_mem_ops, s,
|
|
"ahci", AHCI_MEM_BAR_SIZE);
|
|
memory_region_init_io(&s->idp, OBJECT(qdev), &ahci_idp_ops, s,
|
|
"ahci-idp", 32);
|
|
|
|
irqs = qemu_allocate_irqs(ahci_irq_set, s, s->ports);
|
|
|
|
for (i = 0; i < s->ports; i++) {
|
|
AHCIDevice *ad = &s->dev[i];
|
|
|
|
ide_bus_new(&ad->port, sizeof(ad->port), qdev, i, 1);
|
|
ide_init2(&ad->port, irqs[i]);
|
|
|
|
ad->hba = s;
|
|
ad->port_no = i;
|
|
ad->port.dma = &ad->dma;
|
|
ad->port.dma->ops = &ahci_dma_ops;
|
|
ide_register_restart_cb(&ad->port);
|
|
}
|
|
}
|
|
|
|
void ahci_uninit(AHCIState *s)
|
|
{
|
|
g_free(s->dev);
|
|
}
|
|
|
|
void ahci_reset(AHCIState *s)
|
|
{
|
|
AHCIPortRegs *pr;
|
|
int i;
|
|
|
|
s->control_regs.irqstatus = 0;
|
|
/* AHCI Enable (AE)
|
|
* The implementation of this bit is dependent upon the value of the
|
|
* CAP.SAM bit. If CAP.SAM is '0', then GHC.AE shall be read-write and
|
|
* shall have a reset value of '0'. If CAP.SAM is '1', then AE shall be
|
|
* read-only and shall have a reset value of '1'.
|
|
*
|
|
* We set HOST_CAP_AHCI so we must enable AHCI at reset.
|
|
*/
|
|
s->control_regs.ghc = HOST_CTL_AHCI_EN;
|
|
|
|
for (i = 0; i < s->ports; i++) {
|
|
pr = &s->dev[i].port_regs;
|
|
pr->irq_stat = 0;
|
|
pr->irq_mask = 0;
|
|
pr->scr_ctl = 0;
|
|
pr->cmd = PORT_CMD_SPIN_UP | PORT_CMD_POWER_ON;
|
|
ahci_reset_port(s, i);
|
|
}
|
|
}
|
|
|
|
static const VMStateDescription vmstate_ahci_device = {
|
|
.name = "ahci port",
|
|
.version_id = 1,
|
|
.fields = (VMStateField[]) {
|
|
VMSTATE_IDE_BUS(port, AHCIDevice),
|
|
VMSTATE_IDE_DRIVE(port.ifs[0], AHCIDevice),
|
|
VMSTATE_UINT32(port_state, AHCIDevice),
|
|
VMSTATE_UINT32(finished, AHCIDevice),
|
|
VMSTATE_UINT32(port_regs.lst_addr, AHCIDevice),
|
|
VMSTATE_UINT32(port_regs.lst_addr_hi, AHCIDevice),
|
|
VMSTATE_UINT32(port_regs.fis_addr, AHCIDevice),
|
|
VMSTATE_UINT32(port_regs.fis_addr_hi, AHCIDevice),
|
|
VMSTATE_UINT32(port_regs.irq_stat, AHCIDevice),
|
|
VMSTATE_UINT32(port_regs.irq_mask, AHCIDevice),
|
|
VMSTATE_UINT32(port_regs.cmd, AHCIDevice),
|
|
VMSTATE_UINT32(port_regs.tfdata, AHCIDevice),
|
|
VMSTATE_UINT32(port_regs.sig, AHCIDevice),
|
|
VMSTATE_UINT32(port_regs.scr_stat, AHCIDevice),
|
|
VMSTATE_UINT32(port_regs.scr_ctl, AHCIDevice),
|
|
VMSTATE_UINT32(port_regs.scr_err, AHCIDevice),
|
|
VMSTATE_UINT32(port_regs.scr_act, AHCIDevice),
|
|
VMSTATE_UINT32(port_regs.cmd_issue, AHCIDevice),
|
|
VMSTATE_BOOL(done_atapi_packet, AHCIDevice),
|
|
VMSTATE_INT32(busy_slot, AHCIDevice),
|
|
VMSTATE_BOOL(init_d2h_sent, AHCIDevice),
|
|
VMSTATE_END_OF_LIST()
|
|
},
|
|
};
|
|
|
|
static int ahci_state_post_load(void *opaque, int version_id)
|
|
{
|
|
int i;
|
|
struct AHCIDevice *ad;
|
|
AHCIState *s = opaque;
|
|
|
|
for (i = 0; i < s->ports; i++) {
|
|
ad = &s->dev[i];
|
|
|
|
/* Only remap the CLB address if appropriate, disallowing a state
|
|
* transition from 'on' to 'off' it should be consistent here. */
|
|
if (ahci_cond_start_engines(ad, false) != 0) {
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* If an error is present, ad->busy_slot will be valid and not -1.
|
|
* In this case, an operation is waiting to resume and will re-check
|
|
* for additional AHCI commands to execute upon completion.
|
|
*
|
|
* In the case where no error was present, busy_slot will be -1,
|
|
* and we should check to see if there are additional commands waiting.
|
|
*/
|
|
if (ad->busy_slot == -1) {
|
|
check_cmd(s, i);
|
|
} else {
|
|
/* We are in the middle of a command, and may need to access
|
|
* the command header in guest memory again. */
|
|
if (ad->busy_slot < 0 || ad->busy_slot >= AHCI_MAX_CMDS) {
|
|
return -1;
|
|
}
|
|
ad->cur_cmd = &((AHCICmdHdr *)ad->lst)[ad->busy_slot];
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
const VMStateDescription vmstate_ahci = {
|
|
.name = "ahci",
|
|
.version_id = 1,
|
|
.post_load = ahci_state_post_load,
|
|
.fields = (VMStateField[]) {
|
|
VMSTATE_STRUCT_VARRAY_POINTER_INT32(dev, AHCIState, ports,
|
|
vmstate_ahci_device, AHCIDevice),
|
|
VMSTATE_UINT32(control_regs.cap, AHCIState),
|
|
VMSTATE_UINT32(control_regs.ghc, AHCIState),
|
|
VMSTATE_UINT32(control_regs.irqstatus, AHCIState),
|
|
VMSTATE_UINT32(control_regs.impl, AHCIState),
|
|
VMSTATE_UINT32(control_regs.version, AHCIState),
|
|
VMSTATE_UINT32(idp_index, AHCIState),
|
|
VMSTATE_INT32_EQUAL(ports, AHCIState),
|
|
VMSTATE_END_OF_LIST()
|
|
},
|
|
};
|
|
|
|
#define TYPE_SYSBUS_AHCI "sysbus-ahci"
|
|
#define SYSBUS_AHCI(obj) OBJECT_CHECK(SysbusAHCIState, (obj), TYPE_SYSBUS_AHCI)
|
|
|
|
typedef struct SysbusAHCIState {
|
|
/*< private >*/
|
|
SysBusDevice parent_obj;
|
|
/*< public >*/
|
|
|
|
AHCIState ahci;
|
|
uint32_t num_ports;
|
|
} SysbusAHCIState;
|
|
|
|
static const VMStateDescription vmstate_sysbus_ahci = {
|
|
.name = "sysbus-ahci",
|
|
.fields = (VMStateField[]) {
|
|
VMSTATE_AHCI(ahci, SysbusAHCIState),
|
|
VMSTATE_END_OF_LIST()
|
|
},
|
|
};
|
|
|
|
static void sysbus_ahci_reset(DeviceState *dev)
|
|
{
|
|
SysbusAHCIState *s = SYSBUS_AHCI(dev);
|
|
|
|
ahci_reset(&s->ahci);
|
|
}
|
|
|
|
static void sysbus_ahci_realize(DeviceState *dev, Error **errp)
|
|
{
|
|
SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
|
|
SysbusAHCIState *s = SYSBUS_AHCI(dev);
|
|
|
|
ahci_init(&s->ahci, dev, &address_space_memory, s->num_ports);
|
|
|
|
sysbus_init_mmio(sbd, &s->ahci.mem);
|
|
sysbus_init_irq(sbd, &s->ahci.irq);
|
|
}
|
|
|
|
static Property sysbus_ahci_properties[] = {
|
|
DEFINE_PROP_UINT32("num-ports", SysbusAHCIState, num_ports, 1),
|
|
DEFINE_PROP_END_OF_LIST(),
|
|
};
|
|
|
|
static void sysbus_ahci_class_init(ObjectClass *klass, void *data)
|
|
{
|
|
DeviceClass *dc = DEVICE_CLASS(klass);
|
|
|
|
dc->realize = sysbus_ahci_realize;
|
|
dc->vmsd = &vmstate_sysbus_ahci;
|
|
dc->props = sysbus_ahci_properties;
|
|
dc->reset = sysbus_ahci_reset;
|
|
set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
|
|
}
|
|
|
|
static const TypeInfo sysbus_ahci_info = {
|
|
.name = TYPE_SYSBUS_AHCI,
|
|
.parent = TYPE_SYS_BUS_DEVICE,
|
|
.instance_size = sizeof(SysbusAHCIState),
|
|
.class_init = sysbus_ahci_class_init,
|
|
};
|
|
|
|
static void sysbus_ahci_register_types(void)
|
|
{
|
|
type_register_static(&sysbus_ahci_info);
|
|
}
|
|
|
|
type_init(sysbus_ahci_register_types)
|
|
|
|
void ahci_ide_create_devs(PCIDevice *dev, DriveInfo **hd)
|
|
{
|
|
AHCIPCIState *d = ICH_AHCI(dev);
|
|
AHCIState *ahci = &d->ahci;
|
|
int i;
|
|
|
|
for (i = 0; i < ahci->ports; i++) {
|
|
if (hd[i] == NULL) {
|
|
continue;
|
|
}
|
|
ide_create_drive(&ahci->dev[i].port, 0, hd[i]);
|
|
}
|
|
|
|
}
|